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You have 120 minutes at your disposal. Written or electronic aids are not permitted. Carrying
electronic devices, even switched off, will be considered cheating.

Write your full name and matriculation number clearly legible on this cover sheet, as well as your
name in the header on each sheet. Hand in all sheets. Leave them stapled together. Use only pens
and neither the color red nor green.

Check that you have received all the sheets. Guidelines for writing pen-and-paper proofs are given on
page 1. Questions can be found on pages 2—15. You may use the back of the sheets for secondary
calculations. If you use the back of a sheet to answer, clearly mark what belongs to which question
and indicate in the corresponding question where all parts of your answer can be found. Cross out
everything that should not be graded.

There are 6 questions for a total of 100 points. The subquestions can be completed independently of
each other.
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Guidelines for Paper Proofs

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs. You
are welcome to use standard mathematical notation or Lean structured commands (e.g., assume,
have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please indicate
some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the induction
hypotheses assumed (if any) and the goal to be proved. Minor proof steps corresponding to refl,
simp, or linarith need not be justified if you think they are obvious, but you should mention
which key lemmas they depend on. You should be explicit whenever you use a function definition
or an introduction rule for an inductive predicate.
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Solution to Question 1 (Types and Terms): (20 points)
a) Recall the following simplified typing rules for Lean’s dependent type theory:

Cst if c is globally declared with type o

Ckc:o
— VAR if x : o is the rightmost occurrence of x in C
CkHx:0o
CFt: &:0)—=7[x] CFu:o
PP/
CF tu: 7[u]
C,x:0F t:7[x]

Fun’

CHF (funx:o—~1t): (x:0) — 7[x]
Leta: N, f: (N—->N) > N—->N,g: N> N—=N,andh: (y : N) —» {x: N// x <y} beglob-

ally declared constants. What is the type of the following two Lean terms? Give in each case a
typing derivation as justification for the type.

(i) ha (6 points)

PROPOSED SOLUTION: The typeis {x : N // x < a}. The typing derivation is

CsT CsT
Fh: (y:N)>{x:N//x<y} Fa:N
App/

Fha:{x:N//x<a}

e 2 points for the type
e 4 points for the derivation tree

(ii) £ (funx : N+— g x x) (8 points)

PROPOSED SOLUTION: The type is N — N. The typing derivation is

Cst VAR
x:NFg:N—->N-—>N x:NFx:N
Appf ——— VAR
x:NFgx:N—>N x:NFx:N
AppP’
x:NFgxx:N
CsT Fun’
Ff:(N—-N) ->N—->N F (funx: N—gxx) : N—> N

App’

Ff(funx:N—gxx): N> N

e 2 points for the type
e ( points for the derivation tree
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b) Let a, 3, and v be Lean types. Give an inhabitant for each of the following types:

e o0 —« (2 points)

PROPOSED SOLUTION: funa~ a

— 1 point for fun a
— 1 point for a

e (o= —>(y>a)=>y—>p0 (2 points)

PROPOSED SOLUTION: fungfcr g (fc)

— 1 point for fun g f c
— 1 point for g (£ c)

e (v (a—=PB =) 7= F—-a (2 points)

PROPOSED SOLUTION: funhcb~ hc (funa~ b)

— 1 point for funh cb
— 1 point for h ¢ (fun a — b)



Name:

Solution to Question 2 (Functional Programming): (25 points)

a) Consider the following Lean function definition:

def surround {« : Type} (a : «) : List o — List «

(] => [a]
| b :: bs ==a :: b :: surround a bs
Compute the value of surround 0 [1, 2, 3]. (2 points)

(i)

PROPOSED SOLUTION: [0, 1, 0, 2, 0, 3, 0].

2 points for right answer, 0 otherwise

Prove the following Lean theorem. Make sure to follow the proof guidelines given on page 1.
(8 points)

theorem map_surround {a 5 : Type} (f : a« — £) (x : «) (ys : List «)
List.map f (surround x ys) = surround (f x) (List.map f ys)

PROPOSED SOLUTION:
The proof is by structural induction on ys.
The base case is

List.map f (surround x []) = surround (f x) (List.map £ [])

Both sides simplify to [f x] and are hence equal.
The induction step is

List.map f (surround x (y :: ys’)) = surround (f x) (List.map f (y :: ys’))
The induction hypothesis is
List.map f (surround x ys’) = surround (f x) (List.map fys’)
The induction step simplifies to

[fx, fy] ++ List.map f (surround x ys’)
= [£x, £fy] ++ surround (f x) (List.map fys’)

By the induction hypothesis, the two sides are equal.

1 point for “by (structural) induction”

1 point for “on ys”

1 point for statement of base case

1 point for proof of base case

1 point for statement of induction step

1 point for statement of induction hypothesis

2 points for proof of induction step (IH and simp)
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(iii) Prove the following Lean theorem. Make sure to follow the proof guidelines given on page 1.

(8 points)

theorem length_surround {a : Type} (x : a) (ys : List «)
List.length (surround x ys) = 2 * List.length ys + 1

PROPOSED SOLUTION:
The proof is by structural induction on ys.
The base case is

List.length (surround x []) =2 * List.length [] + 1

Both sides simplify to 1 and are hence equal.
The induction step is

List.length (surround x (y :: ys’)) =2 *List.length (y :: ys’) +1
The induction hypothesis is
List.length (surround x ys’) =2 * List.lengthys’ + 1
The induction step simplifies to
List.length (surround x ys’) + 2 =2 * List.lengthys’ + 3

By the induction hypothesis and some basic arithmetic reasoning, the two sides are equal.

1 point for “by (structural) induction”

1 point for “on ys”

1 point for statement of base case

1 point for proof of base case

1 point for statement of induction step

1 point for statement of induction hypothesis

2 points for proof of induction step (IH and arith)
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b) Define a Lean function suffixes that takes a list and that returns a list of all suffixes of that
list, including the list itself, from longest to shortest. For example, suffixes [1, 2, 3] should
evaluate to [[1, 2, 31, [2, 31, [31, [11. (7 points)

PROPOSED SOLUTION:

def suffixes {a : Type} : List @ — List (List «)

[ [] => [[]1]
| x :: xs = (x :: xs) :: suffixes Xxs
e 1 point for “def suffixes {« : Type}”

1 point for type

1 point for LHS of first equation

1 point for RHS of first equation

1 point for LHS of second equation

2 points for RHS of second equation
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Solution to Question 3 (Inductive Predicates): (25 points)

a) Consider the following Lean inductive predicate, which determines whether a list has odd length:

inductive OddLength {« : Type} : List a — Prop
| singleton (x : «)
OddLength [x]
| add_two (x y : ) {xs : List a} :
OddLength xs — OddLength (x :: y :: xs)

For example, 0OddLength [1, 2, 3] holds, whereas OddLength [4, 5] does not.

Prove the following Lean theorem about OddLength. Make sure to follow the proof guidelines
given on page 1. (9 points)

theorem OddLength_map {a 5 : Type} (f : @ — B) (xs : List )
(hxs : OddLength xs)
OddLength (List.map f xs)

PROPOSED SOLUTION: The proof is by rule induction on hxs.

In the singleton case, the goal is
OddLength (List.map f [x])

This simplifies to OddLength [f x], which is provable using OddLength.singleton.

In the add_two case, the goal is
OddLength xs’ — OddLength (List.map f (x :: y :: xs’))
The induction hypothesis is
OddLength (List.map f xs’)
The goal simplifies to
OddLength xs’ — OddLength (fx :: fy :: List.map £ xs’))

We prove it using OddLength.add_two with the induction hypothesis.

1 point for “by (rule) induction”

1 point for “on hxs”

1 point for statement of singleton case

1 point for proof of singleton case

1 point for statement of add_two case

1 point for statement of induction hypothesis

3 points for proof of add_two case (simp, add_two, and ITH)
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b) Define an inductive predicate InList in Lean that takes a value x of the polymorphic type «
and a list ys over a as arguments and that holds if x occurs in ys. (7 points)

PROPOSED SOLUTION:

inductive InList {a : Type} : o — List o« — Prop
| in_hd (x : o) (xs : List «) : Inlist x (x :: XxS)
| in_tl (xy : o) (ys : List «) : InList x ys — InList x (y :: ys)

1 point for “inductive InList {« : Type}”

1 point for type

1 point for LHS of first introduction rule

1 point for RHS of first introduction rule

1 point for LHS of second introduction rule

2 points for RHS of second introduction rule
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c) Consider the following Lean type of binary trees and a helper function that counts the number
of nodes in a given tree:

inductive Tree (a : Type) : Type
| nil : Tree «
| node : @ —+ Tree a — Tree o — Tree «

def numNodes {a : Type} : Tree o« — N
| Tree.nil = 0
| Tree.node a 1 r => numNodes 1 + numNodes r + 1

Define an inductive predicate RightHeavy in Lean that takes a tree as argument and that holds
if the tree enjoys either of the following properties:

e The tree is of the form Tree.nil.

e The tree is of the form Tree.node a 1 r, the number of nodes in 1 is less than or equal to
the number of nodes in r, and both 1 and r recursively satisfy RightHeavy.

(9 points)

PROPOSED SOLUTION:

inductive RightHeavy {a : Type} : Tree a — Prop
| nil :
RightHeavy Tree.nil
| node (a : @) (1 r : Tree )
numNodes 1 < numNodes r — RightHeavy 1 — RightHeavy r —
RightHeavy (Tree.node a 1 r)

1 point for “inductive RightHeavy {« : Type}”

1 point for type
1 point for LHS of first clause
1 point for RHS of first clause

1 point for LHS of second clause

4 points for RHS of second clause
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Solution to Question 4 (Metaprogramming): (8 points)

Consider the following custom Lean tactic:

macro "mystery" : tactic =>
*(tactic| repeat’ first
| assumption
intro

I
| apply And.intro
| apply Iff.intro)

a) Briefly explain what the mystery tactic does. You may assume that we already know what
assumption, intro, and apply does. (3 points)

PROPOSED SOLUTION: The tactic repeatly tries to apply the first applicable tactic among
four tactics: assumption, intro _, apply And.intro, and apply Iff.intro. By “repeatedly,”
we mean that the process is repeated for all goals and recursively for all emerging subgoals.

e 1 point for general explanation
e 1 point for repeat’’s explanation

e 1 point for first’s explanation
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b) In the following Lean code fragment, the mystery tactic is applied to massage the goal:

theorem abac (a b ¢ : Prop)
a—>bAaANn-cCc:=
by
mystery
The proof state before invoking mystery is

abc: Prop
Fa—DbAaA-c

Give the proof state after invoking mystery. Make sure to include all subgoals. (5 points)

PROPOSED SOLUTION:

abc : Prop
ha : a
F b

abc : Prop

ha : a
hc : ¢
 False

1 point for first subgoal’s hypotheses

1 point for first subgoal’s target

1 point for second subgoal’s hypotheses

1 point for second subgoal’s target

1 point for lack of extraneous subgoals (e.g., for a)
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Solution to Question 5 (Operational Semantics): (12 points)

The IFO programming language is similar to WHILE, with two differences. First, the while—do
statement is omitted. Second, the if-then—else statement is replaced by if_zero—then—else. For
example, the program

if_zero m * n then

x :=0
else
y :=1

executes x := 0 if the condition m * n =0 holds when entering the construct; otherwise, it executes
y :=1.

In Lean, IFO would be modeled by the following datatype:

inductive Stmt : Type where

| skip : Stmt

| assign : String — (State — N) — Stmt
| seq : Stmt — Stmt — Stmt

I

ifZero : (State — N) — Stmt — Stmt — Stmt

infixr:90 "; => Stmt.seq

a) Complete the following specification of a big-step semantics for IF0 in Lean by giving the missing
derivation rules for seq and if_zero. (6 points)

- SKIP
(skip, s) = s

ASSIGN
(x:=a, s) = s[x+— s(a)]

PROPOSED SOLUTION:

(S’ S):>t (T! t):>u
(S;T,s) —u

SEQ

(S,s) =t

: IFZERO_TRUE if s(a) =0
(if_zeroathenSelseT, s) — t

(T, s) =>t
(if_zeroathenSelseT, s) =t

IFZERO_FALSE if s(a) # 0

e 2 points for SEQ
— 1 point for premises
— 1 point for conclusion
e 2 points for IFPZERO_TRUE
— 1 point for premise and side condition
— 1 point for conclusion
e 2 points for IFZERO_FALSE

— 1 point for premise and side condition
— 1 point for conclusion
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b) Complete the following Lean definition of an inductive predicate that encodes the big-step se-
mantics you specified in subquestion a) above. (6 points)

inductive BigStep : Stmt X State — State — Prop where
| skip (s)
BigStep (Stmt.skip, s) s
| assign (x a s)
BigStep (Stmt.assign x a, s) (s[x — a s])

PROPOSED SOLUTION:

| seq (ST s t u (hS : BigStep (S, s) t)
(hT : BigStep (T, t) u)
BigStep (S; T, s) u
| ifZero_true (a ST s t) Chcond : a s = 0)
(hbody : BigStep (S, s) t)
BigStep (Stmt.ifZero a S T, s) t
| ifZero_false (a ST s t) (hcond : a s # 0)
(hbody : BigStep (T, s) t)
BigStep (Stmt.ifZero a S T, s) t

2 points for seq

— 1 point for rule name, variables, and premises

— 1 point for conclusion

2 points for ifZero_True

— 1 point for rule name, variables, and premises
— 1 point for conclusion

2 points for ifZero_False

— 1 point for rule name, variables, and premises
— 1 point for conclusion

Folgefehler are acknowledged
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Solution to Question 6 (Mathematics): (10 points)
a) Let o : Type 2 and 7 : Type 3 be Lean types. Give the type of each of the following Lean terms.
(4 points)
fun x : 0 — X
Type 5
o =T

fun o : Type — Option (o X @)

PROPOSED SOLUTION:

g — 0

Type 6 (or Sort 7)

Type 3 (or Sort 4)

Type — Type (or Sort 1 — Sort 1)

e 1 point per type
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b) A bag is a collection of elements that allows multiple (but finitely many) occurrences of its
elements. For example, the bag {2, 7} is equal to the bag {7, 2} but different from {2, 7, 7}.

Finite bags can be defined as a quotient over lists. We start with the type List « of finite
lists and consider only the number of occurrences of elements in the lists, ignoring the order
in which elements occur. Following this scheme, [2, 7, 7], [7, 2, 7], and [7, 7, 2] would be
three equally valid representations of the bag {2, 7, 7}.

The List.count function returns the number of occurrences of an element in a list. Since it
uses equality on elements of type «, it requires « to belong to the BEq (Boolean equality) type
class. For this reason, the definitions below take [BEq a] as a type class argument.

instance Bag.Setoid (a : Type) [BEq «] : Setoid (List «) :=

{r := fun as bs — Vx, List.count x as = List.count x bs
iseqv :=
{ refl := by simp
symm := by aesop

trans := by aesop } }

def Bag (o : Type) [BEq a] : Type :=
Quotient (Bag.Setoid «)

def Bag.mk {a : Type} [BEq o] : List @ — Bag a :=
Quotient.mk (Bag.Setoid «)

Complete the following two definitions. (4 points)
def Bag.empty {a : Type} [BEq a] : Bag a :=

def Bag.singleton {a : Type} [BEq o] (a : ) : Bag «a :=

PROPOSED SOLUTION:
Bag.mk []
Bag.mk [a]

e 2 points per term
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c) Consider the following Lean type classes:

universe u

class Mul (a : Type u) : Type u where
mil : « > a - «

infixl:70 " * " => Mul.mul

class Semigroup (a : Type u)
extends Mul a : Type u where
mul_assoc : Vabc:a, a*b*c=a*((b*c)

The Semigroup type class provides an associative binary operator called mul abbreviated as *.

The concatenation operator ++ on lists is an associative binary operator. Exploit this fact to fill
in the gap in the following type class instantiation: (2 points)

instance List.Semigroup {a : Type} : Semigroup (List ) :=
{ mul =
mul_assoc := by simp }

PROPOSED SOLUTION:
fun xs ys > Xs ++ ys

2 points for right answer, 0 otherwise
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