
Logical Verification 2021–2022
Vrije Universiteit Amsterdam
Lecturer: dr. J. C. Blanchette

Resit Exam 1
Tuesday 15 February 2022, 18:45–21:00, NU-3B07
6 questions, 90 points
Answers may be given in English or Dutch

Proof Guidelines

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs.
You are welcome to use standard mathematical notation or Lean structured commands (e.g.,
assume, have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please
indicate some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the inductive
hypotheses assumed (if any) and the goal to be proved. Unless otherwise specified, minor proof
steps corresponding to refl, simp, or linarith need not be justified if you think they are obvious,
but you should say which key lemmas they depend on.

You should be explicit whenever you use a function definition or an introduction rule for an
inductive predicate, especially for functions and predicates that are specific to an exam question.

In Case of Ambiguities or Errors in an Exam Question

The sta� present at the exam has the lecturer’s phone number, in case of questions or issues
concerning a specific exam question. Nevertheless, we strongly recommend that you work things
out yourselves, stating explicitly any ambiguity or error and explaining how you interpret or repair
the question. The more explicit you are, the easier it will be for the lecturers to grade the question
afterwards.

1



Question 1. Functional programming (3+4+7 points)

Consider the type btree of binary trees where each node is either an empty leaf or an inner node
with two child trees:

inductive btree : Type

| empty : btree

| node : btree → btree → btree

The height of a tree is the largest number of nodes along a path from the root node to a leaf:

def height : btree → N
| btree.empty := 0

| (btree.node l r) := 1 + max (height l) (height r)

1a. Complete the definition below of the function btree.with_height. Given a natural number n,
btree.with_height n should be a tree of height n. You do not need to prove that your definition
has the desired property.

def btree.with_height : N → btree

1b. Write a Lean definition of an inductive predicate is_balanced : btree → Prop that determines
if a tree is balanced. A tree is balanced if it is empty or if for each node in the tree, its two subtrees
have the same height. You can use the height function.

1c. The graft function takes two trees and attaches copies of the second tree to each leaf of the
first tree:

def graft : btree → btree → btree

| btree.empty u := u

| (btree.node l r) u := btree.node (graft l u) (graft r u)

Give a proof by induction of the lemma height_graft, showing that the height of a grafted tree
is the sum of the heights of the original trees. For each case, clearly indicate the inductive hy-
potheses and the goal to be proved. You can refer to the following two lemmas without proving
them:

#check max_add_add_left -- ∀a b c : N, max (a + b) (a + c) = a + max b c

#check max_add_add_right -- ∀a b c : N, max (a + b) (c + b) = max a c + b

lemma height_graft :

∀t u : btree, height (graft t u) = height t + height u

2



Question 2. Repeating strings (4+3 points)

2a. Complete the Lean definition of an inductive predicate is_repeat on two strings xs and ys, stat-
ing that ys is the string xs concatenated with itself one or more times:

inductive is_repeat : list char → list char → Prop

Examples of strings where this relation holds:

is_repeat "exams" "exams"

is_repeat "love" "lovelove"

is_repeat "abab" "abababababab"

Examples of strings where this relation does not hold:

¬ is_repeat "abc" ""

¬ is_repeat "lovelove" "love"

¬ is_repeat "aaa" "aaaa"

¬ is_repeat "abc" "dabcabcd"

(For convenience, we identify strings with lists of characters.)

Your definition should consider two cases: ys repeats xs one time and ys repeats xs more than
one time.

2b. Give a short proof of the proposition is_repeat "a" "aaa":

lemma a_aaa : is_repeat "a" "aaa"

3



Question 3. The IFFY language (6+9+6 points)

The IFFY programming language is similar to the WHILE language, but its if statement does not
work quite right. It has the following kinds of statements:

• skip does nothing;
• x := a assigns a to the variable x;
• S ; T executes the statements of S followed by the statements of T;
• iffy b then S does nothing if the Boolean b is false. If b is true, it nondeterministically

chooses between executing the statement S or doing nothing.

In Lean we can model the IFFY language’s abstract syntax as follows:

inductive stmt : Type

| skip : stmt

| assign : string → Z → stmt

| seq : stmt → stmt → stmt

| iffy : bool → stmt → stmt

The infix syntax S ;; T abbreviates stmt.seq S T.

3a. The big-step semantics of the IFFY language relates a program S : stmt and an input state s :

string→ Z to an output state t : string → Z. Complete the following big-step semantics by
giving the derivation rules for the iffy statement:

Skip
(skip, s) =⇒ s

Asn
(assign x a, s) =⇒ s[x 7→ s(a)]

(S, s) =⇒ t (T, t) =⇒ u
Seq

(S ;; T, s) =⇒ u

3b. Specify the same big-step semantics in Lean by completing the following definition.

inductive big_step : (stmt × (string → Z)) → (string → Z) → Prop

| skip {s} : big_step (stmt.skip, s) s

3c. Give a derivation tree in the big-step semantics for an execution of the program P defined below,
such that the variable x gets assigned the value 1. Clearly indicate the name of each rule.

def P : stmt :=

assign "x" 0 ;; iffy true (assign "x" 1)

4



Question 4. Logic (6+6+5 points)

4a. Give a detailed proof of the following lemma. Make sure to emphasize and clearly label every
introduction or elimination rule.

lemma about_exists_and_or {α : Type} {p q : α → Prop} :

(∃x, p x ∨ q x) → (∃x, p x) ∨ (∃x, q x) :=

4b. Let R : Z → Z → Prop be a predicate on two integers that satisfies the following three intro-
duction rules:

R.refl : ∀a, R a a

R.symm : R ?a ?b → R ?b ?a

R.trans : R ?a ?b → R ?b ?c → R ?a ?c

Give a detailed proof of the following theorem. Clearly indicate when you use the rules R.refl,
R.symm, or R.trans:

theorem euclid : ∀a b c : Z, R a b → R a c → R b c

4c. One of the following two lemma statements is correct. Indicate which is the correct lemma and
give a detailed proof of that statement. Make sure to emphasize and clearly label every intro-
duction or elimination rule.

lemma or_of_and {p q : Prop} (h : p ∧ q) : p ∨ q

lemma and_of_or {p q : Prop} (h : p ∨ q) : p ∧ q

5



Question 5. Monads (7+5+4+3 points)

5a. Complete the following recursive Lean definition taking a list of functions and a list of arguments.
It applies the first function to the first argument, the second function to the second argument,
and so on, stopping when either list runs out.

def list.pairwise {α β : Type} : list (α → β) → list α → list β

For example, list.pairwise [(λx, x + 1), (λx, x * 2)] [1, 3, 10] = [2, 6].

5b. Let m be a monad. Recall that a monad m has two operations:

• pure {α} : α → m α

• bind {α β} : m α → (α → m β) → m β

Complete the following definition of the operation ap mf mx that applies its first boxed argument
to the second boxed argument, putting the result in a box:

def ap {α β : Type} (mf : m (α → β)) (mx : m α) : m β

5c. The operations pure and bind on list are defined as follows:

pure x = [x]

bind [] f = []

bind (x :: xs) f = f x ++ bind xs f

What are the values returned by the following two calls to list.length?

• list.length (list.pairwise [(λx, x + 1), (λx, x - 1)] [10])

• list.length (ap [(λx, x + 1), (λx, x - 1)] [10])

5d. Does applying ap to two lists always give the same result as list.pairwise on those lists? Briefly
explain your answer.

6



Question 6. Mathematics in Lean (5+5+2 points)

6a. What are the types of the following expressions?

N
((1 : N) + 2)

(N → N) → Z
Type → Type

Prop → Prop

6b. The type class monoid of monoids is defined as follows in Lean:

class monoid (α : Type) :=

(mul : α → α → α)
(one : α)
(mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c))

(one_mul : ∀a, mul one a = a)

(mul_one : ∀a, mul a one = a)

The type of Booleans can be viewed as a monoid, with tt : bool as one and the “and” operator
&& as mul. Complete the following instantiation of bool as a monoid by providing a suitable
definition of the five fields of the monoid. For each of the three properties, state the property to
prove and very briefly explain why it holds.

instance bool.monoid : monoid bool :=

{ ... }

6c. The mathlib linters reject the following proof. Briefly point out at least one improvement you
would make.

lemma mul_left_comm {α : Type} [field α]
(x y z : α) (hx : x 6= 0) (hy : y 6= 0) (hz : z 6= 0) :

x * (y * z) = y * (x * z) :=

have hxy : x * y 6= 0,

from mul_ne_zero hx hy,

calc x * (y * z)

= (x * y) * z : by rw mul_assoc

... = (y * x) * z : by rw mul_comm x y

... = y * (x * z) : by rw mul_assoc

The grade for the exam is the total amount of points divided by 10, plus 1.

7


