
Logical Verification 2021–2022
Vrije Universiteit Amsterdam
Lecturer: dr. J. C. Blanchette

Final Exam
Tuesday 21 December 2021, 08:30–11:15, RAI blok 09
6 questions, 90 points
Answers may be given in English or Dutch

Proof Guidelines

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs.
You are welcome to use standard mathematical notation or Lean structured commands (e.g.,
assume, have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please
indicate some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the inductive
hypotheses assumed (if any) and the goal to be proved. Unless otherwise specified, minor proof
steps corresponding to refl, simp, or linarith need not be justified if you think they are obvious,
but you should say which key lemmas they depend on.

You should be explicit whenever you use a function definition or an introduction rule for an
inductive predicate, especially for functions and predicates that are specific to an exam question.

Answer:

This version of the exam includes suggested answers, presented in blocks like this one. We
present proofs in a textual style, but other styles (e.g., closer to Lean) are also allowed.

In Case of Ambiguities or Errors in an Exam Question

The sta� present at the exam has the lecturer’s phone number, in case of questions or issues
concerning a specific exam question. Nevertheless, we strongly recommend that you work things
out yourselves, stating explicitly any ambiguity or error and explaining how you interpret or repair
the question. The more explicit you are, the easier it will be for the lecturers to grade the question
afterwards.

1

Question 1. Connectives and quantifiers (6+9 points)

The following two subquestions are about basic mastery of logic. Please provide highly detailed
proofs.

1a. Give a detailed proof of the following lemma about universal quantification and disjunction.
Make sure to emphasize and clearly label every step corresponding to the introduction or elimi-
nation of connective.

lemma about_forall_and_or {α : Type} (p q : α → Prop) :

(∀x, p x) → (∀x, q x) → (∀x, p x ∨ q x)

Answer:

Assume ∀x, p x and ∀x, q x. Fix a. To prove p a ∨ q a, by the left introduction rule of ∨, it su�ces
to prove p a. This corresponds to ∀x, p x instantiated with a.

1b. Prove the following one-point rule for existential quantification. In your proof, identify clearly
which witness is supplied for the quantifier.

lemma exists.one_point_rule {α : Type} {t : α} {p : α → Prop} :

(∃x : α, x = t ∧ p x) ↔ p t

Answer:

By↔-introduction, it su�ces to show
(1) (∃x : α, x = t ∧ p x)→ p t and
(2) p t→ (∃x : α, x = t ∧ p x).

Let’s start with (2). Assume p t. With the ∃-introduction rule, instantiate x with t, and then we
must prove t = t ∧ p t. By ∧-introduction, it su�ces to prove t = t and p t. The first formula is
an instance of reflexivity of = and the second formula corresponds to an assumption.

For (1), we assume ∃x : α, x = t ∧ p x and show p t. From the assumption, by ∃-elimination there
exists a witness y such that y = t and p y. Using y = t, we rewrite p y into p t, as desired.

2

Question 2. Lambda-terms (5+5+7 points)

Consider the following inductive type representing untyped λ-terms:

inductive lam : Type

| var : string → lam

| abs : string → lam → lam

| app : lam → lam → lam

where

• lam.var x represents the variable x;
• lam.abs x t represents the λ-abstraction λx, t;
• lam.app t t’ represents the application t t’.

2a. Implement the Lean function

def vars : lam → set string

that returns the set of all variables that occur freely or bound within a λ-term. For example:

vars (lam.var x) = {x}

vars (lam.abs x (lam.var y)) = {x, y}

You may assume that the type constructor set supports the familiar set operations.

Answer:

| (lam.var x) := {x}

| (lam.abs x t) := {x} ∪ vars t

| (lam.app t t’) := vars t ∪ vars t’

2b. Implement the Lean function

def free_vars : lam → set string

that returns the set of all free variables within a λ-term. A variable is free if it occurs outside the
scope of any binder ranging over it. For example:

free_vars (lam.var x) = {x}

free_vars (lam.abs x (lam.var y)) = {y}

free_vars (lam.abs x (lam.app (lam.var x) (lam.var y))) = {y}

Answer:

| (lam.var x) := {x}

| (lam.abs x t) := free_vars t \ {x}

| (lam.app t t’) := free_vars t ∪ free_vars t’

3

2c. Prove that free_vars is a subset of vars. Note that A ⊆ B is defined as ∀a, a ∈ A→ a ∈ B.

lemma free_vars_subset_vars (t : lam) :

free_vars t ⊆ vars t

Answer:

The proof is by structural induction on t.

Case var: The goal is free_vars (lam.var x) ⊆ vars (lam.var x). By definition, both sides sim-
plify to {x}. Clearly, {x} ⊆ {x}.

Case abs: The goal is free_vars (lam.abs x t) ⊆ vars (lam.abs x t). The induction hypothesis
is free_vars t ⊆ vars t. Simplifying the goal using the definitions above, we get free_vars t \

{x} ⊆ {x} ∪ vars t. Clearly, by basic properties of set operations, a su�cient condition for this
to hold is if free_vars t ⊆ vars t, and this is the induction hypothesis.

Case app: The goal is free_vars (lam.app t t’) ⊆ vars (lam.app t t’). The induction hypothe-
ses are free_vars t ⊆ vars t and free_vars t’ ⊆ vars t’. Simplifying the goal using the defini-
tions above, we get free_vars t ∪ free_vars t’ ⊆ vars t ∪ vars t’. Clearly, by basic properties
of set operations, this follows from the induction hypotheses.

4

Question 3. A loopy language (8+8 points)

Consider the LOOPY programming language, which comprises three kinds of statements:

• output s prints the string s;
• choice S T nondeterministically executes either S or T;
• repeat S executes S a nondeterministic number of times, printing the concatenation (++)

of zero or more strings.

In Lean, we can model the language’s abstract syntax as follows:

inductive stmt : Type

| output : string → stmt

| choice : stmt → stmt → stmt

| repeat : stmt → stmt

3a. The big-step semantics for the LOOPY language relates programs S : stmt to possible outputs
s : string.

Complete the following specification of a big-step semantics for the language by giving the miss-
ing derivation rules for choice and repeat.

Output
output s =⇒ s

Answer:

S =⇒ s

---------------- ChoiceLeft

choice S T =⇒ s

T =⇒ s

---------------- ChoiceRight

choice S T =⇒ s

--------------- RepeatBase

repeat S =⇒ ""

S =⇒ s repeat S =⇒ t

------------------------- RepeatStep

repeat S =⇒ s ++ t

3b. Specify the same big-step semantics as an inductive predicate by completing the following Lean
definition.

inductive big_step : stmt → string → Prop

| output {s} : big_step (stmt.output s) s

5

Answer:

| choice_left {S T s} : big_step S s → big_step (stmt.choice S T) s

| choice_right {S T s} : big_step T s → big_step (stmt.choice S T) s

| repeat_base {S} : big_step (stmt.repeat S) ""

| repeat_step {S s s’} :

big_step S s → big_step (stmt.repeat S) s’ →
big_step (stmt.repeat S) (s ++ s’)

6

Question 4. The list monad (6+9 points)

The list monad is a monad that stores a list of values of type α. It corresponds to the Lean type
constructor list.

4a. Complete the Lean definitions of the pure and bind operations:

def list.pure {α : Type} : α → list α

def list.bind {α β : Type} : list α → (α → list β) → list β

pure should create a singleton list. bind should apply its second argument to all the elements
of the first argument and concatenate the resulting lists. Examples:

list.pure 7 = [7]

list.bind [1, 2, 3] (λx, [x, 10 * x]) = [1, 10, 2, 20, 3, 30]

You may assume the following operator and functions are available, among others:

• ++ concatenates two lists;
• list.map applies its first argument elementwise to its second argument;
• list.flatten transforms a list of list into a flattened list formed by concatenating all the

lists together.

Answer:

λa, [a]

λas f, list.flatten (list.map f as)

4b. Assume ma >>= f is syntactic sugar for list.bind ma f. Prove the first two monad laws:

lemma list.pure_bind {α β : Type} (a : α) (f : α → list β) :

(list.pure a >>= f) = f a

lemma list.bind_pure {α : Type} (ma : list α) :

(ma >>= list.pure) = ma

Your proofs should be step by step, with at most one rewrite rule or definition expansion per
step, so that we can clearly see what happens.

You may assume reasonable lemmas about list.map and list.flatten. Please state them.

Answer:

For the first property:
(list.pure a >>= f)

= ([a] >>= f) by definition of list.pure

7

= list.flatten (list.map f [a]) by definition of list.bind
= list.flatten [f a] by property of list.map
= f a by property of list.flatten

For the second property: (ma >>= list.pure)

= list.flatten (list.map list.pure ma) by definition of list.bind
= list.flatten (list.map (λa, [a]) ma) by definition of list.pure
= list.flatten (list.map (λa, [a]) ma) by definition of list.pure
= ma by property list.flatten (list.map (λa, [a]) as) = as, provable by induction

8

Question 5. The loopy language revisited (4+4+6 points)

5a. Implement the following repeat function in Lean. It takes a number n and a string s and returns
the string obtained by concatenating n copies of s.

def repeat : N → string → string

Answer:

| 0 _ := ""

| (n + 1) s := s ++ repeat n s

5b. In mathematics, the Kleene star operator takes a string set A and returns the set of all the strings
that are obtained by concatenating strings from A zero or more times. A natural way to model
this in Lean is using an inductive predicate. Complete the following definition with the necessary
introduction rules so that kleene_star A s is true if and only if string s is in the Kleene star of
set A:

inductive kleene_star (A : set string) : string → Prop

Answer:

| empty : kleene_star ""

| step {s t} : s ∈ A → kleene_star t → kleene_star (s ++ t)

5c. Use the Kleene star to complete the following definition of the denotational semantics of the
LOOPY language from question 3. The denotation of a LOOPY program should be the set of all
strings it can output.

def denote : stmt → set string

| (stmt.output s) := {s}

Recall that the Lean syntax for set comprehensions is {x | ϕ x}, where ϕ x denotes some condi-
tion on x.

Answer:

| (stmt.choice S T) := denote S ∪ denote T

| (stmt.repeat S) := {s | kleene_star (denote S) s}

9

Question 6. Types and type classes (4+5+4 points)

6a. What are the types of the following expressions?

[1, 2, (3 : Z)] list N list Sort 1

Answer:

list Z
Type

Type→ Type (or Type u→ Type u)
Sort 2

6b. The type class monoid of monoids is defined as follows in Lean:

class monoid (α : Type) :=

(mul : α → α → α)
(one : α)
(mul_assoc : ∀a b c : α, mul (mul a b) c = mul a (mul b c))

(one_mul : ∀a : α, mul one a = a)

(mul_one : ∀a : α, mul a one = a)

A list can be viewed as a monoid, with the empty list [] as one and list concatenation ++ as mul.
Complete the following instantiation of list α as a monoid by providing a suitable definition of
the five fields of the monoid. For each of the three properties, state the property to prove and
very briefly explain why it holds.

instance string.monoid {α : Type} : monoid (list α) :=

{ · · · }

Answer:

{ mul := (++),

one := [],

mul_assoc :=

the property is (a ++ b) ++ c = a ++ (b ++ c),

i.e. associativity of append on lists, which holds

(it can be proved by induction),

mul_one :=

the property is [] ++ a = a, which clearly holds

(it is the first case of the definition of ++),

one_mul :=

the property is a ++ [] = a, which clearly holds

(it can be proved by induction) }

6c. The type class group of groups is defined as follows in Lean:

10

class group (α : Type) :=

(mul : α → α → α)
(one : α)
(mul_assoc : ∀a b c : α, mul (mul a b) c = mul a (mul b c))

(one_mul : ∀a : α, mul one a = a)

(mul_one : ∀a : α, mul a one = a)

(inv : α → α)
(mul_left_inv : ∀a : α, mul (inv a) a = one)

Can the type list α be instantiated as a group, using the same definition for mul and one as in
question 6b? Briefly explain your answer.

Answer:

No, this cannot be done, because there is no inverse xs for [a] such that [a] ++ xs = [].

The grade for the exam is the total amount of points divided by 10, plus 1.

11

