Logical Verification 2019–2020
Vrije Universiteit Amsterdam
Lecturers: dr. J. C. Blanchette and drs. A. Bentkamp

Repeat Exam
4 February 2020, 18:30–21:15, NU-2B-11
6 questions, 90 points
Answers may be given in English or Dutch

Proof Guidelines

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs. You are welcome to use standard mathematical notation or Lean structured commands (e.g., assume, have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please indicate some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis, must be stated explicitly. For each case of a proof by induction, you must list the inductive hypotheses assumed (if any) and the goal to be proved. Minor proof steps corresponding to refl, simp, or linarith need not be justified if you think they are obvious (to humans), but you should say which key lemmas they follow from.

You should be explicit whenever you use a function definition or an introduction rule for an inductive predicate, especially for functions and predicates that are specific to an exam question.

Answer:

This version of the exam includes suggested answers, presented in blocks like this one. Some of the proposed proofs are atypical in that they were developed using Lean and are syntactically correct. Such proofs would be accepted at the exam, but we realize that it is hard to develop correct Lean proofs on paper; hence the flexible proof guidelines above.

In Case of Ambiguities or Errors in an Exam Question

The staff present at the exam has the lecturers’ phone numbers, in case of questions or issues concerning a specific exam question. Nevertheless, we strongly recommend that you work things out yourselves, stating explicitly any ambiguity or error and explaining how you interpret or repair the question. The more explicit you are, the easier it will be for the lecturers to grade the question afterwards.
Question 1. Error monad (4+4+5 points)

The *error monad* is a monad stores either a value of type α or an error of type ε. This corresponds to the following type:

```lean
inductive error (α ε : Type) : Type
| good {} : α → error
| bad {} : ε → error
```

export error (good bad)

The error monad generalizes the option monad seen in the lecture. The `good` constructor, corresponding to `some`, stores the current result of the computation. But instead of having a single `bad` state `none`, the error monad has many bad states of the form `bad e`, where e is an “exception” of type ε.

1a. Complete the Lean definitions of the `pure` and `bind` operations:

```lean
def error.pure {α ε : Type} : α → error α ε

def error.bind {α β ε : Type} : error α ε → (α → error β ε) → error β ε
```

Answer:

```lean
good

| (good a) f := f a
| (bad e) f := bad e
```

1b. Assume `ma >>= f` is syntactic sugar for `error.bind ma f`. Prove the following two monadic laws. Your proofs should proceed step by step, with at most one case distinction, rewrite rule, or definition expansion per step, so that we can clearly see what happens.

```lean
lemma error.pure_bind {α β ε : Type} (a : α) (f : α → error β ε) :
 (error.pure a >>= f) = f a

lemma error.bind_pure {α ε : Type} (ma : error α ε) :
 (ma >>= error.pure) = ma
```

Answer:

```lean
calc (error.pure a >>= f) = good a >>= f :
    by refl
... = f a :
    by refl

begin
    cases ma with a e,
    { calc (good a >>= @error.pure _ _ ε) -- ‘error.pure’ would be acceptable
```
= error.pure a :
 by refl
... = good a :
 by refl },
{ calc (bad e >>= @error.pure α _) -- 'error.pure' would be acceptable
 = bad e :
 by refl }
end

1c. Define the following two operations on the error monad, using Lean syntax:

```lean
def error.throw {α ε : Type} : ε → error α ε
def error.catch {α ε : Type} : error α ε → (ε → error α ε) → error α ε
```

The `throw` operation raises an exception `e`, leaving the monad in a bad state storing `e` (i.e., `bad e`).

The `catch` operation can be used to recover from an earlier exception. If the monad currently is in a bad state storing exception `e`, `catch` invokes some exception-handling code (the second argument to `catch`), passing `e` as argument; this code might raise a new exception. If `catch` is applied to a good state, nothing happens—the monad remains in the good state.

Answer:

```lean
bad

| (good a) h := good a |
| (bad e)  h := h e |
```
Question 2. Logical foundations and mathematics (4+3+6+4+2 points)

2a. What are the types of the following expressions?

\[
\text{[true, false, true]} : _ \quad \text{option } \mathbb{N} : _ \quad \mathbb{Z} : _ \quad \text{Sort 5} : _
\]

Answer:

\[
\text{[true, false, true]} : \text{list Prop} \\
\text{option } \mathbb{N} : \text{Type} \\
\mathbb{Z} : \text{Type} \\
\text{Sort 5} : \text{Sort 6}
\]

2b. The function \(\text{max} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}\) returns the larger one of two given natural numbers (or either if they are equal). Complete the fourth case in the following Lean definition:

\[
\text{def max} : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\
| 0 0 := 0 \\
| 0 \ (\text{nat.succ } b) := \text{nat.succ } b \\
| (\text{nat.succ } a) 0 := \text{nat.succ } a \\
| (\text{nat.succ } a) (\text{nat.succ } b) := _ \\
\]

Answer:

\[
| (\text{nat.succ } a) (\text{nat.succ } b) := \text{nat.succ (max } a \ b) \\
\]

2c. The type class \texttt{add_monoid} is defined as follows in Lean:

\[
\text{class add_monoid } (\alpha : \text{Type}) := \\
\alpha \to \alpha \to \alpha \\
(\alpha) \\
(\alpha) \to (\alpha) \\
(\alpha) \to (\alpha) \\
(\alpha) \to (\alpha) \\
(\alpha) \to (\alpha) \\
\]

Complete the following instantiation of \(\mathbb{N}\) with the operator \texttt{max} as an \texttt{add_monoid} by providing a suitable definition of \texttt{zero} and proofs of the \texttt{zero_add} and \texttt{add_zero} properties:

\[
\text{instance monoid_max : add_monoid } \mathbb{N} := \\
\{ \texttt{add} := \texttt{max}, \\
\texttt{zero} := _, \\
\texttt{add_assoc} := \texttt{sorry}, \\
\texttt{zero_add} := _, \\
\texttt{add_zero} := _ \}
\]

Answer:
Both `zero_add` and `add_zero` can be proved by a case distinction on `a` and by unfolding the definition of `max` in each case. (In Lean: `begin intro a, cases a; refl end`)

2d. The function `min : \mathbb{N} \to \mathbb{N} \to \mathbb{N}` returns the smaller one of two given natural numbers. Can \(\mathbb{N} \) be instantiated as an `add_monoid` using the operator `add := min`? Briefly explain your answer.

Answer:

No, there is no identity element for `min`.

2e. Using the representation of \(p \)-adic numbers as left-infinite streams of digits, compute the following addition in base \(p = 7 \):
\[
\ldots6666666 \\
+ \quad \quad 1
\]

Answer:

\(0 \)
Question 3. Even and odd (4+4+8 points)

Consider the following inductive definition of even numbers:

```lean
inductive even : N → Prop
| zero : even 0
| plus_two {n : N} : even n → even (n + 2)
```

3a. Define a similar predicate for odd numbers, by completing the Lean definition below:

```lean
inductive odd : N → Prop
```

The definition should distinguish two cases, like `even`, and should **not** rely on `even`.

Answer:

- | one : odd 1
- | plus_two {n : N} : odd n → odd (n + 2)

3b. Give Lean proof terms for the propositions `odd 3` and `odd 5`, based on your answer to question 3a.

Answer:

```lean
lemma odd_3 :
  odd 3 :=
  odd.plus_two odd.one

lemma odd_5 :
  odd 5 :=
  odd.plus_two odd_3
```

3c. Prove the following lemma by rule induction. Make sure to follow the guidelines given on page 1.

```lean
lemma even_odd {n : N} (h : even n) :
  odd (n + 1)
```

Answer:

We perform the proof by rule induction on h.

- **Goal 1:** `odd (0 + 1)`. Trivial using `odd_one` and the fact that `0 + 1 = 1`.

- **Goal 2:** `odd (n + 2 + 1)`. Induction hypothesis: `odd (n + 1)`. Trivial using `odd.add_two` and some arithmetic massaging.

In Lean:

```lean
begin
  induction h,
```
case even.zero {
 exact odd.one },
case even.plus_two : m {
 have ih : odd (m + 1) := by assumption,
 exact odd.plus_two ih }
end
Question 4. One-point rules (3+9 points)

One-point rules are lemmas that can be used to remove a quantifier from a proposition when the quantified variable can effectively take only one value. For example, \(\forall x, x = 6 \rightarrow p x \) is equivalent to the much simpler \(p 6 \).

4a. Louis Reasoner proposes the following nonstandard one-point rule for \(\exists \):

\[
\text{axiom exists.one_point_rule' } \{ \alpha : \text{Type} \} \{ t : \alpha \} \{ p : \alpha \rightarrow \text{Prop} \} : \\
(\exists x : \alpha, x = t \rightarrow p x) \leftrightarrow p t
\]

What is wrong with this rule?

Answer:

It can be used to prove false. In Lean:

```
lemma proof_of_false :
false :=
begin
    have := @exists.one_point_rule' \N 0 (\_, false),
    simp at this,
    specialize this 1,
    linarith
end
```

Informally, by taking \(p := \lambda_, \text{false} \), we end up with the proposition \((\exists x : \alpha, x = t \rightarrow \text{false}) \leftrightarrow \text{false} \). After some simplification, we get \(\neg (\exists x : \alpha, \neg x = t) \). By taking a type like \(\N \), which has two distinct values 0 and 1, we can take \(t := 0 \) and \(x := 1 \), resulting in the equation 0 = 1, from which we can derive false.

4b. Prove the following lemma:

\[
\text{lemma forall_exists.one_point_rule } \{ \alpha : \text{Type} \} \{ t : \alpha \} \{ p : \alpha \rightarrow \text{Prop} \} : \\
(\forall x : \alpha, x = t \rightarrow p x) \leftrightarrow (\exists x : \alpha, x = t \land p x)
\]

In your proof, clearly identify how the quantifiers are instantiated.

Answer:

```
iff.intro
(assume hall : \forall x : \alpha, x = t \rightarrow p x,
have hpt : p t :=
begin
    apply hall t,
    refl
end,
show \exists x : \alpha, x = t \land p x,
begin
    apply exists.intro t,
end)
```
apply and.intro,
{ refl },
{ exact hpt }
end)
(assume hex : \exists x : \alpha, x = t \land p x,
assume x,
assume hxt : x = t,
show p x,
begin
cases hex with w h,
cases h with hwt pw,
rw hwt at pw,
rw hxt,
assumption
end)

You can also do it in two steps, proving

$$(\forall x : \alpha, x = t \rightarrow p x) \leftrightarrow p t \quad \text{and} \quad (\exists x : \alpha, x = t \land p x) \leftrightarrow p t$$

separately and then joining the two.
Question 5. Arithmetic expressions (8+4 points)

Consider this simple type of arithmetic expressions:

```lean
inductive exp : Type
| var : string → exp
| num : ℤ → exp
| plus : exp → exp → exp

export exp {var, num, plus}
```

The following evaluation function computes the numeric value of an expression given an environment `env`:

```lean
def eval (env : string → ℤ) : exp → ℤ
| (var x) := env x
| (num i) := i
| (plus e₁ e₂) := eval e₁ + eval e₂
```

We want to rewrite arithmetic expressions such that `plus` is regrouped to the right. That is, every subexpression of the form `plus (plus e₁ e₂) e₃` should become `plus e₁ (plus e₂ e₃)`. The function `regroup`, which relies on the auxiliary function `shuffle`, performs this regrouping:

```lean
def shuffle : exp → exp → exp
| (var x) a := plus (var x) a
| (num i) a := plus (num i) a
| (plus e₁ e₂) a := shuffle e₁ (shuffle e₂ a)

def regroup : exp → exp
| e := shuffle e (num 0)
```

Note that `regroup` does not just regroup `plus` but also adds 0 at the end. Thankfully, this has no impact on the numeric value of the expression.

5a. Prove the following lemma about `shuffle` by structural induction. Make sure to follow the guidelines given on page 1.

Lemma eval_shuffle (env : string → ℤ) (e a : exp) :

```lean
eval env (shuffle e a) = eval env e + eval env a
```

Answer:

```lean
begin
  induction e generalizing a,
  case var : x {
    calc eval env (shuffle (var x) a)  
      = eval env (var x) + eval env a : by simp [shuffle, eval] ;
  }
  case num : i {
    calc eval env (shuffle (num i) a)  
```

```
\[
\text{calc eval env (regroup e)}
\]
\[
= \text{eval env (shuffle e (num 0))}:
\]
\[
\quad \text{by refl}
\]
\[
\quad \ldots = \text{eval env e + eval env (num 0)}:
\]
\[
\quad \quad \text{by rw eval_shuffle}
\]
\[
\quad \quad \ldots = \text{eval env e}:
\]
\[
\quad \quad \quad \text{by simp [eval]}
\]
**Question 6. Big-step semantics (6+6+3+3 points)**

On the occasion of this repeat exam, we introduce REPEAT, a brand-new programming language that resembles the WHILE language but whose defining feature is a repeat loop.

The Lean definition of its abstract syntax tree follows:

```lean
inductive program : Type
| skip {} : program
| assign : string → (state → ℕ) → program
| seq : program → program → program
| unless : (state → Prop) → program → program
| repeat : ℕ → program → program

export program (skip assign seq unless repeat)
```

The skip, assign, and seq S T statements have the same syntax and semantics as in the WHILE language. We also write S ;; T for seq S T.

The unless b S statement executes S unless b is true—i.e., it executes S if b is false. Otherwise, unless b S does nothing. In particular, unless (λ_, true) S is equivalent to skip (according to a big-step or a denotational semantics), and unless (λ_, false) S is equivalent to S. This construct is inspired by the Perl language.

The repeat n S statement executes S exactly n times. Thus, repeat 10 S is equivalent to S ;; S, and repeat 0 S is equivalent to skip.

**6a.** Complete the following specification of a big-step semantics as derivation rules.

\[
\frac{(skip, s) \Rightarrow s}{\text{skip}} \quad \frac{(assign x = a, s) \Rightarrow s[x \mapsto s(a)]}{\text{assign}}
\]

\[
\frac{(S, s) \Rightarrow t \quad (T, t) \Rightarrow u}{(S ;; T, s) \Rightarrow u} \quad \frac{(S ;; S, s) \Rightarrow s}{\text{seq}}
\]

\[
\frac{(unless b S, s) \Rightarrow s}{\text{unless-true}} \quad \frac{(S, s) \Rightarrow t}{\text{unless-false}}
\]

\[
\frac{(repeat 0 x, s) \Rightarrow s}{\text{repeat-zero}} \quad \frac{(repeat n S, t) \Rightarrow u}{\text{repeat-succ}}
\]

**Answer:**
6b. Specify the same big-step semantics in Lean by completing the following definition:

```
inductive big_step : program × state → state → Prop
| skip {s} : big_step (skip, s) s
| assign {x a s} : big_step (assign x a, s) (s{x ↦ a})
| seq {S T s t u} (h1 : big_step (S, s) t) (h2 : big_step (T, t) u) : big_step (S ;; T, s) u
```

**Answer:**

```
| unless_true {b : state → Prop} {S s} (hcond : b s) : big_step (unless b S, s) s
| unless_false {b : state → Prop} {S s t} (hcond : ¬ b s) (hbody : big_step (S, s) t) : big_step (unless b S, s) t
| repeat_zero {S s} : big_step (repeat 0 S, s) s
| repeat_succ {n S s t u} (hbody : big_step (S, s) t) (hrest : big_step (repeat n S, t) u) : big_step (repeat (n + 1) S, s) u
```

6c. Is the REPEAT language deterministic? Briefly explain your answer.

**Answer:**

Yes. For any statement, only one rule can apply, and that rule’s conclusion is fully determined by its premises.

6d. Are REPEAT programs guaranteed to terminate? Briefly explain your answer.

**Answer:**

Yes. Loops are the only construct that could be problematic, but repeat loops are bounded by a constant number of iterations and could be translated away by a preprocessor.

*The grade for the exam is the total amount of points divided by 10, plus 1.*