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5 problems, 90 points
Answers may be given in English or Dutch

Proof Guidelines

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs. You are
welcome to use standard mathematical notation or Lean structured commands (e.g., assume, have, show,
calc). You can also use tactical proofs (e.g., intro, apply), but then please indicate some of the interme-
diate goals, so that we can follow the chain of reasoning.

Major proof steps, especially applications of induction and invocation of the induction hypothesis, must be
stated explicitly. For each case of a proof by induction, you must list the inductive hypotheses assumed (if
any) and the goal to be proved. Minor proof steps corresponding to refl, simp, or arithmetic need not be
justified if you think they are obvious (to humans), but you should say which key lemmas they follow from.

You should be explicit whenever you use a function definition or an introduction rule for an inductive predi-
cate, especially for functions and predicates that are specific to an exam question.
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Question 1. List concatenation and reversal (6+5+4+6 points)

Consider the following Lean function on lists:

def concat {α : Type} : list (list α) → list α

| [] := []

| (xs :: xss) := xs ++ concat xss

1a. Prove the following lemma about concatenation:

lemma map_concat {α β : Type} (f : α → β) :

∀xss : list (list α), map f (concat xss) = concat (map (map f) xss)

You may assume basic lemmas about map, including its definition:

def map {α β : Type} (f : α → β) : list α → list β

| [] := []

| (x :: xs) := f x :: map xs

1b. Give the definition in Lean of a reverse function that takes a list in argument and returns it with its elements
in reverse order.

1c. Complete the statements of the following properties that describes the behavior of concat and reverse

(defined above) with respect to the append operator (++), by filling in the holes (_). These properties should
describe how concat and reverse distribute over ++. You are not asked to prove the properties.

lemma concat_snoc {α : Type} :

∀(xs : list α) (xss : list (list α)), concat (xss ++ [xs]) = _

lemma reverse_append {α : Type} :

∀xs ys : list α, reverse (xs ++ ys) = _

1d. Prove the following lemma, using the above definitions and properties.

lemma reverse_concat {α : Type} :

∀xss : list (list α), reverse (concat xss) =

concat (reverse (map reverse xss))
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Question 2. Sorted lists (6+4+4 points)

2a. Define in Lean an inductive predicate sorted that takes a list of natural numbers as argument and that returns
true if and only if that list is sorted in increasing order. The definition should distinguish three cases:

• The empty list is sorted.

• Any list of length 1 is sorted.

• A list [x1, x2, . . . , xn] of length n≥ 2 is sorted if x1 ≤ x2 and [x2, . . . , xn] is sorted.

2b. Prove the following four lemmas to test your definition.

example : sorted []

example : sorted [2]

example : sorted [3, 5]

example : sorted [7, 9, 9, 11]

2c. Not all lists are sorted. Prove the following counterexample.

example : ¬ sorted [17, 13]
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Question 3. Program equivalence (6+5+5 points)

Consider the following WHILE language:

inductive program (σ : Type) : Type

| skip {} : program

| assign : (σ → σ) → program

| seq : program → program → program

| ite : (σ → Prop) → program → program → program

| while : (σ → Prop) → program → program

In the following, we fix a type σ of states.

Recall the big-step semantic predicate (p, s) =⇒ t and the following notion of program equivalence:

def program_equiv (p1 p2 : program σ) : Prop :=

∀s t, (p1, s) =⇒ t ↔ (p2, s) =⇒ t

We use the abbreviation p1 ≈ p2 for program_equiv p1 p2.

3a. Prove the following program equivalence, which can be used by a compiler to exchange the ‘then’ and the
‘else’ branches of an ‘if’ statement.

example {p q : program σ} {c : σ → Prop} :

ite c p q ≈ ite (λs, ¬ c s) q p

3b. By appealing to the big-step semantics, explain why infinite loops never exit, a property that can be stated
formally as follows.

lemma big_step_while_true {p : program σ} {s t : σ} :

¬ 〈while (λ_, true) p, s〉 =⇒ t

3c. Use the above lemma to prove the following program equivalence, which can be used to eliminate dead code
in an optimizer.

example {p p’ : program σ} : seq (while (λ_, true) p) p’ ≈ while (λ_, true) p
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Question 4. Finite sets (4+6+6 points)

4a. Define an inductive predicate finite in Lean that returns true if and only if its argument is a finite set (of
type set α). The definition should distinguish two cases:

• The empty set is finite.

• If A is finite, then {a}∪A is finite.

Put the definition in a namespace called v1.

4b. Give an alternative Lean definition for finite, this time distinguishing three cases:

• The empty set is finite.

• The singleton set {a} is finite.

• If A and B are finite, then A∪B is finite.

Put the definition in a namespace called v2.

4c. As a step towards proving the two definitions equivalent, prove the following lemma about v1.finite:

namespace v1

lemma finite.union {α : Type} :

∀A B : set α, finite A → finite B → finite (A ∪ B) :=

end v1

5



Question 5. Finite sets as quotients (6+3+5+5+4 points)

Finite sets can be defined in various ways. One way is to start with a raw type of finite lists and take the
quotient over the equivalence relation r := λxs ys, ∀x, x ∈ xs ↔ x ∈ ys, meaning that two lists
are put in the same equivalence class if they contain exactly the same elements.

In Lean, this could be done as follows:

instance fin_set.rel (α : Type) : setoid (list α) :=

{ r := λxs ys, ∀x, x ∈ xs ↔ x ∈ ys,

iseqv := _ }

def fin_set (α : Type) : Type := quotient (fin_set.rel α)

However, there is a hole (_) in the definition, standing for a proof that the relation r is an equivalence relation
(i.e., is reflexive, symmetric, and transitive).

5a. State and prove the three properties that capture the fact that r is an equivalence relation.

5b. The empty finite set can be defined in Lean as follows:

def fin_empty {α : Type} : fin_set α := J[]K

Inspired by the above, define a fin_singleton operation that, given an element a, returns a singleton of
type fin_set α containing that element.

5c. Next, define the union operator on fin_set α by filling the hole (_) in the following definition:

def fin_union {α : Type} (A B : fin_set α) : fin_set α :=

quotient.lift_on2 A B (λas bs, Jas ++ bsK) _

The hole has type

∀as1 as2 bs1 bs2 : list α, r as1 bs1 → r as2 bs2 → Jas1 ++ as2K = Jbs1 ++ bs2K

5d. Is the following property provable or not? If yes, please argue why. If no, give a counterexample (specifying
concrete values for α and A).

lemma exists_list_of_fin_set {α : Type} (A : fin_set α) :

∃xs : list α, A = JxsK

5e. Explain what the following definition achieves. Why do you think it might be useful?

noncomputable def list_of_fin_set {α : Type} (A : fin_set α) : list α :=

@classical.some (list α) (λxs, A = JxsK) (exists_list_of_fin_set A)

The grade for the exam is the total amount of points divided by 10, plus 1.
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