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Final Exam (v3)
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6 questions, 90 points
Answers may be given in English or Dutch

Proof Guidelines

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs.
You are welcome to use standard mathematical notation or Lean structured commands (e.g.,
assume, have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please
indicate some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the inductive
hypotheses assumed (if any) and the goal to be proved. Unless otherwise specified, minor proof
steps corresponding to refl, simp, or linarith need not be justified if you think they are obvious,
but you should say which key lemmas they depend on.

You should be explicit whenever you use a function definition or an introduction rule for an
inductive predicate, especially for functions and predicates that are specific to an exam question.

Answer:

This version of the exam includes suggested answers, presented in blocks like this one.

In Case of Ambiguities or Errors in an Exam Question

The sta� present at the exam has the lecturer’s phone number, in case of questions or issues
concerning a specific exam question. Nevertheless, we strongly recommend that you work things
out yourselves, stating explicitly any ambiguity or error and explaining how you interpret or repair
the question. The more explicit you are, the easier it will be for the lecturers to grade the question
afterwards.
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Question 1. Functional programming (5+4+7 points)

1a. Complete the following definition of the function cycle:

def cycle {α : Type} : N → list α → list α

Given a natural number n and a list xs, cycle n xs is a list containing n copies of the elements
of xs. For example:

cycle 2 ["I", "love", "exams"] = ["I", "love", "exams", "I", "love", "exams"]

cycle 0 [1, 2] = []

You may use the append operator ++. If you use other functions, give their definitions as well.

Answer:

| 0 _ := []

| (n + 1) xs := xs ++ cycle n xs

1b. Write the Lean code for a lemma stating that every element of the list cycle n xs is also an
element of xs, for all n and xs. You do not have to prove the lemma. You can use the binary
operator ∈ of type Πα, α → list α → Prop in the lemma statement.

Answer:

lemma cycle_mem {α : Type} (n : N) (xs : list α) :

∀x : α, x ∈ cycle n xs → x ∈ xs

1c. Consider the following join function, which concatenates a list of lists:

def join {α : Type} : list (list α) → list α
| [] := []

| (xs :: xss) := xs ++ join xss

Prove the following lemma about join by induction:

lemma join_append {α : Type} (xss yss : list (list α)) :

join (xss ++ yss) = join xss ++ join yss

For each case of the induction, clearly indicate the inductive hypotheses assumed and the goal
to be proved.

Answer:

The proof is by structural induction on xss.

Case xss = [] (base case).
The goal is join ([] ++ yss) = join [] ++ join yss.
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For the left-hand side of the goal, we have
join ([] ++ yss)

= join yss (by definition of ++)

For the right-hand side, we have
join [] ++ join yss

= [] ++ join yss (by definition of join)
= join yss (by definition of ++)

Thus both sides are equal.

Case xss = xs :: xss’ (inductive step).
The goal is join ((xs :: xss’) ++ yss) = join (xs :: xss’) ++ join yss.
The induction hypothesis is join (xss’ ++ yss) = join xss’ ++ join yss.

For the left-hand side of the goal, we have
join ((xs :: xss’) ++ yss)

= join (xs :: (xss’ ++ yss)) (by basic property of ++)
= xs ++ join (xss’ ++ yss) (by definition of join)
= xs ++ (join xss’ ++ join yss) (by induction hypothesis)
= xs ++ join xss’ ++ join yss (by associativity of ++)

For the right-hand side, we have
join (xs :: xss’) ++ join yss

= xs ++ join xss’ ++ join yss (by definition of join)

Thus both sides are equal. QED.
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Question 2. Logic (8+8 points)

2a. Give a detailed proof of the following lemma. Make sure to emphasize and clearly label every
step corresponding to the introduction or elimination of a quantifier or connective.

lemma not_exists_forall_not {α : Type} {p : α → Prop} :

(¬ ∃x, p x) → ∀y, ¬ p y

Answer:

Assume hnex : ¬ ∃x, p x (i.e., (∃x, p x)→ false).
Fix y : α.
Assume hpy : p y.
We must show false.
By hnex, it su�ces to prove ∃x, p x.
(In other words: We apply hnex, giving rise to the subgoal ∃x, p x.)
At this point, we apply the ∃-introduction rule with the witness y.
We must then show p y. This follows from hpy. QED

2b. Give a detailed proof of the following lemma. Make sure to emphasize and clearly label every
step corresponding to the introduction or elimination of a quantifier or connective.

lemma or_forall_forall_or {α : Type} {p q : α → Prop} :

(∀x, p x) ∨ (∀x, q x) → ∀x, p x ∨ q x

Answer:

Assume hor : (∀x, p x) ∨ (∀x, q x).
Fix x : α.
We must show p x ∨ q x.

Perform an ∨-elimination on hor.

Case hp : ∀x, p x:
From hp, derive p x by ∀-elimination (by instantiating x with x). To prove p x ∨ q x, by ∨-left-
introduction it su�ces to show p x, which we have.

Case hq : ∀x, q x:
From hq, derive q x by ∀-elimination (by instantiating x with x). To prove p x ∨ q x, by ∨-right-
introduction it su�ces to show q x, which we have. QED
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Question 3. Semantics (4+3+9 points)

We introduce the RNG language, a variant of the WHILE language with nondeterministic variable
assignment and a restricted form of while loops. It has the following kinds of statements:

• skip does nothing;
• x := [z1, ..., zn] assigns one of the integers zi, chosen at random, to the variable x. If
n = 0, the program blocks;

• S ; T executes the statement S followed by the statement T;
• while_nonzero x do S executes the statement S repeatedly until the variable x becomes

zero.

In Lean, we can model the RNG language’s abstract syntax as follows:

inductive stmt : Type

| skip : stmt

| assign : string → list Z → stmt

| seq : stmt → stmt → stmt

| while_nonzero : string → stmt → stmt

The infix syntax S ;; T abbreviates stmt.seq S T.

The big-step semantics of RNG relates a program S : stmt and an initial state s : string → Z
with a possible final state t : string→ Z. We write (S, s)⇒ t if the program S, when run in the
initial state s, may terminate in the final state t.

3a. Dana Hacker claims that the following derivation rule should be part of the big-step semantics
of RNG.

(S, s)⇒ t (T, s)⇒ t Seq Wrong
(S ; T, s)⇒ t

Explain why this rule is wrong.

Answer:

Both hypotheses start in the same state and end in the same state, executing S and T in lockstep
instead of in sequence.

3b. Despite common sense, Dana wants you to translate her Seq Wrong rule to Lean. Add an intro-
duction rule corresponding to Seq Wrong to the following inductive predicate.

def state : Type := string → Z

inductive big_step : stmt × state → state → Prop

Answer:
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| seq_wrong {S T s t} :

big_step (S, s) t → big_step (T, s) t → big_step (stmt.seq S T, s) t

3c. Complete the following specification of a big-step semantics for RNG by giving the missing deriva-
tion rules for assign, seq, and while_nonzero.

Skip
(skip, s)⇒ s

Answer:

Assign if i ∈ {1, ..., n}
(x := [z_1, ..., z_n], s) => s[x |-> z_i]

(S, s)⇒ t (T, t)⇒ u Seq
(S ; T, s)⇒ u

WhileNonzeroStop if s(x) = 0
(while_nonzero x do S, s)⇒ s

(S, s) => t (while_nonzero x do S, t) => u
WhileNonzeroCont if s(x) 6= 0

(while_nonzero x do S, s)⇒ u
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Question 4. List predicates (6+4+8 points)

4a. For a predicate p : α → Prop and a list xs : list α, we define the predicate all p xs that is
true if and only if every element of xs satisfies p. Complete the following definition of all as an
inductive predicate.

inductive all {α : Type} (p : α → Prop) : list α → Prop

Answer:

| nil : all []

| cons {x xs} : p x → all xs → all (x :: xs)

Alternative:

| intro {xs} : (∀x, x ∈ xs → p x) → all xs

4b. Similarly, we define the predicate any p xs which is true if and only if there exists an element of
xs that satisfies p:

inductive any {α : Type} (p : α → Prop) : list α → Prop

| here {x xs} : p x → any (x :: xs)

| there {x xs} : any xs → any (x :: xs)

The same predicate can also be defined using all. Give a simple, nonrecursive definition:

def anyd {α : Type} (p : α → Prop) (xs : list α) : Prop

Answer:

:= ¬ all (λx, ¬ p x) xs

4c. Yet another way to define any is as a recursive function:

def anyf {α : Type} (p : α → Prop) : list α → Prop

| [] := false

| (x :: xs) := p x ∨ anyf xs

Prove by induction that any p xs implies anyf p xs. For each case of the induction, clearly
indicate the inductive hypotheses assumed and the goal to be proved.

lemma any_anyf {α : Type} {p : α → Prop} {xs : list α} :

any p xs → anyf p xs

Answer:

Assume hany : any p xs.

7



The proof is by rule induction on the hypothesis hany.

Case here:
We have hp : p x.
We must show anyf p (x :: xs).

By definition of anyf, it su�ces to show p x ∨ anyf p xs.
The left disjunct follows by hp.

Case there:
We have hany : any p xs.
We must show anyf p (x :: xs).
The induction hypothesis is any p xs→ anyf p xs.

By definition of anyf, it su�ces to show p x ∨ anyf p xs.
The right disjunct follows by the induction hypothesis and hany.

Alternative:

The proof is by structural induction on xs.

Case xs = [] (base case):
The goal is any p []→ anyf p [].

Assume hany : any p [].
Perform a case distinction on hany.
None of here or there apply, so there is nothing to prove.

Case xs = x :: xs’ (induction step):
The goal is any p (x :: xs)→ anyf p (x :: xs).
The induction hypothesis is any p xs→ anyf p xs.

Assume hany : any p (x :: xs).
Perform a case distinction on hany. Two subcases arise:

Subcase here:
We have hp : p x.
We must show anyf p (x :: xs).
By definition of anyf, it su�ces to show p x ∨ anyf p xs.
The left disjunct follows by hp.

Subcase there:
We have hany : any p xs.
We must show anyf p (x :: xs).
By definition of anyf, it su�ces to show p x ∨ anyf p xs.
We will prove the right disjunct. By the induction hypothesis, it su�ces to show any p xs, which
corresponds to hany. QED
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Question 5. Mathematics in Lean (4+5+4+2 points)

5a. What are the types of the following Lean expressions?

["What", "is", "my", "type?"] true Prop (λα, set α → list α)

Answer:

list string

Prop

Type

Type→ Type (or Type u→ Type u)

5b. The type class monoid of monoids is defined as follows in Lean:

@[class] structure monoid (α : Type) :=

(mul : α → α → α)
(one : α)
(mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c))

(one_mul : ∀a, mul one a = a)

(mul_one : ∀a, mul a one = a)

The type of Booleans can be viewed as a monoid, with ff as one and disjunction || as mul.
Complete the following instance definition accordingly. For the first two fields, give a Lean term.
For the other three fields, state the property that needs to be proved to define the field and very
briefly explain why it holds.

@[instance] def or_monoid : monoid bool :=

{ mul := ...,

one := ...,

mul_assoc := ...,

mul_one := ...,

one_mul := ... }

Answer:

mul := (||),

one := ff,

mul_assoc := ∀a b c, (a || b) || c = a || (b || c),

-- disjunction is associative, as can be seen from a truth table

mul_one := ∀a, ff || a = a,

-- falsity is a neutral element for disjunction

one_mul := ∀a, a || ff = a

-- falsity is a neutral element for disjunction

5c. The relation same_parity relates two natural numbers if they are either both even or both odd:
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inductive same_parity : N → N → Prop

| even {m n} : even m → even n → same_parity m n

| odd {m n} : odd m → odd n → same_parity m n

Prove that same_parity is symmetric.

lemma same_parity_symm :

∀m n : N, same_parity m n → same_parity n m

Answer:

Fix m, n : N.
Assume hsp : same_parity m n.
We must show same_parity n m.

Perform a case distinction on hsp.

Case even:
We have hm : even m and hn : even n.
We apply the introduction rule same_parity.even on hn and hm to show same_parity n m.

Case odd:
We have hm : odd m and hn : odd n.
We apply the introduction rule same_parity.odd on hn and hm to show same_parity n m. QED

5d. In addition to being symmetric, the relation same_parity is also reflexive and transitive, and is
therefore an equivalence relation. We use it to form the quotient parity:

@[instance] def same_parity.rel : setoid N :=

{ r := same_parity,

iseqv := ... }

def parity :=

quotient same_parity.rel

How many distinct inhabitants does parity have? Briefly justify your answer.

Answer:

The type parity has two inhabitants, corresponding to the two equivalence classes of the relation
same_parity. The even numbers form one equivalence class and the odd numbers form the other
equivalence class.
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Question 6. Monads (4+5 points)

Recall that a monad is lawful if its pure and bind operations satisfy the three laws given by the
lawful_monad type class below. We use ma >>= f as syntactic sugar for bind ma f.

@[class] structure lawful_monad (m : Type → Type) [monad m] :=

(pure_bind {α β : Type} (a : α) (f : α → m β) :

(pure a >>= f) = f a)

(bind_pure {α : Type} (ma : m α) :

(ma >>= pure) = ma)

(bind_assoc {α β γ : Type} (f : α → m β) (g : β → m γ) (ma : m α) :

((ma >>= f) >>= g) = (ma >>= (λa, f a >>= g)))

6a. Prove that the following lemma holds for any lawful monad. Your proof should be step-by-step
calculational, with at most one rewrite rule per step, so that we can clearly see what happens.

lemma pure_bind_bind_bind {m : Type → Type} [monad m] [lawful_monad m]

{α β γ δ : Type} (a : α) (mb : m β) (f : β → m γ) (g : γ → m δ) :

pure a >>= (λa, mb >>= (λb, f b >>= g)) = (mb >>= f) >>= g

Answer:

pure a >>= (λa, mb >>= (λb, f b >>= g))

= (λa, mb >>= (λb, f b >>= g)) a (by pure_bind)
= mb >>= (λb, f b >>= g) (by β-reduction)
= (mb >>= f) >>= g (by bind_assoc in reverse)
QED

6b. Does the following statement hold for arbitrary lawful monads? If so, give a proof sketch. If not,
give a counterexample and briefly explain why it is a counterexample.

lemma reordering {m : Type → Type} [monad m] [lawful_monad m] {α : Type}

(ma : m α) (f g : α → m α) :

((ma >>= f) >>= g) = ((ma >>= g) >>= f)

Answer:

As a counterexample, take m to be the identity monad, α to be N, ma to be 0, f to be λx, x + 1,
and g to be λx, 2 * x. Then the left-hand side is equal to 2, whereas the right-hand side is equal
to 1.

The grade for the exam is the total amount of points divided by 10, plus 1.

11


