
Logical Verification 2019–2020
Vrije Universiteit Amsterdam
Lecturers: dr. J. C. Blanchette and drs. A. Bentkamp

Final Exam
Tuesday 17 December 2019, 15:15–18:00, WN S-623 S-631 S-655
6 questions, 90 points
Answers may be given in English or Dutch

Proof Guidelines

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs.
You are welcome to use standard mathematical notation or Lean structured commands (e.g.,
assume, have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please
indicate some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the inductive
hypotheses assumed (if any) and the goal to be proved. Minor proof steps corresponding to
refl, simp, or linarith need not be justified if you think they are obvious (to humans), but you
should say which key lemmas they follow from.

You should be explicit whenever you use a function definition or an introduction rule for an
inductive predicate, especially for functions and predicates that are specific to an exam question.

Answer:

This version of the exam includes suggested answers, presented in blocks like this one. Some of
the proposed proofs are atypical in that they were developed using Lean and are syntactically
correct. Such proofs would be accepted at the exam, but we realize that it is hard to develop
correct Lean proofs on paper; hence the flexible proof guidelines above.

In Case of Ambiguities or Errors in an Exam Question

The sta� present at the exam has the lecturers’ phone numbers, in case of questions or issues
concerning a specific exam question. Nevertheless, we strongly recommend that you work things
out yourselves, stating explicitly any ambiguity or error and explaining how you interpret or repair
the question. The more explicit you are, the easier it will be for the lecturers to grade the question
afterwards.
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Question 1. Variable substitution (5+6 points)

Consider this simple type of arithmetic expressions:

inductive exp : Type

| Var : string → exp

| Num : Z → exp

| Plus : exp → exp → exp

export exp (Var Num Plus)

1a. Complete the following recursive Lean definition of a function subst that performs simultaneous
substitution of variables. The application subst ρ e simultaneously replaces every variable in e

with a new subexpression: Each occurrence of Var x is replaced with ρ x.

def subst (ρ : string → exp) : exp → exp

Answer:

| (Var y) := ρ y

| (Num i) := Num i

| (Plus e1 e2) := Plus (subst e1) (subst e2)

1b. If we perform simultaneous substitution with λx, Var x, we should get the identity function on
expressions:

lemma subst_Var (e : exp) :

subst (λx, Var x) e = e

Prove this fact by structural induction on e. Make sure to follow the proof guidelines given on
page 1.

Answer:

After performing structural induction on e, we are left with three goals.

Goal 1: subst (λx, Var x) (Var y) = Var y. By definition of subst, we have
subst (λx, Var x) (Var y) = (λx, Var x) y = Var y.

Goal 2: subst (λx, Var x) (Num i) = Num i. This follows directly by definition of subst.

Goal 3: subst (λx, Var x) (Plus e1 e2) := Plus e1 e2. The induction hypotheses are
(IH1) subst (λx, Var x) e1 = e1 and (IH2) subst (λx, Var x) e2 = e2.
By definition of subst, we have
subst (λx, Var x) (Plus e1 e2) = Plus (subst (λx, Var x) e1) (subst (λx, Var x) e2).
Using IH1 and IH2, we can simply the right-hand side to Plus e1 e2, as desired.

In Lean:

begin
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induction e,

{ rw [subst] },

{ rw [subst] },

{ rw [subst],

rw e_ih_a,

rw e_ih_a_1 }

end
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Question 2. Identity monad (4+7 points)

The identity monad is a monad that simply stores a value of type α, without any special e�ects
or computational strategy. In other words, it simply provides a box containing a single value of
type α. Viewed as a type constructor, the identity monad is the identity function λα : Type, α.
When applying it to a type variable α, we end up with (λα : Type, α) α, i.e., α itself.

2a. Complete the Lean definitions of the pure and bind operations:

def id.pure {α : Type} : α→ α

def id.bind {α β : Type} : α→ (α→ β)→ β

Answer:

λa, a

λa f, f a

2b. Assume ma >>= f is syntactic sugar for id.bind ma f. Prove the three monadic laws. Your proofs
should be step-by-step calculational, with at most one rewrite rule or definition expansion per
step, so that we can clearly see what happens.

lemma id.pure_bind {α β : Type} (a : α) (f : α→ β) :

(id.pure a >>= f) = f a

lemma id.bind_pure {α : Type} (ma : α) :

(ma >>= id.pure) = ma

lemma id.bind_assoc {α β γ : Type} (f : α→ β) (g : β → γ) (ma : α) :

((ma >>= f) >>= g) = (ma >>= (λa, f a >>= g))

Answer:

calc (id.pure a >>= f) = (a >>= f) :

by refl

... = f a :

by refl

calc (ma >>= id.pure) = id.pure ma

by refl

... = ma

by refl

calc ((ma >>= f) >>= g) = (f ma >>= g) :

by refl

... = g (f ma) :

by refl

... = f ma >>= g :

by refl
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... = (ma >>= (λa, f a >>= g)) :

by refl
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Question 3. Small-step semantics (6+6+3+3 points)

We introduce WHY, a new programming language that resembles the WHILE language but that
includes a few features that make students wonder, “Why??”

The Lean definition of its abstract syntax tree follows:

inductive program : Type

| skip {} : program

| havoc : string → program

| seq : program → program → program

| choose : program → program → program

| loop : program → program

export program (skip havoc seq choose loop)

The skip and seq S T statements have the same syntax and semantics as in the WHILE language.
The notation S ;; T stands for seq S T.

The havoc x statement assigns a completely random value to the variable x.

The choose S T statement randomly executes either S or T. It behaves like an if–then–else state-
ment whose Boolean condition is random.

The loop S statement behaves like a while loop whose Boolean condition is random. It may exit
at any point. For example, loop S could have the same end-to-end behavior as skip or S or S ;; S

or S ;; S ;; S or . . . .

3a. Complete the following specification of a small-step semantics as derivation rules.

(S, s)⇒ (S’, s’)
Seq-Step

(S ;; T, s)⇒ (S’ ;; T, s’)
Seq-Skip

(skip ;; T, s)⇒ (T, s)

Answer:

Havoc
(havoc x, s)⇒ (skip, s[x 7→ n])

Choose-First
(choose S T, s)⇒ (S, s)

Choose-Second
(choose S T, s)⇒ (T, s)

Loop
(loop S, s)⇒ (choose (S ;; loop S) skip, s)

3b. Specify the same small-step semantics as an inductive predicate by completing the following
Lean definition.

inductive small_step : program × state → program × state → Prop
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| seq_step {S T s s’ S’} :

small_step (S, s) (S’, s’) → small_step (S ;; T, s) (S ;; T, s’)

| seq_skip {T s} :

small_step (skip ;; T, s) (T, s)

Answer:

| havoc {x s n} :

small_step (havoc x, s) (skip, s{x 7→ n})

| choose_first {S T s} :

small_step (choose S T, s) (S, s)

| choose_second {S T s} :

small_step (choose S T, s) (T, s)

| loop {S s} :

small_step (loop S, s) (choose (seq S (loop S)) skip, s)

3c. Is the WHY language deterministic? Briefly explain your answer.

Answer:

No. For example, starting from the configuration (havoc "x", s), we can end up in two di�erent
states: s{"x" 7→ 0} and s{"x" 7→ 1}.

3d. Are WHY programs guaranteed to terminate? Briefly explain your answer.

Answer:

No. Consider the infinite execution (loop skip, s)⇒ (choose (loop skip) skip, s)⇒ (loop

skip, s)⇒ (choose (loop skip) skip, s)⇒ · · ·
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Question 4. Logical foundations and mathematics (4+2+6+4+2 points)

4a. What are the types of the following Lean constants?

true : _ N : _ Prop : _ Type : _

Answer:

true : Prop

N : Type

Prop : Type

Type : Type 1

4b. Let α : Type. The composition g ◦ f of two functions f, g : α→ α is defined as the function
λx, g (f x). What is the neutral element for ◦, i.e., the function h such that h ◦ f = f and g ◦ h = g

for all f, g : α→ α?

Answer:

λx, x

4c. The type class monoid is defined as follows in Lean:

class monoid (α : Type) :=

(mul : α → α → α)
(one : α)
(mul_assoc : ∀a b c : α, mul (mul a b) c = mul a (mul b c))

(one_mul : ∀a : α, mul one a = a)

(mul_one : ∀a : α, mul a one = a)

Complete the following instantiation of N→ N as a monoid by providing a suitable definition of
one and proofs of the one_mul and mul_one properties:

instance monoid_comp : monoid (N → N) :=

{ mul := (λg f, g ◦ f),

one := _,

mul_assoc := sorry,

mul_one := _,

one_mul := _ }

Answer:

λx, x

one_mul: (λg f, g ◦ f) (λx, x) a = (λx, x) ◦ a = a

mul_one: (λg f, g ◦ f) a (λx, x) = a ◦ (λx, x) = a

The second equality of both one_mul and mul_one is justified because (λx, x) is the neutral, or
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identity, element for composition.

4d. The type class group is defined as follows in Lean:

class group (α : Type) :=

(mul : α → α → α)
(one : α)
(mul_assoc : ∀a b c : α, mul (mul a b) c = mul a (mul b c))

(one_mul : ∀a : α, mul one a = a)

(mul_one : ∀a : α, mul a one = a)

(inv : α → α)
(mul_left_inv : ∀a : α, mul (inv a) a = one)

Can the type N→ N be instantiated as a group, using the same definition for mul and one as in
question 4c? Briefly explain your answer.

Answer:

No, there is no possible definition of inv that would make mul_left_inv true. This is because
not all functions are invertible.

4e. We used the following definition for Cauchy sequences to construct the real numbers:

def is_cau_seq (f : N → Q) : Prop :=

∀ε > 0, ∃N, ∀m ≥ N, abs (f N - f m) < ε

Which function in this definition needs to be changed to construct the p-adic numbers?

Answer:

abs
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Question 5. Palindromes (6+7+6 points)

Palindromes are lists that read the same from left to right and from right to left. For example,
[a, b, b, a] and [a, h, a] are palindromes.

5a. Define an inductive predicate that is true if and only if the list passed as argument is a palin-
drome, by completing the Lean definition below:

inductive palindrome {α : Type} : list α → Prop

The definition should distinguish three cases:

1. The empty list [] is a palindrome.
2. For any element x : α, the singleton list [x] is a palindrome.
3. For any element x : α and any palindrome [y1, ..., yn], the list [x, y1, ..., yn, x] is a

palindrome.

Answer:

| nil : palindrome []

| single (x : α) : palindrome [x]

| sandwich (x : α) (xs : list α) (pal_xs : palindrome xs) :

palindrome ([x] ++ xs ++ [x])

5b. Let reverse be the following operation:

def reverse {α : Type} : list α → list α
| [] := []

| (x :: xs) := reverse xs ++ [x]

Using reverse, prove that the reverse of a palindrome is also a palindrome:

lemma rev_palindrome {α : Type} (xs : list α) (pal_xs : palindrome xs) :

palindrome (reverse xs)

Make sure to follow the proof guidelines given on page 1. If it helps, you may invoke the following
lemma (without having to prove it):

lemma reverse_append_sandwich {α : Type} (x : α) (ys : list α) :

reverse ([x] ++ ys ++ [x]) = [x] ++ reverse ys ++ [x]

Answer:

We perform rule induction on the hypothesis pal_xs.

Goal 1: palindrome (reverse []). Obvious by palindrome.nil since reverse [] = [].

Goal 2: palindrome (reverse [x]). Obvious by palindrome.single since reverse [x] = [x].

Goal 3: palindrome (reverse ([x] ++ xs ++ [x])). Hypothesis: palindrome xs. Induction hy-
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pothesis: palindrome (reverse xs).

palindrome (reverse ([x] ++ xs ++ [x]))↔ palindrome ([x] ++ reverse xs ++ [x]), using the
given reverse_append_sandwich lemma. Using the introduction rule palindrome.sandwich, we
reduce the new goal to palindrome (reverse xs), which holds by the induction hypothesis.

In Lean:

induction pal_xs,

{ exact palindrome.nil },

{ exact palindrome.single _ },

{ rw reverse_append_sandwich,

apply palindrome.sandwich,

apply pal_xs_ih }

5c. Prove that the lists [], [a, a], and [a, b, a] are palindromes, corresponding to the following
lemma statements in Lean:

lemma palindrome_nil {α : Type} :

palindrome ([] : list α)

lemma palindrome_aa {α : Type} (a : α) :

palindrome [a, a]

lemma palindrome_aba {α : Type} (a b : α) :

palindrome [a, b, a]

Answer:

palindrome.nil

palindrome.sandwich a [] palindrome.nil

palindrome.sandwich a [b] (palindrome.single b)
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Question 6. One-point rules (5+5+3 points)

One-point rules are lemmas that can be used to remove a quantifier from a proposition when the
quantified variable can e�ectively take only one value. For example, ∀x, x = 5→ p x is equivalent
to the much simpler p 5.

6a. Prove the one-point rule for ∀. In your proof, identify clearly how the quantifier is instantiated.

lemma forall.one_point_rule {α : Type} {t : α} {p : α → Prop} :

(∀x : α, x = t → p x) ↔ p t

Answer:

iff.intro

(assume hall : ∀x : α, x = t → p x,

show p t,

begin

apply hall t,

refl

end)

(assume hp : p t,

assume x : α,
assume heq : x = t,

show p x,

begin

rw heq,

exact hp

end)

6b. Prove the one-point rule for ∃. In your proof, identify clearly which witness is supplied for the
quantifier.

lemma exists.one_point_rule {α : Type} {t : α} {p : α → Prop} :

(∃x : α, x = t ∧ p x) ↔ p t

Answer:

iff.intro

(assume hex : ∃x : α, x = t ∧ p x,

show p t,

begin

cases hex,

cases hex_h,

rw hex_h_left at hex_h_right,

exact hex_h_right

end)

(assume hp : p t,
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show ∃x : α, x = t ∧ p x,

begin

apply exists.intro t,

apply and.intro,

{ refl },

{ exact hp }

end)

6c. Alyssa P. Hacker proposes the following alternative one-point rule for ∀:

axiom forall.one_point_rule’ {α : Type} {t : α} {p : α → Prop} :

(∀x : α, x = t ∧ p x) ↔ p t

What is wrong with this rule?

Answer:

It can be used to prove false. In Lean:

lemma proof_of_false :

false :=

begin

have := @forall.one_point_rule’ N 0 (λ_, true),

simp at this,

specialize this 1,

linarith

end

Informally, by taking p := λ_, true, we end up with the proposition (∀x : α, x = t ∧ true)↔
true. After some simplification, we get ∀x : α, x = t. By taking a type like N, which has two
distinct values 0 and 1, we can take t := 0 and x := 1, resulting in the equation 0 = 1, from which
we can derive false.

The grade for the exam is the total amount of points divided by 10, plus 1.
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