
Test 2020 resit

Test instruction

Welcome to the resit exam for the course Logical Verification (X_400115).

The only permitted tools are scratch paper, pens, pencils.

Books and other reference materials are not permitted.

Proof Guidelines

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs. You are welcome to use standard mathematical
notation or Lean structured commands (e.g., assume, have, show, calc). You can even use tactical proofs (e.g., intro, apply), but then please
indicate some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis, must be stated explicitly. For each case of a
proof by induction, you must list the inductive hypotheses assumed (if any) and the goal to be proved. Unless specified otherwise, minor proof
steps corresponding to refl, simp, or linarith need not be justified if you think they are obvious, but you should say which key lemmas they
depend on.

You should be explicit whenever you use a function definition or an introduction rule for an inductive predicate, especially for functions and
predicates that are specific to an exam question.

In Case of Ambiguities or Errors in an Exam Question

The lecturers cannot answer questions during the exam. We strongly recommend that you work things out by yourselves, stating explicitly any
ambiguity or error and explaining how you interpret or repair the question. The more explicit you are, the easier it will be for the lecturers to give you
points.

In Case of Late Signup

If you have not signed up for this exam, you will not receive a result. Through VUnet you can object to the fact that you can no longer sign up after
the expiry of the registration deadline (and the fact that you will not receive a result for this exam). Submit your appeal online within one week after
the exam. More information can be found at www.vu.nl/intekenen.

Term inhabitation

Question order: Fixed
The following questions ask you to show that a type is inhabited or not inhabited.

Page 1/9 - 2020 resit - 66696.1.7

Question 1 − 2020 resit 1a − 225452.4.0

Grading instruction
Definitions (Number of points: 6)

Complete the following Lean definitions by supplying arbitrary terms of the expected type, thereby showing that the types are inhabited.

 constants α β γ : Type

 def weidenbach : α → β → β

 def sturm : (α → α → γ) → β → α → γ

 def waldmann : (α → γ → β) → (α → β) → α → β

 def mueller : (γ → γ) → (β → γ) → (α → β) → α → γ

1.5 points for each type-correct definition.

Question 2 − 2020 resit 1b − 225461.2.0

Grading instruction
Explanations (Number of points: 4)

Explain briefly why the following definitions cannot be completed. You can for example refer to the typing rules of the simply typed calculus in
your justification.

 def perfect_sturm : (α → β → γ) → α → α → γ

 def angry_mueller : (γ → γ) → (β → β) → (α → β) → α → γ

2 points for each explanation.

Connective and quantifiers

Question order: Fixed
The following two questions are about basic mastery of logic. As an exception to the proof guidelines given at the beginning of the exam, please
provide highly detailed proofs, including steps we would normally regard as obvious.

Page 2/9 - 2020 resit - 66696.1.7

Jasmin Blanchette

Question 3 − 2020 resit 2a − 225464.3.2

Grading instruction
Implication introduction (Number of points: 1)

And elimination (Number of points: 2)

Or introduction (Number of points: 2)

Implication elimination (Number of points: 1)

Give a detailed proof of the following lemma about conjunction and disjunction. Make sure to emphasize and clearly label every step
corresponding to the introduction or elimination of a connective.

 lemma about_conjunction_and_disjunction {p q r : Prop} :
 (p ∨ q → r) → (p ∧ q → r)

Assume the two hypotheses.

Derive p from p ∧ q.

Derive p ∨ q from p.

Derive r from p ∨ q → r.

Question 4 − 2020 resit 2b − 225466.3.2

Grading instruction
Falsity of the statement (Number of points: 1)

Negated statement (Number of points: 2)

Forall elimination (Number of points: 3)

Remainder of the proof (Number of points: 2)

Consider the following proposition:

 ∀p q, p ∨ q → p

Is this true? If so, prove it. If not, prove its negation.

In either case, give a detailed proof, emphasizing and clearly labeling every step corresponding to the introduction or elimination of a connective
or quantifier.

Note that the statement is false.

Give the negated statement.

Instantiate the hypothesis with p = false and q = true (or similar).

Use or introduction and implication elimination to finish the proof.

Transitive closure

Question order: Fixed
The following questions are about specifying and reasoning about inductive predicates representing the transitive closure of a relation.

Page 3/9 - 2020 resit - 66696.1.7

Question 5 − 2020 resit 3a − 225468.3.1

Grading instruction
base constructor (Number of points: 3)

step constructor (Number of points: 3)

The transitive closure r^+ of a binary relation r over a set A can be defined as the smallest relation satisfying these two rules:

 (base) for all a, b ∈ A, if (a, b) ∈ r, then (a, b) ∈ r^+;
 (step) for all a, b, c ∈ A, if (a, b) ∈ r and (b, c) ∈ r^+, then (a, c) ∈ r^+.

Complete the following Lean definition of the transitive closure, in which relations are represented by binary predicates. Your definition should
follow the structure of the above mathematical definition.

 inductive tc {α : Type} (r : α → α → Prop) : α → α → Prop

The constructor corresponding to the 'base' rule.

The constructor corresponding to the 'step' rule.

Question 6 − 2020 resit 3b − 225469.3.0

Grading instruction
Induction (Number of points: 1)

Base case (Number of points: 2)

Step case (Number of points: 5)

The transitive closure can also be defined like this:

 inductive tc_alt {α : Type} (r : α → α → Prop) : α → α → Prop
 | base (a b : α) : r a b → tc_alt a b
 | trans (a b c : α) : tc_alt a b → tc_alt b c → tc_alt a c

Prove that for any relation r, its closure tc r is contained in tc_alt r:

 lemma tc_tc_alt {α : Type} {r : α → α → Prop} {a b} :
 tc r a b → tc_alt r a b

Rule induction on the derivation of tc r a b.

We have r a b (1 point) and derive tc_alt r a b from tc_alt.base (1 point).

We have r a x and tc r x b for some x; the induction hypothesis is tc_alt r x b (3 points). We conclude tc_alt r a x (1 point) and tc_alt
r a b (1 point).

Logical foundations and mathematics

Question order: Fixed
The following questions concern Lean's logical foundations and its applications to mathematics.

Page 4/9 - 2020 resit - 66696.1.7

Question 7 − 2020 resit 4a − 225471.2.0

Grading instruction
Types (Number of points: 5)

What are the types of the following Lean expressions?

 ℕ
 option (list ℕ)
 option
 (0 : nat)
 Prop

1 point for each type.

Question 8 − 2020 resit 4b − 225476.2.1

Grading instruction
Reflexivity (Number of points: 2)

Symmetry (Number of points: 5)

Consider the equivalence relation neg_rel that relates x : ℤ with x itself and with -x.

 inductive neg_rel : ℤ → ℤ → Prop
 | pos (x y : ℤ) : x = y → neg_rel x y
 | neg (x y : ℤ) : x = - y → neg_rel x y

You may assume the following lemma about negation:

 lemma int.neg_neg (x : ℤ) :
 - - x = x

Prove that neg_rel is reflexive and symmetric.

 lemma neg_rel.refl (x : ℤ) :
 neg_rel x x

 lemma neg_rel.symm (x y : ℤ) :
 neg_rel x y → neg_rel y x

Apply neg_rel.pos (1 point), noting that x = x by reflexivity (1 point).

Case distinction on the assumption neg_rel x y (1 point). Apply neg_rel.pos in the first case and neg_rel.neg in the second (1 point). Prove y =
x in the first case (1 point) and y = - x in the second (2 points).

Page 5/9 - 2020 resit - 66696.1.7

Question 9 − 2020 resit 4c − 225480.2.0

Grading instruction
Quotient soundness (Number of points: 2)

Establish neg_rel (Number of points: 2)

Now, we will define our own copy of the natural numbers ℕ as a quotient of the integers ℤ. First, observe that the neg_rel relation is transitive
(in addition to reflexive and symmetric):

 lemma neg_rel.trans (x y z : ℤ) : neg_rel x y → neg_rel y z → neg_rel x z

We now have all the ingredients to define our new copy of the natural numbers as a quotient:

 def new_nat.setoid : setoid ℤ :=
 { r := neg_rel,
 iseqv := and.intro neg_rel.refl (and.intro neg_rel.symm neg_rel.trans) }

 def new_nat : Type := quotient new_nat.setoid

Dana Hacker claims that - x and x correspond to the same element in the type new_nat—i.e., - x = x for all x : ℤ. Do you agree? If so,
sketch a proof. Otherwise, give a counterexample.

The lemma holds if - x and x are related by neg_rel.

We have neg_rel (- x) x by neg_rel.neg (1 point) and - x = - x (1 point).

Question 10 − 2020 resit 4d − 225485.2.0

Grading instruction
Correct number (Number of points: 2)

Consider the sequence 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, …, where elements contain more and more digits of π. According to the
representation of real numbers as Cauchy sequences, which number does the sequence represent?

Monads

Question order: Fixed
The following questions concern monads.

Page 6/9 - 2020 resit - 66696.1.7

Question 11 − 2020 resit 5a − 225498.2.0

Grading instruction
reader.pure (Number of points: 2)

reader.bind (Number of points: 3)

For an arbitrary type σ, we define the reader monad reader σ : Type → Type. We may think of the values of reader σ α as programs that
return an α value but also have access to some input value of type σ. This monad is similar to the state monad, but reader programs cannot
change the input σ. The type reader σ α is defined as follows:

 def reader (σ α : Type) := σ → α

Complete the following Lean definitions of the monad operations pure and bind for reader.

Hint: You can use the type inhabitation procedure to find the answers.

 def reader.pure {σ α} : α → reader σ α

 def reader.bind {σ α β} (ma : reader σ α) (f : α → reader σ β) : reader σ β

Introduce s : σ (1 point). Obtain ma s : α (1 point). Obtain f (ma s) s (1 point).

Question 12 − 2020 resit 5b − 225499.4.0

Grading instruction
reader.pure_bind (Number of points: 4)

reader.bind_pure (Number of points: 4)

Assume that ma >>= f is notation for reader.bind ma f. Prove that your reader.pure and reader.bind definitions satisfy the following
monad laws. Your proofs should be step-by-step calculational, with at most one rewrite rule or definition expansion per step, so that we can
clearly see what happens.

 lemma reader.pure_bind {σ α β} (a : α) (f : α → reader σ β) :
 (reader.pure a >>= f) = f a

 lemma reader.bind_pure {σ α} (ma : reader σ α) :
 (ma >>= reader.pure) = ma

Expand the definitions of reader.pure and reader.bind (2 points). Perform a beta reduction and an eta reduction (2 points).

Expand the definitions of reader.pure and reader.bind (2 points). Perform a beta reduction and an eta reduction (2 points).

Page 7/9 - 2020 resit - 66696.1.7

Question 13 − 2020 resit 5c − 226041.1.0

Grading instruction
pure_bind (Number of points: 2)

bind_pure (Number of points: 2)

Glue (Number of points: 1)

Prove the following equation for any lawful monad m. Your proofs should be step-by-step calculational, with at most one rewrite rule or
definition expansion per step, so that we can clearly see what happens.

 lemma pure_bind_pure {m} [monad m] [is_lawful_monad m] {α β} {a : α} {mb : m β} :
 pure a >>= (λ_, mb >>= pure) = mb

Application of the pure_bind law.

Application of the bind_pure law.

Combine the previous two proof steps.

Run-length encoding

Question order: Fixed
In computer science, the run-length encoding is used to compress lists with many repetitions. For example, "AABBB" is coded as "2A3B". The
following Lean type can be used to store run-length encoded lists:

 inductive rle (α : Type)
 | empty : rle
 | ncons : ℕ → α → rle → rle

This type is similar to the standard list type, except that ncons also includes a repetition count. The empty constructor represents a list with no
elements. The ncons constructor stores a repetition count, an element, and the remainder of the list. Thus, we can encode "AABBB" as ncons 2
'A' (ncons 3 'B' empty).

Question 14 − 2020 resit 6a − 225500.3.0

Grading instruction
Case distinction (Number of points: 2)

empty case (Number of points: 1)

ncons case (Number of points: 1)

Define a Lean function called is_ncons that tests whether rle is of the form ncons ….

 def is_ncons {α : Type} : rle α → bool

(To see the definition of rle again, use the "Show block intro" button on the right above.)

Distinguish the cases for rle.empty and rle.ncons.

Page 8/9 - 2020 resit - 66696.1.7

Question 15 − 2020 resit 6b − 225501.3.0

Grading instruction
Case distinction (Number of points: 1)

empty case (Number of points: 1)

ncons case (Number of points: 4)

Define a Lean function rle_length that takes an rle and returns the sum of all repetition counts in the list. For example, it would return 5 for
the encoding of "AABBB".

 def rle_length {α : Type} : rle α → ℕ

Distinguish the cases for rle.empty and rle.ncons.

Recurse into the tail of the rle (2 points) and add the repetition count of the current element (2 points).

Question 16 − 2020 resit 6c − 225504.2.1

Grading instruction
Case distinction (Number of points: 2)

empty case (Number of points: 1)

ncons case (Number of points: 3)

Consider the following insert function, which inserts an element a at the front of an rle:

 def insert {α : Type} (a : α) : rle α → rle α
 | rle.empty := rle.ncons 1 a rle.empty
 | (rle.ncons n b t) :=
 if a = b then rle.ncons (n + 1) a t else rle.ncons 1 a (rle.ncons n b t)

Prove that inserting an element into an rle cannot return rle.empty:

 lemma insert_ne_empty {α : Type} (a : α) (l : rle α) :
 insert a l ≠ rle.empty

Distinguish the case for l = rle.empty and the case for l = rle.ncons.

Distinguish the case where the inserted element is equal to the first element of the rle and the case where the inserted element is not equal to the first
element (2 points). Observe that in each case, the rle after insertion is an ncons (1 point).

Page 9/9 - 2020 resit - 66696.1.7

