
Institute for Informatics of the Ludwig-Maximilians-Universität München Summer semester 2024
Prof. Dr. Jasmin Blanchette 14.10.2024
Xavier Généreux
Balazs Toth

Third Examination in the Course

Interactive Theorem Proving

You have 120 minutes at your disposal. Written or electronic aids are not permitted. Carrying
electronic devices, even turned off, will be considered cheating.

Write your full name and matriculation number clearly legible on this cover sheet, as well as your
name in the header on each sheet. Hand in all sheets. Leave them stapled together. Use only pens
and neither the color red nor green.

Check that you have received all the sheets. Guidelines for writing pen-and-paper proofs are given on
page 1. Questions can be found on pages 2–15. There are 6 questions for a total of 100 points.

You may use the back of the sheets for auxiliary calculations. If you use the back for actual answers,
clearly mark what belongs to which question and indicate in the corresponding question where all
parts of your answer can be found. Cross out everything that should not be graded.

With your signature, you confirm that you are in sufficiently good health at the beginning of the
examination and that you accept this examination bindingly.

Last name:

First name:

Matriculation number:

Program of study:

2 Please check with an X only if the exam should be voided and
not graded.
Bitte nur ankreuzen, wenn die Klausur entwertet und nicht korrigiert werden soll.

Hierby I confirm the correctness of the above information:

Signature

Please leave the following table blank:

Question 1 2 3 4 5 6
∑

Points 20 25 25 8 12 10 100

Score



Name: 1

Guidelines for Paper Proofs

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs. You
are welcome to use standard mathematical notation or Lean structured commands (e.g., assume,
have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please indicate
some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the induction
hypotheses assumed (if any) and the goal to be proved. Minor proof steps corresponding to refl,
simp, or linarith need not be justified if you think they are obvious, but you should mention
which key lemmas they depend on. You should be explicit whenever you use a function definition
or an introduction rule for an inductive predicate.



Name: 2

Question 1 (Types and Terms): (20 points)

a) Recall the following simplified typing rules for Lean’s dependent type theory:

Cst if c is globally declared with type σ
C ⊢ c : σ

Var if x : σ is the rightmost occurrence of x in C
C ⊢ x : σ

C ⊢ t : (x : σ)→ τ[x] C ⊢ u : σ
App′

C ⊢ t u : τ[u]

C, x : σ ⊢ t : τ[x]
Fun′

C ⊢ (fun x : σ 7→ t) : (x : σ)→ τ[x]

Let a : N, f : (N → N)→ N → N, g : N → N, and h : (y : N)→ {x : N // x < 5} be globally
declared constants. What is the type of the following two Lean terms? Give in each case a
typing derivation as justification for the type.

(i) h a

(ii) fun x 7→ f g x



Name: 3

b) Let α, β, and γ be Lean types. Give an inhabitant for each of the following types:

• α → β → β

• (α → β)→ (α → α → α)→ α → β

• ((α → α → β)→ α)→ γ → β → α



Name: 4

Question 2 (Functional Programming): (25 points)

a) Consider the following Lean function definition:

def stutter {α : Type} : List α → List α
| [] => []

| a :: as => a :: a :: stutter as

(i) Give the value of stutter [4, 3, 2]. (There is no need to provide intermediate steps.)

(ii) Prove the following Lean theorem. Make sure to follow the proof guidelines given on page 1.

theorem map_stutter {α β : Type} (f : α → β) (ys : List α) :
List.map f (stutter ys) = stutter (List.map f ys) :=



Name: 5

(iii) Prove the following Lean theorem. Make sure to follow the proof guidelines given on page 1.

theorem stutter_snoc {α : Type} (xs : List α) (y : α) :
stutter (xs ++ [y]) = stutter xs ++ [y, y] :=



Name: 6

b) Define a Lean function singletonify that takes a list [x1, . . . , xn] and that returns a list of
singletons [[x1], . . . , [xn]]. For example, singletonify [1, 2, 3, 5, 7] should evaluate to
[[1], [2], [3], [5], [7]].



Name: 7

Question 3 (Inductive Predicates): (25 points)

a) Recall the stutter function from Question 2:

def stutter {α : Type} : List α → List α
| [] => []

| a :: as => a :: a :: stutter as

Now consider the following Lean inductive predicate, which holds when a list has even length:

inductive EvenLength {α : Type} : List α → Prop where

| nil :

EvenLength []

| add_two (x y : α) {xs : List α} :
EvenLength xs → EvenLength (x :: y :: xs)

For example, EvenLength [1, 2] holds, whereas EvenLength [3, 4, 5] does not hold.

Prove the following Lean theorem about EvenLength. Make sure to follow the proof guidelines
given on page 1.

theorem EvenLength_stutter {α β : Type} (xs : List α)
(hxs : EvenLength xs) :

EvenLength (stutter xs)



Name: 8

b) Define an inductive predicate Suffix in Lean that takes two lists over a polymorphic type α as
arguments and that holds when the first list is a suffix of the second. For exemple, Suffix [1,
2] [1, 2] and Suffix [2, 4] [1, 2, 4] should hold.



Name: 9

c) Define an inductive predicate EvenPalindrome in Lean that takes a list over a polymorphic type
α as argument and that holds if the list is a palindrome (i.e., if it equals its reverse) and has
even length. For example, EvenPalindrome [1, 2, 2, 1] should hold, whereas EvenPalindrome
[1, 3, 1] and EvenPalindrome [1, 3, 7] should not hold.



Name: 10

Question 4 (Metaprogramming): (8 points)

Consider the following custom Lean tactic:

macro "enigma" : tactic =>

’(tactic| repeat’ first

| assumption

| intro _

| apply True.intro

| apply And.intro

| apply Iff.intro)

a) Briefly explain what the enigma tactic does. You may assume that we already know what
assumption, intro, and apply does.



Name: 11

b) In the following Lean code fragment, the enigma tactic is applied to transform the goal:

theorem abbatf (a b : Prop) :

a → b → b ∧ a ∧ True ∧ False :=
by

enigma

The proof state before invoking enigma is

a b : Prop

⊢ a → b → b ∧ a ∧ True ∧ False

Give the proof state after invoking enigma. Make sure to include all subgoals.



Name: 12

Question 5 (Operational Semantics): (12 points)

The IF0 programming language is similar to WHILE, with two differences. First, the while–do
statement is omitted. Second, the if–then–else statement is replaced by if_zero–then–else. For
example, the program

if_zero m * n then

x := 0

else

y := 1

executes x := 0 if the condition m * n = 0 holds when entering the construct; otherwise, it executes
y := 1.

In Lean, IF0 is modeled by the following inductive type:

inductive Stmt : Type where

| skip : Stmt

| assign : String → (State → N) → Stmt

| seq : Stmt → Stmt → Stmt

| ifZero : (State → N) → Stmt → Stmt → Stmt

infixr:90 "; " => Stmt.seq

a) Complete the following specification of a small-step semantics for IF0 in Lean by giving the
missing derivation rules for seq and if_zero.

Assign
(x := a, s)⇒ (skip, s[x 7→ s(a)])

SeqSkip
(Stmt.skip; T, s)⇒ (T, s)



Name: 13

b) Complete the following Lean definition of an inductive predicate that encodes the small-step
semantics you specified in subquestion a) above.

inductive SmallStep : Stmt × State → Stmt × State → Prop where

| assign (x a s) :

SmallStep (Stmt.assign x a, s) (Stmt.skip, s[x 7→ a s])

| seq_skip (T s) :

SmallStep (Stmt.skip; T, s) (T, s)



Name: 14

Question 6 (Mathematics): (10 points)

a) Let σ : Type 4 and τ : Type 2 be Lean types. Give the type of each of the following Lean terms.

fun (x : σ) (y : σ) 7→ x

Sort 5

fun α : Type 7→ List (N × α)
σ → τ
τ → σ



Name: 15

b) We call a NonUnitalSemiring a type with addition, multiplication, and a 0 element and where
addition is commutative and associative, multiplication is associative and left and right distribu-
tive over addition, and 0 is the additive identity.

Complete the following class declaration of NonUnitalSemiring:

universe u

class NonUnitalSemiring (α : Type u) : Type u where
add : α → α → α
mul :

zero : α
mul_assoc :

add_assoc : ∀a b c, add (add a b) c = add a (add b c)
left_distrib :

right_distrib : ∀a b c, mul (add a b) c = add (mul a c) (mul b c)
zero_add : ∀a, add zero a = a
add_zero :

zero_mul :

mul_zero : ∀a, mul a zero = zero
add_comm : ∀a b, add a b = add b a



Name: 16



Name: 17


	A1 (20): Types and Terms
	A2 (25): Functional Programming
	A3 (25): Inductive Predicates
	A4 (8): Metaprogramming
	A5 (12): Operational Semantics
	A6 (10): Mathematics

