
Logical Verification 2019–2020
Vrije Universiteit Amsterdam
Lecturers: dr. J. C. Blanchette and drs. A. Bentkamp

Repeat Exam
4 February 2020, 18:30–21:15, NU-2B-11
6 questions, 90 points
Answers may be given in English or Dutch

Proof Guidelines

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs.
You are welcome to use standard mathematical notation or Lean structured commands (e.g.,
assume, have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please
indicate some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the inductive
hypotheses assumed (if any) and the goal to be proved. Minor proof steps corresponding to
refl, simp, or linarith need not be justified if you think they are obvious (to humans), but you
should say which key lemmas they follow from.

You should be explicit whenever you use a function definition or an introduction rule for an
inductive predicate, especially for functions and predicates that are specific to an exam question.

In Case of Ambiguities or Errors in an Exam Question

The sta� present at the exam has the lecturers’ phone numbers, in case of questions or issues
concerning a specific exam question. Nevertheless, we strongly recommend that you work things
out yourselves, stating explicitly any ambiguity or error and explaining how you interpret or repair
the question. The more explicit you are, the easier it will be for the lecturers to grade the question
a�erwards.

1



Question 1. Error monad (4+4+5 points)

The error monad is a monad stores either a value of type α or an error of type ε. This corresponds
to the following type:

inductive error (α ε : Type) : Type

| good {} : α → error

| bad {} : ε → error

export error (good bad)

The error monad generalizes the option monad seen in the lecture. The good constructor, cor-
responding to some, stores the current result of the computation. But instead of having a single
bad state none, the error monad has many bad states of the form bad e, where e is an “exception”
of type ε.

1a. Complete the Lean definitions of the pure and bind operations:

def error.pure {α ε : Type} : α→ error α ε

def error.bind {α β ε : Type} : error α ε→ (α→ error β ε)→ error β ε

1b. Assume ma >>= f is syntactic sugar for error.bind ma f. Prove the following two monadic laws.
Your proofs should proceed step by step, with at most one case distinction, rewrite rule, or defi-
nition expansion per step, so that we can clearly see what happens.

lemma error.pure_bind {α β ε : Type} (a : α) (f : α→ error β ε) :

(error.pure a >>= f) = f a

lemma error.bind_pure {α ε : Type} (ma : error α ε) :

(ma >>= error.pure) = ma

1c. Define the following two operations on the error monad, using Lean syntax:

def error.throw {α ε : Type} : ε→ error α ε

def error.catch {α ε : Type} : error α ε→ (ε→ error α ε)→ error α ε

The throw operation raises an exception e, leaving the monad in a bad state storing e (i.e., bad e).

The catch operation can be used to recover from an earlier exception. If the monad currently
is in a bad state storing exception e, catch invokes some exception-handling code (the second
argument to catch), passing e as argument; this code might raise a new exception. If catch is
applied to a good state, nothing happens—the monad remains in the good state.

2



Question 2. Logical foundations and mathematics (4+3+6+4+2 points)

2a. What are the types of the following expressions?

[true, false, true] : _ option N : _ Z : _ Sort 5 : _

2b. The function max : N→ N→ N returns the larger one of two given natural numbers (or either if
they are equal). Complete the fourth case in the following Lean definition:

def max : N → N → N
| 0 0 := 0

| 0 (nat.succ b) := nat.succ b

| (nat.succ a) 0 := nat.succ a

| (nat.succ a) (nat.succ b) := _

2c. The type class add_monoid is defined as follows in Lean:

class add_monoid (α : Type) :=

(add : α → α → α)
(zero : α)
(add_assoc : ∀a b c : α, add (add a b) c = add a (add b c))

(zero_add : ∀a : α, add zero a = a)

(add_zero : ∀a : α, add a zero = a)

Complete the following instantiation of N with the operator max as an add_monoid by providing
a suitable definition of zero and proofs of the zero_add and add_zero properties:

instance monoid_max : add_monoid N :=

{ add := max,

zero := _,

add_assoc := sorry,

zero_add := _,

add_zero := _ }

2d. The function min : N→ N→ N returns the smaller one of two given natural numbers. Can N be
instantiated as an add_monoid using the operator add := min? Briefly explain your answer.

2e. Using the representation of p-adic numbers as le�-infinite streams of digits, compute the follow-
ing addition in base p = 7:

. . . 66666666
+ 1

3



Question 3. Even and odd (4+4+8 points)

Consider the following inductive definition of even numbers:

inductive even : N → Prop

| zero : even 0

| plus_two {n : N} : even n → even (n + 2)

3a. Define a similar predicate for odd numbers, by completing the Lean definition below:

inductive odd : N → Prop

The definition should distinguish two cases, like even, and should not rely on even.

3b. Give Lean proof terms for the propositions odd 3 and odd 5, based on your answer to question 3a.

3c. Prove the following lemma by rule induction. Make sure to follow the guidelines given on page 1.

lemma even_odd {n : N} (h : even n) :

odd (n + 1)

4



Question 4. One-point rules (3+9 points)

One-point rules are lemmas that can be used to remove a quantifier from a proposition when the
quantified variable can e�ectively take only one value. For example, ∀x, x = 6→ p x is equivalent
to the much simpler p 6.

4a. Louis Reasoner proposes the following nonstandard one-point rule for ∃:

axiom exists.one_point_rule’ {α : Type} {t : α} {p : α → Prop} :

(∃x : α, x = t → p x) ↔ p t

What is wrong with this rule?

4b. Prove the following lemma:

lemma forall_exists.one_point_rule {α : Type} {t : α} {p : α → Prop} :

(∀x : α, x = t → p x) ↔ (∃x : α, x = t ∧ p x)

In your proof, clearly identify how the quantifiers are instantiated.

5



Question 5. Arithmetic expressions (8+4 points)

Consider this simple type of arithmetic expressions:

inductive exp : Type

| var : string → exp

| num : Z → exp

| plus : exp → exp → exp

export exp (var num plus)

The following evaluation function computes the numeric value of an expression given an envi-
ronment env:

def eval (env : string → Z) : exp → Z
| (var x) := env x

| (num i) := i

| (plus e1 e2) := eval e1 + eval e2

We want to rewrite arithmetic expressions such that plus is regrouped to the right. That is,
every subexpression of the form plus (plus e1 e2) e3 should become plus e1 (plus e2 e3). The
function regroup, which relies on the auxiliary function shuffle, performs this regrouping:

def shuffle : exp → exp → exp

| (var x) a := plus (var x) a

| (num i) a := plus (num i) a

| (plus e1 e2) a := shuffle e1 (shuffle e2 a)

def regroup : exp → exp

| e := shuffle e (num 0)

Note that regroup does not just regroup plus but also adds 0 at the end. Thankfully, this has no
impact on the numeric value of the expression.

5a. Prove the following lemma about shuffle by structural induction. Make sure to follow the guide-
lines given on page 1.

lemma eval_shuffle (env : string → Z) (e a : exp) :

eval env (shuffle e a) = eval env e + eval env a

5b. Prove the following lemma via a step-by-step calculational proof, with at most one rewrite rule
or definition expansion per step, so that we can clearly see what happens. Your proof may rely
on the lemma eval_shuffle from question 5a.

lemma eval_regroup (env : string → Z) (e : exp) :

eval env (regroup e) = eval env e

6



Question 6. Big-step semantics (6+6+3+3 points)

On the occasion of this repeat exam, we introduce REPEAT, a brand-new programming language
that resembles the WHILE language but whose defining feature is a repeat loop.

The Lean definition of its abstract syntax tree follows:

inductive program : Type

| skip {} : program

| assign : string → (state → N) → program

| seq : program → program → program

| unless : (state → Prop) → program → program

| repeat : N → program → program

export program (skip assign seq unless repeat)

The skip, assign, and seq S T statements have the same syntax and semantics as in the WHILE
language. We also write S ;; T for seq S T.

The unless b S statement executes S unless b is true—i.e., it executes S if b is false. Otherwise,
unless b S does nothing. In particular, unless (λ_, true) S is equivalent to skip (according to
a big-step or a denotational semantics), and unless (λ_, false) S is equivalent to S. This con-
struct is inspired by the Perl language.

The repeat n S statement executes S exactly n times. Thus, repeat 10 S is equivalent to S ;; S ;;

S ;; S ;; S ;; S ;; S ;; S ;; S ;; S, and repeat 0 S is equivalent to skip.

6a. Complete the following specification of a big-step semantics as derivation rules.

Skip
(skip, s) =⇒ s

Asn
(assign x a, s) =⇒ s[x 7→ s(a)]

(S, s) =⇒ t (T, t) =⇒ u
Seq

(S ;; T, s) =⇒ u

6b. Specify the same big-step semantics in Lean by completing the following definition:

inductive big_step : program × state → state → Prop

| skip {s} :

big_step (skip, s) s

| assign {x a s} :

big_step (assign x a, s) (s{x 7→ a s})

| seq {S T s t u} (h1 : big_step (S, s) t) (h2 : big_step (T, t) u) :

big_step (S ;; T, s) u

6c. Is the REPEAT language deterministic? Briefly explain your answer.

6d. Are REPEAT programs guaranteed to terminate? Briefly explain your answer.

The grade for the exam is the total amount of points divided by 10, plus 1.

7


