Aesop: White-Box Automation for Lean 4

Jannis Limperg University of Munich (LMU) jannis@limperg.de

03. July 2024

Search Algorithm

Registering Rules

Built-In Rules

Debugging

Miscellaneous Features

Applications, Shortcomings and Work In Progress

Search Algorithm

A *rule* is an arbitrary Lean tactic.

Aesop provides convenient syntax (*rule builders*) for creating rules from theorems.

Aesop always operates with a user-defined *rule set*.

$$\vdash A \to C \to A \land (B \lor C)$$

Best-First Tree Search

Best-First Tree Search

• Run before unsafe rules

- Run before unsafe rules
- If a safe rule succeeds on a goal *G*, no other rules are tried for *G*

- Run before unsafe rules
- If a safe rule succeeds on a goal *G*, no other rules are tried for *G*
- Integer penalty

- Run before unsafe rules
- If a safe rule succeeds on a goal *G*, no other rules are tried for *G*
- Integer penalty
- Treated as 100% success probability

- Run before unsafe rules
- If a safe rule succeeds on a goal *G*, no other rules are tried for *G*
- Integer penalty
- Treated as 100% success probability
- 🐱 Good for performance

- Run before unsafe rules
- If a safe rule succeeds on a goal *G*, no other rules are tried for *G*
- Integer penalty
- Treated as 100% success probability
- 🐱 Good for performance
- Users need to make sure that the rule really is safe

Examples

Safe rule: <a>^- introduction

 $\begin{array}{c}
 \Gamma \vdash A \land B \\
 \swarrow \\
 \Gamma \vdash A \quad \Gamma \vdash B
 \end{array}$

Unsafe rule: left v-introduction

 $\Gamma \vdash A \lor B$ \downarrow $\Gamma \vdash A$

When Is A Rule Safe?

A rule *R* is *logically safe* if it preserves provability:

For each goal G, if G is provable and R, applied to G, generates subgoals G_1, \ldots, G_n , then G_1, \ldots, G_n must still be provable.

When Is A Rule Safe?

A rule *R* is *logically safe* if it preserves provability:

For each goal G, if G is provable and R, applied to G, generates subgoals G_1, \ldots, G_n , then G_1, \ldots, G_n must still be provable.

A rule *R* is *relatively safe* if it preserves provability relative to a rule set *S*:

If a goal G is provable with rules from S and R, applied to G, generates subgoals G_1, \ldots, G_n , then G_1, \ldots, G_n must still be provable with rules from S.

Run before safe rules

- Run before safe rules
- Integer penalty

- Run before safe rules
- Integer penalty
- Treated as 100% success probability

- Run before safe rules
- Integer penalty
- Treated as 100% success probability
- May produce only one subgoal

- Run before safe rules
- Integer penalty
- Treated as 100% success probability
- May produce only one subgoal
- Run in a fixpoint loop, i.e. until no normalisation rule succeeds any more

- Run before safe rules
- Integer penalty
- Treated as 100% success probability
- May produce only one subgoal
- Run in a fixpoint loop, i.e. until no normalisation rule succeeds any more
- 🐱 Can establish invariants for other rules

- Run before safe rules
- Integer penalty
- Treated as 100% success probability
- May produce only one subgoal
- Run in a fixpoint loop, i.e. until no normalisation rule succeeds any more
- 🐱 Can establish invariants for other rules
- 😐 Typically run multiple times on every goal

Example

∧-elimination

 $\Gamma, h : A \land B \vdash T$ $\Gamma, h_1 : A, h_2 : B \vdash T$

Summary: Aesop's Search Algorithm

Registering Rules

Registering Rules Globally

@[aesop unsafe 100%] theorem And.intro : A \rightarrow B \rightarrow A \wedge B

Registering Rules Globally

@[aesop unsafe 100%] theorem And.intro : A \rightarrow B \rightarrow A \wedge B

Locally

aesop (add 100% And.intro)

Registering Rules Globally

@[aesop unsafe 100%] theorem And.intro : A \rightarrow B \rightarrow A \wedge B

Locally

aesop (add 100% And.intro)

Safe rules

```
@[aesop safe 10]
theorem And.intro : A \rightarrow B \rightarrow A \wedge B
```

A rule builder turns a declaration into an Aesop rule.

In the examples so far, we have implicitly used a default builder.

Aesop currently provides 7 rule builders.
Apply Builder

@[aesop safe apply 10] theorem And.intro : $A \rightarrow B \rightarrow A \land B$

Apply Builder

```
@[aesop safe apply 10] theorem And.intro : A \rightarrow B \rightarrow A \wedge B
```

Builds a rule that runs apply And.intro.

Constructors Builder

```
@[aesop 50% constructors]
inductive Or (A B : Prop) where
| left : A \rightarrow Or A B
| right : B \rightarrow Or A B
```

Equivalent to one apply rule for each constructor.

Cases Builder

```
@[aesop safe cases]
inductive Or (A B : Prop) where
  | left : A → Or A B
  | right : B → Or A B
```

Builds a rule that runs cases on any hypothesis of type Or A B.

Forward Builder

```
@[aesop safe forward]
theorem pos_of_min_pos : ∀ {x y : ℕ},
0 < min x y →
0 < x ∧ 0 < y</pre>
```

$$\Gamma, x y : \mathbb{N}, h : 0 < \min x y \vdash T$$

$$\Gamma, x y : \mathbb{N}, h : 0 < \min x y, \frac{h}{1} : 0 < x \land 0 < y \vdash T$$

Destruct Builder

```
@[aesop safe destruct]
theorem pos_of_min_pos : ∀ {x y : ℕ},
0 < min x y →
0 < x ∧ 0 < y</pre>
```

```
\Gamma, x y : \mathbb{N}, h : 0 < \min x y \vdash T\Gamma, x y : \mathbb{N}, h : 0 < x \land 0 < y \vdash T
```

Aesop runs simp_all as a built-in normalisation rule with penalty 0.

This simp_all call uses the default simp set plus an Aesop-specific simp set.

The simp builder adds an equation or proposition to this Aesop-specific set.

Tactic Builder

aesop (add safe (by norm_num; done))

aesop (add safe (by norm_num; done))

add_aesop_rules safe (by norm_num; done)

aesop (add safe (by norm_num; done))

add_aesop_rules safe (by norm_num; done)

Requirement

If the tactic does not change the goal, it should fail.

Built-In Rules

Λ-introduction (safe, penalty 101)

Λ-introduction (safe, penalty 101)

 $\begin{array}{c}
 \Gamma \vdash A \land B \\
 \swarrow \\
 \Gamma \vdash A \quad \Gamma \vdash B
 \end{array}$

Λ-elimination (norm, penalty 0)

 $\Gamma, h : A \land B \vdash T$ $\Gamma, h_1 : A, h_2 : B \vdash T$

Λ-introduction (safe, penalty 101)

 $\begin{array}{c}
 \Gamma \vdash A \land B \\
 \swarrow \\
 \Gamma \vdash A \quad \Gamma \vdash B
 \end{array}$

Λ-elimination (norm, penalty 0)

 $\Gamma, h : A \land B \vdash T$ $\Gamma, h_1 : A, h_2 : B \vdash T$

Similar for Prod, PProd, MProd

Logic: v

v-introduction (unsafe, success probability 50%)

$\Gamma \vdash A \lor B$	$\Gamma \vdash A \lor B$
$\Gamma \vdash A$	$\Gamma \vdash B$

Logic: v

v-introduction (unsafe, success probability 50%)

$\Gamma \vdash A \lor B$	$\Gamma \vdash A \lor B$
	I
$\Gamma \vdash A$	$\Gamma \vdash B$

v-elimination (safe, penalty 100)

Logic: v

v-introduction (unsafe, success probability 50%)

$\Gamma \vdash A \lor B$	$\Gamma \vdash A \lor B$
l l	
$\Gamma \vdash A$	$\Gamma \vdash B$

v-elimination (safe, penalty 100)

$$\Gamma, h : A \lor B \vdash T$$

$$\Gamma, h : A \vdash T \qquad \Gamma, h : B \vdash T$$

Similar for Sum, PSum

Logic: \forall and \rightarrow

\forall -introduction (norm, penalty -100) Run the intros tactic

Logic: \forall and \rightarrow

∀-introduction (norm, penalty -100) Run the intros tactic

∀-elimination (unsafe, success probability 75%)

$$\Gamma, h: \forall (x_1:A_1) \dots (x_n:A_n), B \vdash B$$

$$\Gamma, h \vdash A_1 \qquad \cdots \qquad \Gamma, h \vdash A_n$$

Logic: 3

∃-introduction (unsafe, success probability 30%)

Logic: 3

∃-introduction (unsafe, success probability 30%)

3-elimination (norm, penalty 0)

$$\Gamma, h : \exists x : A, P x \vdash T$$

$$\Gamma, x : A, h : P x \vdash T$$

Logic: 3

∃-introduction (unsafe, success probability 30%)

3-elimination (norm, penalty 0)

 $\Gamma, h : \exists x : A, P x \vdash T$ $\Gamma, x : A, h : P x \vdash T$

Similar for Subtype, Sigma, PSigma

\leftrightarrow -introduction (safe, penalty 100)

Logic: \leftrightarrow

\leftrightarrow -introduction (safe, penalty 100)

\leftrightarrow hypotheses

A hypothesis of type $A \leftrightarrow B$ is treated as the equation A = B by the simplifier and the substitution rule.

\top -introduction¹ (safe, penalty 0)

```
Г⊢Т
|
✓
```


\top -introduction¹ (safe, penalty 0)

```
Γ⊢⊤
∣
✔
```

Similar for Unit, PUnit.

 $^{1}T = True$

The simplifier already solves goals with an assumption $h: \perp$.²

The simplifier already solves goals with an assumption $h: \perp$.²

We add destruct rules to conclude \bot from Empty and PEmpty.

Logic: ¬

\neg -introduction

 $\Gamma \vdash \neg A$ \downarrow $\Gamma, h : A \vdash \bot$

Logic: ¬

¬-introduction

 $\Gamma \vdash \neg A$ \downarrow $\Gamma, h : A \vdash \bot$

Negated hypotheses

Given a hypothesis of type $\neg A$, the simplifier replaces A with \bot everywhere in the goal.

The simplifier performs limited logical reasoning. If A and B are propositions:

• With assumption h : A: rewrite $A = \top$

- With assumption h : A: rewrite $A = \top$
- With assumption $h : \neg A$: rewrite $A = \bot$

- With assumption h : A: rewrite $A = \top$
- With assumption $h : \neg A$: rewrite $A = \bot$
- $(\top \land \bot) = \bot$

- With assumption h : A: rewrite $A = \top$
- With assumption $h : \neg A$: rewrite $A = \bot$
- $(\top \land \bot) = \bot$
- $(T \land T) = T$

- With assumption h : A: rewrite $A = \top$
- With assumption $h : \neg A$: rewrite $A = \bot$
- $(\top \land \bot) = \bot$
- $(T \land T) = T$
- $(\top \rightarrow A) = A$
Logic: Simplifier

The simplifier performs limited logical reasoning. If A and B are propositions:

- With assumption h : A: rewrite $A = \top$
- With assumption $h : \neg A$: rewrite $A = \bot$
- $(\top \land \bot) = \bot$
- $(T \land T) = T$
- $(\top \to A) = A$
- etc.

In practice, these rules solve most 'purely logical' goals.

However, they are incomplete for first-order and even propositional logic.

Equality

Simplifier (norm, penalty 0)

Run the simp_all tactic as described previously

Equality

Simplifier (norm, penalty 0)

Run the simp_all tactic as described previously

Reflexivity (safe, penalty 0) Run the rfl tactic

Equality

Simplifier (norm, penalty 0)

Run the simp_all tactic as described previously

Reflexivity (safe, penalty 0)

Run the rfl tactic

Substitution (norm, penalty -50)

Run the subst tactic on any hypothesis of type x = tor t = x where x is a variable. This substitutes t for x everywhere in the goal and removes the now-redundant hypothesis.

Case Splitting

Split target (safe, penalty 100) Runs the split tactic. This tactic looks for if-then-else and match expressions in the target and performs case splits on their discriminees.

Case Splitting

Split target (safe, penalty 100) Runs the split tactic. This tactic looks for **if**-**then**-**else** and **match** expressions in the target and performs case splits on their discriminees.

Split hypotheses (safe, penalty 1000) Ditto, but we look for case splits in hypotheses.

Extensionality

Extensionality (unsafe, success probability 80%) Run the ext tactic. This exhaustively applies extensionality lemmas to an equational goal. E.g.:

$$\Gamma, pq : A \times B \vdash p = q$$
$$\Gamma, pq : A \times B \vdash p.1 = q.1 \land p.2 = q.2$$

Debugging

When Aesop fails to solve a goal, it reports the goals that remain after safe rules have been exhaustively applied.

This helps to check whether the safe rules do what you think they should.

Proof Generation

```
theorem last_cons {a : α} {l : List α} (h : l ≠ nil) :
    last (a :: l) (cons_ne_nil a l) = last l h := by
    aesop? (add 1% cases List)
```

Proof Generation

```
theorem last_cons {a : α} {l : List α} (h : l ≠ nil) :
    last (a :: l) (cons_ne_nil a l) = last l h := by
    aesop? (add 1% cases List)
```

aesop? generates a proof script:

```
intro h
cases l with
| nil =>
    simp_all only [last, ne_eq]
    split
| cons head tail => simp_all only [last]
```

One click replaces aesop? with the generated proof.

Tracing

set_option trace.aesop true in aesop

Tracing

```
set_option trace.aesop true in
aesop
```

• Lists the rules that Aesop (tried to) run and the resulting goals

Tracing

```
set_option trace.aesop true in
aesop
```

- Lists the rules that Aesop (tried to) run and the resulting goals
- For other trace options see autocompletion for trace.aesop.

Miscellaneous Features

Custom Rule Sets

-- RuleSet.lean

-- Must be in a different file for technical reasons declare_aesop_rule_sets [Foo]

Custom Rule Sets

```
-- RuleSet.lean
```

-- Must be in a different file for technical reasons declare_aesop_rule_sets [Foo]

import RuleSet

@[aesop 100% (rule_sets [Foo])]
theorem foo

Custom Rule Sets

```
-- RuleSet.lean
```

-- Must be in a different file for technical reasons declare_aesop_rule_sets [Foo]

import RuleSet

```
@[aesop 100% (rule_sets [Foo])]
theorem foo
```

Used for domain-specific automation, e.g. continuity, measurability, ...

Metavariables

Aesop supports rules that generate metavariables:

```
example {a b c d : Nat} (h1 : a < b)
    (h2 : a < c) (h3 : c < d) : a < d := by
    apply Nat.lt_trans
    -- + a < ?x
    -- + ?x < d

example {a b c d : Nat} (h1 : a < b)
    (h2 : a < c) (h3 : c < d) : a < d := by
    aesop (add 1% Nat.lt_trans)</pre>
```

Metavariables

Aesop supports rules that generate metavariables:

```
example {a b c d : Nat} (h1 : a < b)
    (h2 : a < c) (h3 : c < d) : a < d := by
    apply Nat.lt_trans
    -- + a < ?x
    -- + ?x < d

example {a b c d : Nat} (h1 : a < b)
    (h2 : a < c) (h3 : c < d) : a < d := by
    aesop (add 1% Nat.lt_trans)</pre>
```

 Aesop's search algorithm should be complete even in the presence of metavariables

Metavariables

Aesop supports rules that generate metavariables:

```
example {a b c d : Nat} (h1 : a < b)
    (h2 : a < c) (h3 : c < d) : a < d := by
    apply Nat.lt_trans
    -- + a < ?x
    -- + ?x < d

example {a b c d : Nat} (h1 : a < b)
    (h2 : a < c) (h3 : c < d) : a < d := by
    aesop (add 1% Nat.lt_trans)</pre>
```

- Aesop's search algorithm should be complete even in the presence of metavariables
- • This is very expensive

Applications, Shortcomings and Work In Progress

General-purpose automation

- General-purpose automation
- Domain-specific solvers: continuity, measurability, aesop_cat, ...

- General-purpose automation
- Domain-specific solvers: continuity, measurability, aesop_cat, ...
- Domain-specific 'goal preprocessors' with aesop?

- General-purpose automation
- Domain-specific solvers: continuity, measurability, aesop_cat, ...
- Domain-specific 'goal preprocessors' with aesop?
- Tree search backend for LLMs: Peiyang Song, Kaiyu Yang, and Anima Anandkumar. "Towards Large Language Models as Copilots for Theorem Proving in Lean". In: Workshop on Mathematical Reasoning and AI. 2023. URL: https://mathai2023.github.io/papers/4.pdf

• The built-in logical rules do not deal well with all-quantified hypotheses and sometimes negation

- The built-in logical rules do not deal well with all-quantified hypotheses and sometimes negation
- The default rule set is currently missing many rules

- The built-in logical rules do not deal well with all-quantified hypotheses and sometimes negation
- The default rule set is currently missing many rules
- Repeated calls to simp during normalisation are bad for performance

- The built-in logical rules do not deal well with all-quantified hypotheses and sometimes negation
- The default rule set is currently missing many rules
- Repeated calls to simp during normalisation are bad for performance
- Nontrivial sets of forward rules are very slow (WIP)