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Guidelines for Paper Proofs

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs. You
are welcome to use standard mathematical notation or Lean structured commands (e.g., assume,
have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please indicate
some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the induction
hypotheses assumed (if any) and the goal to be proved. Minor proof steps corresponding to refl,
simp, or linarith need not be justified if you think they are obvious, but you should mention
which key lemmas they depend on. You should be explicit whenever you use a function definition
or an introduction rule for an inductive predicate.
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Solution to Question 1 (Types and Terms): (20 points)

a) Recall the following simplified typing rules for Lean’s dependent type theory:

Cst if c is globally declared with type σ
C ⊢ c : σ

Var if x : σ is the rightmost occurrence of x in C
C ⊢ x : σ

C ⊢ t : (x : σ)→ τ[x] C ⊢ u : σ
App′

C ⊢ t u : τ[u]

C, x : σ ⊢ t : τ[x]
Fun′

C ⊢ (fun x : σ 7→ t) : (x : σ)→ τ[x]

Let Vector : (α : Type)→ N → Type be a type constructor. Let a : N, g : N → N → Q, and
f : (x : N)→ Vector N x be globally declared constants. What is the type of the following two
Lean terms? Give in each case a typing derivation as justification for the type.

(i) f a (6 points)

PROPOSED SOLUTION: The type is Vector N a. The typing derivation is

Cst
⊢ f : (x : N)→ Vector N x

Cst
⊢ a : N

App′
⊢ f a : Vector N a

• 2 points for the type

• 4 points for the derivation tree

(ii) fun x 7→ g x x (8 points)

PROPOSED SOLUTION: The type is N → Q. The typing derivation is

Cst
x : N ⊢ g : N → N → Q

Var
x : N ⊢ x : N

App′
x : N ⊢ g x : N → Q

Var
x : N ⊢ x : N

App′
x : N ⊢ g x x : Q

Fun′
⊢ (fun x 7→ g x x) : N → Q

• 2 points for the type

• 6 points for the derivation tree
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b) Let α, β, and γ be Lean types. Give an inhabitant for each of the following types:

• α → N (2 points)

PROPOSED SOLUTION: fun a 7→ 0

– 1 point for fun a

– 1 point for 0

• α → (α → β → γ)→ β → γ (2 points)

PROPOSED SOLUTION: fun a f b 7→ f a b

– 1 point for fun a f b

– 1 point for f a b

• ((α → α)→ γ → α)→ β → γ → α (2 points)

PROPOSED SOLUTION: fun f b c 7→ f (fun a 7→ a) c

– 1 point for fun f b c

– 1 point for f (fun a 7→ a) c
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Solution to Question 2 (Functional Programming): (25 points)

a) Consider the following Lean function definition:

def stutter {α : Type} : List α → List α
| [] => []

| a :: as => a :: a :: stutter as

(i) Give the value of stutter [1, 2, 3]. (There is no need to provide intermediate steps.)
(2 points)

PROPOSED SOLUTION: [1, 1, 2, 2, 3, 3].

2 points for right answer, 0 otherwise

(ii) Prove the following Lean theorem. Make sure to follow the proof guidelines given on page 1.
(8 points)

theorem stutter_append {α : Type} (xs ys : List α) :
stutter (xs ++ ys) = stutter xs ++ stutter ys

PROPOSED SOLUTION:

The proof is by structural induction on xs.

The base case is

stutter ([] ++ ys) = stutter [] ++ stutter ys

Both sides simplify to stutter ys and are hence equal.

The induction step is

stutter (x :: xs’ ++ ys) = stutter (x :: xs’) ++ stutter ys

The induction hypothesis is

stutter (xs’ ++ ys) = stutter xs’ ++ stutter ys

The goal’s left-hand side can be rewritten to stutter (x :: (xs’ ++ ys)) using basic list
properties. By definition of stutter, this is equal to x :: x :: stutter (xs’ ++ ys). By
the induction hypothesis, this is equal to x :: x :: (stutter xs’ ++ stutter ys). By def-
inition of stutter, the goal’s right-hand side simplifies to the same term. The two sides
are equal.

• 1 point for “by (structural) induction”

• 1 point for “on xs”

• 1 point for statement of base case

• 1 point for proof of base case

• 1 point for statement of induction step

• 1 point for statement of induction hypothesis

• 2 points for proof of induction step (IH and simp)
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(iii) Prove the following Lean theorem. Make sure to follow the proof guidelines given on page 1.
(8 points)

theorem length_stutter {α : Type} (xs : List α) :
List.length (stutter xs) = 2 * List.length xs

PROPOSED SOLUTION:

The proof is by structural induction on xs.

The base case is

List.length (stutter []) = 2 * List.length []

Both sides simplify to 0 and are hence equal.

The induction step is

List.length (stutter (x :: xs’)) = 2 * List.length (x :: xs’)

The induction hypothesis is

List.length (stutter xs’) = 2 * List.length xs’

The induction step simplifies to

List.length (stutter xs’) + 2 = 2 * List.length xs’ + 2

By the induction hypothesis and some basic arithmetic reasoning, the two sides are equal.

• 1 point for “by (structural) induction”

• 1 point for “on xs”

• 1 point for statement of base case

• 1 point for proof of base case

• 1 point for statement of induction step

• 1 point for statement of induction hypothesis

• 2 points for proof of induction step (IH and arith)
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b) Define a Lean function separate that takes a term and a list and that returns a list where the
term is inserted between each pair of adjacent elements of the list. For example, separate 0
[1, 2, 3] should evaluate to [1, 0, 2, 0, 3]. (7 points)

PROPOSED SOLUTION:

def separate {α : Type} (a : α) : List α → List α
| [] => []

| [b] => [b]

| b1 :: b2 :: bs’ => [b1, a] ++ separate a (b2 :: bs’)

• 1 point for “def separate {α : Type} (a : α)”

• 1 point for type

• 1 point for first equation

• 1 point for second equation

• 1 point for LHS of third equation

• 2 points for RHS of third equation
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Solution to Question 3 (Inductive Predicates): (25 points)

a) A binary tree is linear if all its nodes have at most one child. Consider the following Lean
inductive predicate, which determines whether a binary tree is linear:

inductive Linear {α : Type} : Tree α → Prop

| nil :

Linear Tree.nil

| left (a : α) (l : Tree α) (hl : Linear l) :
Linear (Tree.node a l Tree.nil)

| right (a : α) (r : Tree α) (hr : Linear r) :
Linear (Tree.node a Tree.nil r)

Recall the mirror function on binary trees:

def mirror {α : Type} : Tree α → Tree α
| Tree.nil => Tree.nil

| Tree.node a l r => Tree.node a (mirror r) (mirror l)

Prove the following theorem about the interaction between Linear and mirror. Make sure to
follow the proof guidelines given on page 1. (9 points)

theorem Linear_mirror {α : Type} (t : Tree α) (ht : Linear t) :
Linear (mirror t)

PROPOSED SOLUTION: The proof is by rule induction on ht.

In the nil case, the goal is

Linear (mirror Tree.nil)

This simplifies to Linear Tree.nil, which is provable using Linear.nil.

In the left case, the goal is

Linear (mirror (Tree.node a l Tree.nil))

The induction hypothesis is

Linear (mirror l)

The goal simplifies to

Linear (Tree.node a Tree.nil (mirror l))

We prove it using Linear.right _ _ ih, where ih is the induction hypothesis.

The right case is analogous.

• 1 point for “by (rule) induction”

• 1 point for “on ht”

• 1 point for statement of nil case

• 1 point for proof of nil case
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• 1 point for statement of left or right case

• 1 point for the statement of the left or right induction hypothesis

• 3 points for the proofs of left or right case (IH, simp, and Linear.left/right)
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b) Define an inductive predicate Prefix in Lean that takes two lists over a polymorphic type α as
arguments and that holds when the first list is a prefix of the second. For exemple, Prefix [1,
2] [1, 2] and Prefix [1, 2] [1, 2, 4] should hold. (8 points)

PROPOSED SOLUTION:

inductive Prefix {α : Type} : List α → List α → Prop

| nil (as : List α) :
Prefix [] as

| cons (a : α) (as bs : List α) (hp : Prefix as bs) :
Prefix (a :: as) (a :: bs)

• 1 point for “inductive Prefix {α : Type}”

• 1 point for type

• 1 point for LHS of first introduction rule

• 1 point for RHS of first introduction rule

• 2 points for LHS of second introduction rule

• 2 points for RHS of second introduction rule
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c) Define an inductive predicate ListOver in Lean that takes a set over a polymorphic type α and
a list over α as arguments and that holds if all the elements of the list belong to the set. For
example, ListOver {4, 7} [7, 4, 7] should hold, whereas ListOver {7} [6] should not hold.
You may use the predicate ∈ to test for set membership. (8 points)

PROPOSED SOLUTION:

inductive ListOver {α : Type} (A : Set α) : List α → Prop

| nil :

ListOver A []

| cons (a : α) (as : List α) (ha : a ∈ A) (has : ListOver A as) :
ListOver A (a :: as)

• 1 point for “inductive ListOver {α : Type} (A : Set α)”

• 1 point for type

• 1 point for LHS of first introduction rule

• 1 point for RHS of first introduction rule

• 2 points for LHS of second introduction rule

• 2 points for RHS of second introduction rule
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Solution to Question 4 (Effectful Programming): (8 points)

The writer monad is a monad that stores a list of messages to be output to the console in addition to
a value of type α. In Lean, the writer monad could be defined as follows:

def Writer (α : Type) := α × List String

def Writer.pure {α : Type} (a : α) : Writer α :=
(a, [])

def Writer.bind {α β : Type} (w : Writer α) (f : α → Writer β) : Writer β :=
match w with

| (a, msgs) =>

match f a with

| (b, msgs’) => (b, msgs ++ msgs’)

instance Writer.Pure : Pure Writer :=

{ pure := Writer.pure }

instance Writer.Bind : Bind Writer :=

{ bind := Writer.bind }

In the definition of Writer.bind, the purpose of match is to unfold the Writer tuple. It can be useful
to have an equivalent representation using Prod.fst and Prod.snd:

lemma Writer.bind_prod {α β : Type} (w : Writer α) (f : α → Writer β) :
w >>= f = (Prod.fst (f (Prod.fst w)), Prod.snd w ++ Prod.snd (f (Prod.fst w))) :=

by rfl

a) In addition to pure and bind, the writer monad should offer the possibility to output messages
and to retrieve the list of output messages. Implement the following two Lean functions:
(3 points)

def Writer.getOutput {α : Type} (w : Writer α) : List String :=

def Writer.output {α : Type} (w : Writer α) (msg : String) : Writer α :=

PROPOSED SOLUTION:

def Writer.getOutput {α : Type} (w : Writer α) : List String :=
match w with

| (a, msgs) => msgs

def Writer.output {α : Type} (w : Writer α) (msg : String) : Writer α :=
match w with

| (a, msgs) => (a, msgs ++ [msg])
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• 1 point for Writer.getOutput’s body

• 2 points for Writer.output’s body
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b) Prove the following law about writer monads. Make sure to follow the proof guidelines given on
page 1. In addition, give detailed steps when unfolding the definition of monad operators.

Hint: The Writer.bind_prod lemma presented above may be useful. (5 points)

theorem pure_bind {α β : Type} (a : α) (f : α → Writer β) :
(pure a >>= f) = f a :=

PROPOSED SOLUTION: Unfolding the bind operator using Writer.bind_prod reveals

f a = (Prod.fst (f (Prod.fst (pure a))), Prod.snd (pure a)

++ Prod.snd (f (Prod.fst (pure a))))

Since pure a = (a, []), we have Prod.fst (pure a) = a and Prod.snd (pure a) = [].

This means that

f a = (Prod.fst (f a), [] ++ Prod.snd (f a))

which are of course equal since [] is the identity of append.

• 2 points for unfolding bind correctly

• 1 point for Prod.fst (pure a) = a

• 1 point for Prod.snd (pure a) = []

• 1 point for [] is the identity of append.
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Solution to Question 5 (Denotational Semantics): (12 points)

The IF language consists of all the same constructs as the WHILE language except that it does not
include a while loop:

inductive Stmt : Type where

| skip : Stmt

| assign : String → (State → N) → Stmt

| seq : Stmt → Stmt → Stmt

| ifThenElse : (State → Prop) → Stmt → Stmt → Stmt

The denotational semantics of the IF language is given below:

def denote : Stmt → Set (State × State)
| Stmt.skip => Id

| Stmt.assign x a =>

{st | Prod.snd st = (Prod.fst st)[x 7→ a (Prod.fst st)]}

| Stmt.seq S T => denote S # denote T
| Stmt.ifThenElse B S T => (denote S ⇃ B) ∪ (denote T ⇃ (fun s 7→ ¬ B s))

where

Id := {ab | Prod.snd ab = Prod.fst ab}

r ⇃ P := {ab | ab ∈ r ∧ P (Prod.fst ab)}
r1 # r2 := {ac | ∃b, (Prod.fst ac, b) ∈ r1 ∧ (b, Prod.snd ac) ∈ r2}

We also define J K as syntactic sugar for denote.

a) Prove the following equality:

JStmt.ifThenElse (fun s 7→ s "x" > 0)

(Stmt.assign "x" (fun s 7→ s "x" + 1))

Stmt.skipK
=

JStmt.ifThenElse (fun s 7→ s "x" = 0)

Stmt.skip

(Stmt.assign "x" (fun s 7→ s "x" + 1))K

Recall that program variables range over natural numbers. (6 points)

PROPOSED SOLUTION: First, on the LHS of the equality, we unfold the semantics of the
if statements:

(JStmt.assign "x" (fun s 7→ s "x" + 1)K ⇃ (fun s => s "x" > 0))
∪ (JStmt.skipK ⇃ (fun s => ¬ s "x" > 0))

Now consider the RHS:

(JStmt.skipK ⇃ (fun s => s "x" = 0))
∪ (JStmt.assign "x" (fun s 7→ s "x" + 1)K ⇃ (fun s => ¬ s "x" = 0))

Noting that union commutes and that ¬ n = 0 is equivalent to n > 0 for natural numbers n, we
conclude that the two sides are equal.

• 2 points for unfolding the semantics of if on the LHS
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• 2 points for unfolding the semantics of if on the RHS

• 1 point for converting between ¬ n > 0 and n = 0
• 1 point for commutativity of union
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b) The denote function uses tuples in Set (State × State). It is called a relational denotational
semantics, and the tuples relate prestates to poststates. Instead, since the IF language is deter-
ministic and terminating, we could have defined the semantics as a function from prestates to
poststates. Complete the following definition of a functional version of denote. (The definition
uses the Classical.propDecidable attribute to enable noncomputable decidability on every
Prop.) (6 points)

attribute [instance 0] Classical.propDecidable

noncomputable def denote : Stmt → State → State

| Stmt.skip => fun s 7→ s

| Stmt.assign x a =>

| Stmt.seq S T =>

| Stmt.ifThenElse B S T =>

PROPOSED SOLUTION:

noncomputable def denote : Stmt → State → State

| Stmt.skip => fun s 7→ s

| Stmt.assign x a => fun s 7→ s[x 7→ a s]

| Stmt.seq S T => denote T ◦ denote S
| Stmt.ifThenElse B S T => fun s 7→ if B s then denote S s else denote T s

• 2 points for second RHS

• 2 points for third RHS

• 2 points for fourth RHS
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Solution to Question 6 (Mathematics): (10 points)

a) Let σ : Sort 0 and τ : Type be Lean types. Give the type of each of the following Lean terms.
(4 points)

fun x : σ 7→ x

τ → σ
Sort 4

σ → τ

PROPOSED SOLUTION:
σ → σ
Prop (or Sort 0)
Type 4 (or Sort 5)
Type (or Sort 1)

• 1 point per type
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b) We call a NonUnitalSemiring a type with addition, multiplication, and a 0 element and where
addition is commutative and associative, multiplication is associative and left and right distribu-
tive over addition, and 0 is the additive identity.

Complete the following class declaration of NonUnitalSemiring:

universe u

class NonUnitalSemiring (α : Type u) : Type u where
add : α → α → α
mul : α → α → α
zero :

mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c)
add_assoc :

left_distrib : ∀a b c, mul a (add b c) = add (mul a b) (mul a c)
right_distrib :

zero_add : ∀a, add zero a = a
add_zero : ∀a, add a zero = a
zero_mul :

mul_zero :

add_comm :

(6 points)

PROPOSED SOLUTION:

class NonUnitalSemiring (α : Type u) : Type u where
add : α → α → α
mul : α → α → α
zero : α
mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c)
add_assoc : ∀a b c, add (add a b) c = add a (add b c)
left_distrib : ∀a b c, mul a (add b c) = add (mul a b) (mul a c)
right_distrib : ∀a b c, mul (add a b) c = add (mul a c) (mul b c)
zero_add : ∀a, add zero a = a
add_zero : ∀a, add a zero = a
zero_mul : ∀a, mul zero a = zero
mul_zero : ∀a, mul a zero = zero
add_comm : ∀a b, add a b = add b a

• 1 point for zero

• 1 point for the add_assoc statement

• 1 point for the right_distrib statement

• 1 point for the zero_mul statement

• 1 point for the mul_zero statement

• 1 point for the add_comm statement
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