
Institute for Informatics of the Ludwig-Maximilians-Universität München Summer semester 2024
Prof. Dr. Jasmin Blanchette 25.07.2024
Xavier Généreux
Balazs Toth

Final Examination in the Course

Interactive Theorem Proving

You have 120 minutes at your disposal. Written or electronic aids are not permitted. Carrying
electronic devices, even switched off, will be considered cheating.

Write your full name and matriculation number clearly legible on this cover sheet, as well as your
name in the header on each sheet. Hand in all sheets. Leave them stapled together. Use only pens
and neither the color red nor green.

Check that you have received all the sheets. Guidelines for writing pen-and-paper proofs are given on
page 1. Questions can be found on pages 2–16. You may use the back of the sheets for secondary
calculations. If you use the back of a sheet to answer, clearly mark what belongs to which question
and indicate in the corresponding question where all parts of your answer can be found. Cross out
everything that should not be graded.

There are 6 questions for a total of 100 points. The subquestions can be completed independently of
each other.

With your signature, you confirm that you are in sufficiently good health at the beginning of the
examination and that you accept this examination bindingly.

Last name:

First name:

Matriculation number:

Program of study:

2 Please check with an X only if the exam should be voided and
not graded.
Bitte nur ankreuzen, wenn die Klausur entwertet und nicht korrigiert werden soll.

Hierby I confirm the correctness of the above information:

Signature

Please leave the following table blank:

Question 1 2 3 4 5 6
∑

Points 20 25 25 8 12 10 100

Score



Name: 1

Guidelines for Paper Proofs

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs. You
are welcome to use standard mathematical notation or Lean structured commands (e.g., assume,
have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please indicate
some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the induction
hypotheses assumed (if any) and the goal to be proved. Minor proof steps corresponding to refl,
simp, or linarith need not be justified if you think they are obvious, but you should mention
which key lemmas they depend on. You should be explicit whenever you use a function definition
or an introduction rule for an inductive predicate.



Name: 2

Question 1 (Types and Terms): (20 points)

a) Recall the following simplified typing rules for Lean’s dependent type theory:

Cst if c is globally declared with type σ
C ⊢ c : σ

Var if x : σ is the rightmost occurrence of x in C
C ⊢ x : σ

C ⊢ t : (x : σ)→ τ[x] C ⊢ u : σ
App′

C ⊢ t u : τ[u]

C, x : σ ⊢ t : τ[x]
Fun′

C ⊢ (fun x : σ 7→ t) : (x : σ)→ τ[x]

Let a : N, f : (N → N)→ N → N, g : N → N → N, and h : (y : N)→ {x : N // x < y} be glob-
ally declared constants. What is the type of the following two Lean terms? Give in each case a
typing derivation as justification for the type.

(i) h a

(ii) f (fun x : N 7→ g x x)



Name: 3

b) Let α, β, and γ be Lean types. Give an inhabitant for each of the following types:

• α → α

• (α → β)→ (γ → α)→ γ → β

• (γ → (α → β)→ α)→ γ → β → α



Name: 4

Question 2 (Functional Programming): (25 points)

a) Consider the following Lean function definition:

def surround {α : Type} (a : α) : List α → List α
| [] => [a]

| b :: bs => a :: b :: surround a bs

(i) Compute the value of surround 0 [1, 2, 3].

(ii) Prove the following Lean theorem. Make sure to follow the proof guidelines given on page 1.

theorem map_surround {α β : Type} (f : α → β) (x : α) (ys : List α) :
List.map f (surround x ys) = surround (f x) (List.map f ys)



Name: 5

(iii) Prove the following Lean theorem. Make sure to follow the proof guidelines given on page 1.

theorem length_surround {α : Type} (x : α) (ys : List α) :
List.length (surround x ys) = 2 * List.length ys + 1



Name: 6

b) Define a Lean function suffixes that takes a list and that returns a list of all suffixes of that
list, including the list itself, from longest to shortest. For example, suffixes [1, 2, 3] should
evaluate to [[1, 2, 3], [2, 3], [3], []].



Name: 7

Question 3 (Inductive Predicates): (25 points)

a) Consider the following Lean inductive predicate, which determines whether a list has odd length:

inductive OddLength {α : Type} : List α → Prop

| singleton (x : α) :
OddLength [x]

| add_two (x y : α) {xs : List α} :
OddLength xs → OddLength (x :: y :: xs)

For example, OddLength [1, 2, 3] holds, whereas OddLength [4, 5] does not.

Prove the following Lean theorem about OddLength. Make sure to follow the proof guidelines
given on page 1.

theorem OddLength_map {α β : Type} (f : α → β) (xs : List α)
(hxs : OddLength xs) :

OddLength (List.map f xs)



Name: 8

b) Define an inductive predicate InList in Lean that takes a value x of the polymorphic type α
and a list ys over α as arguments and that holds if x occurs in ys.



Name: 9

c) Consider the following Lean type of binary trees and a helper function that counts the number
of nodes in a given tree:

inductive Tree (α : Type) : Type
| nil : Tree α
| node : α → Tree α → Tree α → Tree α

def numNodes {α : Type} : Tree α → N
| Tree.nil => 0

| Tree.node a l r => numNodes l + numNodes r + 1

Define an inductive predicate RightHeavy in Lean that takes a tree as argument and that holds
if the tree enjoys either of the following properties:

• The tree is of the form Tree.nil.

• The tree is of the form Tree.node a l r, the number of nodes in l is less than or equal to
the number of nodes in r, and both l and r recursively satisfy RightHeavy.



Name: 10

Question 4 (Metaprogramming): (8 points)

Consider the following custom Lean tactic:

macro "mystery" : tactic =>

’(tactic| repeat’ first

| assumption

| intro _

| apply And.intro

| apply Iff.intro)

a) Briefly explain what the mystery tactic does. You may assume that we already know what
assumption, intro, and apply does.



Name: 11

b) In the following Lean code fragment, the mystery tactic is applied to massage the goal:

theorem abac (a b c : Prop) :

a → b ∧ a ∧ ¬ c :=
by

mystery

The proof state before invoking mystery is

a b c : Prop

⊢ a → b ∧ a ∧ ¬c

Give the proof state after invoking mystery. Make sure to include all subgoals.



Name: 12

Question 5 (Operational Semantics): (12 points)

The IF0 programming language is similar to WHILE, with two differences. First, the while–do
statement is omitted. Second, the if–then–else statement is replaced by if_zero–then–else. For
example, the program

if_zero m * n then

x := 0

else

y := 1

executes x := 0 if the condition m * n = 0 holds when entering the construct; otherwise, it executes
y := 1.

In Lean, IF0 would be modeled by the following datatype:

inductive Stmt : Type where

| skip : Stmt

| assign : String → (State → N) → Stmt

| seq : Stmt → Stmt → Stmt

| ifZero : (State → N) → Stmt → Stmt → Stmt

infixr:90 "; " => Stmt.seq

a) Complete the following specification of a big-step semantics for IF0 in Lean by giving the missing
derivation rules for seq and if_zero.

Skip
(skip, s) =⇒ s

Assign
(x := a, s) =⇒ s[x 7→ s(a)]



Name: 13

b) Complete the following Lean definition of an inductive predicate that encodes the big-step se-
mantics you specified in subquestion a) above.

inductive BigStep : Stmt × State → State → Prop where

| skip (s) :

BigStep (Stmt.skip, s) s

| assign (x a s) :

BigStep (Stmt.assign x a, s) (s[x 7→ a s])



Name: 14

Question 6 (Mathematics): (10 points)

a) Let σ : Type 2 and τ : Type 3 be Lean types. Give the type of each of the following Lean terms.

fun x : σ 7→ x

Type 5

σ → τ
fun α : Type 7→ Option (α × α)



Name: 15

b) A bag is a collection of elements that allows multiple (but finitely many) occurrences of its
elements. For example, the bag {2, 7} is equal to the bag {7, 2} but different from {2, 7, 7}.

Finite bags can be defined as a quotient over lists. We start with the type List α of finite
lists and consider only the number of occurrences of elements in the lists, ignoring the order
in which elements occur. Following this scheme, [2, 7, 7], [7, 2, 7], and [7, 7, 2] would be
three equally valid representations of the bag {2, 7, 7}.

The List.count function returns the number of occurrences of an element in a list. Since it
uses equality on elements of type α, it requires α to belong to the BEq (Boolean equality) type
class. For this reason, the definitions below take [BEq α] as a type class argument.

instance Bag.Setoid (α : Type) [BEq α] : Setoid (List α) :=
{ r := fun as bs 7→ ∀x, List.count x as = List.count x bs
iseqv :=

{ refl := by simp

symm := by aesop

trans := by aesop } }

def Bag (α : Type) [BEq α] : Type :=
Quotient (Bag.Setoid α)

def Bag.mk {α : Type} [BEq α] : List α → Bag α :=
Quotient.mk (Bag.Setoid α)

Complete the following two definitions.

def Bag.empty {α : Type} [BEq α] : Bag α :=

def Bag.singleton {α : Type} [BEq α] (a : α) : Bag α :=



Name: 16

c) Consider the following Lean type classes:

universe u

class Mul (α : Type u) : Type u where
mul : α → α → α

infixl:70 " * " => Mul.mul

class Semigroup (α : Type u)
extends Mul α : Type u where
mul_assoc : ∀a b c : α, a * b * c = a * (b * c)

The Semigroup type class provides an associative binary operator called mul abbreviated as *.

The concatenation operator ++ on lists is an associative binary operator. Exploit this fact to fill
in the gap in the following type class instantiation:

instance List.Semigroup {α : Type} : Semigroup (List α) :=
{ mul :=

mul_assoc := by simp }



Name: 17



Name: 18


	A1 (20): Types and Terms
	A2 (25): Functional Programming
	A3 (25): Inductive Predicates
	A4 (8): Metaprogramming
	A5 (12): Operational Semantics
	A6 (10): Mathematics

