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Search Algorithm



Rules

A rule is an arbitrary Lean tactic.

Aesop provides convenient syntax (rule builders) for
creating rules from theorems.

Aesop always operates with a user-defined rule set.



Basic Tree Search
⊢ 𝐴 → 𝐶 → 𝐴 ∧ (𝐵 ∨ 𝐶)

intros

𝐴, 𝐶 ⊢ 𝐴 ∧ (𝐵 ∨ 𝐶)

And.intro

𝐴, 𝐶 ⊢ 𝐴

𝐴

𝐴, 𝐶 ⊢ 𝐵 ∨ 𝐶

Or.left

𝐴, 𝐶 ⊢ 𝐵

Or.right

𝐴, 𝐶 ⊢ 𝐶

𝐶
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Best-First Tree Search
⊢ 𝐴 → 𝐶 → 𝐴 ∧ (𝐵 ∨ 𝐶)

100%

intros 100%

𝐴, 𝐶 ⊢ 𝐴 ∧ (𝐵 ∨ 𝐶)

100%

And.intro 100%

𝐴, 𝐶 ⊢ 𝐴

100%

𝐴 100%

𝐴, 𝐶 ⊢ 𝐵 ∨ 𝐶

100%

Or.left 50%

𝐴, 𝐶 ⊢ 𝐵

50%

Or.right 50%

𝐴, 𝐶 ⊢ 𝐶

50%

𝐶 100%



Best-First Tree Search
⊢ 𝐴 → 𝐶 → 𝐴 ∧ (𝐵 ∨ 𝐶) 100%

intros 100%

𝐴, 𝐶 ⊢ 𝐴 ∧ (𝐵 ∨ 𝐶) 100%

And.intro 100%

𝐴, 𝐶 ⊢ 𝐴 100%

𝐴 100%

𝐴, 𝐶 ⊢ 𝐵 ∨ 𝐶 100%

Or.left 50%

𝐴, 𝐶 ⊢ 𝐵 50%

Or.right 50%

𝐴, 𝐶 ⊢ 𝐶 50%

𝐶 100%



Safe Rules

• Run before unsafe rules

• If a safe rule succeeds on a goal 𝐺, no other rules
are tried for 𝐺

• Integer penalty
• Treated as 100% success probability

• Good for performance

• Users need to make sure that the rule really is
safe
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• Run before unsafe rules
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Examples

Safe rule: ∧-introduction

Γ ⊢ 𝐴 ∧ 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝐵

Unsafe rule: left ∨-introduction

Γ ⊢ 𝐴 ∨ 𝐵

Γ ⊢ 𝐴



When Is A Rule Safe?

A rule 𝑅 is logically safe if it preserves provability:

For each goal 𝐺, if 𝐺 is provable and 𝑅, applied to 𝐺,
generates subgoals 𝐺1, … , 𝐺𝑛, then 𝐺1, … , 𝐺𝑛 must still
be provable.

A rule 𝑅 is relatively safe if it preserves provability
relative to a rule set 𝑆:

If a goal 𝐺 is provable with rules from 𝑆 and 𝑅, applied
to 𝐺, generates subgoals 𝐺1, … , 𝐺𝑛, then 𝐺1, … , 𝐺𝑛 must
still be provable with rules from 𝑆.
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to 𝐺, generates subgoals 𝐺1, … , 𝐺𝑛, then 𝐺1, … , 𝐺𝑛 must
still be provable with rules from 𝑆.



Normalisation Rules

• Run before safe rules

• Integer penalty
• Treated as 100% success probability

• May produce only one subgoal
• Run in a fixpoint loop, i.e. until no normalisation
rule succeeds any more

• Can establish invariants for other rules

• Typically run multiple times on every goal
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Normalisation Rules

• Run before safe rules
• Integer penalty
• Treated as 100% success probability

• May produce only one subgoal
• Run in a fixpoint loop, i.e. until no normalisation
rule succeeds any more

• Can establish invariants for other rules

• Typically run multiple times on every goal



Example

∧-elimination

Γ, ℎ ∶ 𝐴 ∧ 𝐵 ⊢ 𝑇

Γ, ℎ1 ∶ 𝐴, ℎ2 ∶ 𝐵 ⊢ 𝑇



Summary: Aesop’s Search Algorithm

Apply normalisation rules

Apply safe rules add subgoals to tree

Apply unsafe rules

can’t prove this goal add subgoals to tree
reinsert goal into goal queue

progress

no progress

progress

no progress

no progress progress



Registering Rules



Registering Rules
Globally

@[aesop unsafe 100%]
theorem And.intro : A → B → A ∧ B

Locally

aesop (add 100% And.intro)

Safe rules

@[aesop safe 10]
theorem And.intro : A → B → A ∧ B
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Registering Rules
Globally

@[aesop unsafe 100%]
theorem And.intro : A → B → A ∧ B

Locally

aesop (add 100% And.intro)

Safe rules

@[aesop safe 10]
theorem And.intro : A → B → A ∧ B



Rule Builders

A rule builder turns a declaration into an Aesop rule.

In the examples so far, we have implicitly used a
default builder.

Aesop currently provides 7 rule builders.



Apply Builder

@[aesop safe apply 10]
theorem And.intro : A → B → A ∧ B

Builds a rule that runs apply And.intro.

Γ ⊢ 𝐴 ∧ 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝐵



Apply Builder

@[aesop safe apply 10]
theorem And.intro : A → B → A ∧ B

Builds a rule that runs apply And.intro.

Γ ⊢ 𝐴 ∧ 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝐵



Constructors Builder

@[aesop 50% constructors]
inductive Or (A B : Prop) where

| left : A → Or A B
| right : B → Or A B

Equivalent to one apply rule for each constructor.



Cases Builder

@[aesop safe cases]
inductive Or (A B : Prop) where

| left : A → Or A B
| right : B → Or A B

Builds a rule that runs cases on any hypothesis of type
Or A B.



Forward Builder

@[aesop safe forward]
theorem pos_of_min_pos : ∀ {x y : ℕ},

0 < min x y →
0 < x ∧ 0 < y

Γ, 𝑥 𝑦 ∶ ℕ, ℎ ∶ 0 < min 𝑥 𝑦 ⊢ 𝑇

Γ, 𝑥 𝑦 ∶ ℕ, ℎ ∶ 0 < min 𝑥 𝑦, ℎ1 ∶ 0 < 𝑥 ∧ 0 < 𝑦 ⊢ 𝑇



Destruct Builder

@[aesop safe destruct]
theorem pos_of_min_pos : ∀ {x y : ℕ},

0 < min x y →
0 < x ∧ 0 < y

Γ, 𝑥 𝑦 ∶ ℕ, ℎ ∶ 0 < min 𝑥 𝑦 ⊢ 𝑇

Γ, 𝑥 𝑦 ∶ ℕ, ℎ ∶ 0 < 𝑥 ∧ 0 < 𝑦 ⊢ 𝑇



Simp Builder

Aesop runs simp_all as a built-in normalisation rule
with penalty 0.

This simp_all call uses the default simp set plus an
Aesop-specific simp set.

The simp builder adds an equation or proposition to this
Aesop-specific set.



Tactic Builder

aesop (add safe (by norm_num; done))

add_aesop_rules safe (by norm_num; done)

Requirement
If the tactic does not change the goal, it should fail.
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Requirement
If the tactic does not change the goal, it should fail.



Built-In Rules



Logic: ∧
∧-introduction (safe, penalty 101)

Γ ⊢ 𝐴 ∧ 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝐵

∧-elimination (norm, penalty 0)

Γ, ℎ ∶ 𝐴 ∧ 𝐵 ⊢ 𝑇

Γ, ℎ1 ∶ 𝐴, ℎ2 ∶ 𝐵 ⊢ 𝑇

Similar for Prod, PProd, MProd
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Logic: ∨
∨-introduction (unsafe, success probability 50%)

Γ ⊢ 𝐴 ∨ 𝐵

Γ ⊢ 𝐴

Γ ⊢ 𝐴 ∨ 𝐵

Γ ⊢ 𝐵

∨-elimination (safe, penalty 100)

Γ, ℎ ∶ 𝐴 ∨ 𝐵 ⊢ 𝑇

Γ, ℎ ∶ 𝐴 ⊢ 𝑇 Γ, ℎ ∶ 𝐵 ⊢ 𝑇

Similar for Sum, PSum
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Logic: ∀ and →

∀-introduction (norm, penalty -100)
Run the intros tactic

∀-elimination (unsafe, success probability 75%)

Γ, ℎ ∶ ∀(𝑥1 ∶ 𝐴1) … (𝑥𝑛 ∶ 𝐴𝑛), 𝐵 ⊢ 𝐵

Γ, ℎ ⊢ 𝐴1 … Γ, ℎ ⊢ 𝐴𝑛



Logic: ∀ and →

∀-introduction (norm, penalty -100)
Run the intros tactic

∀-elimination (unsafe, success probability 75%)

Γ, ℎ ∶ ∀(𝑥1 ∶ 𝐴1) … (𝑥𝑛 ∶ 𝐴𝑛), 𝐵 ⊢ 𝐵

Γ, ℎ ⊢ 𝐴1 … Γ, ℎ ⊢ 𝐴𝑛



Logic: ∃
∃-introduction (unsafe, success probability 30%)

Γ ⊢ ∃𝑥, 𝑃 𝑥

Γ ⊢ 𝑃 ?x

∃-elimination (norm, penalty 0)

Γ, ℎ ∶ ∃𝑥 ∶ 𝐴, 𝑃 𝑥 ⊢ 𝑇

Γ, 𝑥 ∶ 𝐴, ℎ ∶ 𝑃 𝑥 ⊢ 𝑇

Similar for Subtype, Sigma, PSigma
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Logic: ↔

↔-introduction (safe, penalty 100)

Γ ⊢ 𝐴 ↔ 𝐵

Γ ⊢ 𝐴 → 𝐵 Γ ⊢ 𝐵 → 𝐴

↔ hypotheses
A hypothesis of type 𝐴 ↔ 𝐵 is treated as the equation
𝐴 = 𝐵 by the simplifier and the substitution rule.
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Logic: ⊤

⊤-introduction1 (safe, penalty 0)

Γ ⊢ ⊤

✓

Similar for Unit, PUnit.

1⊤ = True
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Logic: ⊥

The simplifier already solves goals with an assumption
ℎ ∶ ⊥.2

We add destruct rules to conclude ⊥ from Empty and
PEmpty.

2⊥ = False
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Logic: ¬

¬-introduction

Γ ⊢ ¬𝐴

Γ, ℎ ∶ 𝐴 ⊢ ⊥

Negated hypotheses
Given a hypothesis of type ¬𝐴, the simplifier replaces 𝐴
with ⊥ everywhere in the goal.
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Logic: Simplifier

The simplifier performs limited logical reasoning. If 𝐴
and 𝐵 are propositions:

• With assumption ℎ ∶ 𝐴: rewrite 𝐴 = ⊤

• With assumption ℎ ∶ ¬𝐴: rewrite 𝐴 = ⊥

• (⊤ ∧ ⊥) = ⊥

• (⊤ ∧ ⊤) = ⊤

• (⊤ → 𝐴) = 𝐴

• etc.
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Logic: Simplifier
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and 𝐵 are propositions:

• With assumption ℎ ∶ 𝐴: rewrite 𝐴 = ⊤

• With assumption ℎ ∶ ¬𝐴: rewrite 𝐴 = ⊥
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Logic: Completeness

In practice, these rules solve most ‘purely logical’ goals.

However, they are incomplete for first-order and even
propositional logic.



Equality

Simplifier (norm, penalty 0)
Run the simp_all tactic as described previously

Reflexivity (safe, penalty 0)
Run the rfl tactic

Substitution (norm, penalty -50)
Run the subst tactic on any hypothesis of type x = t
or t = x where x is a variable.
This substitutes t for x everywhere in the goal and
removes the now-redundant hypothesis.
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Case Splitting

Split target (safe, penalty 100)
Runs the split tactic.
This tactic looks for if-then-else and match
expressions in the target and performs case splits on
their discriminees.

Split hypotheses (safe, penalty 1000)
Ditto, but we look for case splits in hypotheses.
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Extensionality

Extensionality (unsafe, success probability 80%)
Run the ext tactic.
This exhaustively applies extensionality lemmas to an
equational goal. E.g.:

Γ, 𝑝 𝑞 ∶ 𝐴 × 𝐵 ⊢ 𝑝 = 𝑞

Γ, 𝑝 𝑞 ∶ 𝐴 × 𝐵 ⊢ 𝑝.1 = 𝑞.1 ∧ 𝑝.2 = 𝑞.2



Debugging



Leftover Goals

When Aesop fails to solve a goal, it reports the goals
that remain after safe rules have been exhaustively
applied.

This helps to check whether the safe rules do what you
think they should.



Proof Generation

theorem last_cons {a : α} {l : List α} (h : l ≠ nil) :
last (a :: l) (cons_ne_nil a l) = last l h := by

aesop? (add 1% cases List)

aesop? generates a proof script:

intro h
cases l with
| nil =>

simp_all only [last, ne_eq]
split

| cons head tail => simp_all only [last]

One click replaces aesop? with the generated proof.
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Tracing

set_option trace.aesop true in
aesop

• Lists the rules that Aesop (tried to) run and the
resulting goals

• For other trace options see autocompletion for
trace.aesop.
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Miscellaneous Features



Custom Rule Sets

-- RuleSet.lean

-- Must be in a different file for technical reasons
declare_aesop_rule_sets [Foo]

import RuleSet

@[aesop 100% (rule_sets [Foo])]
theorem foo

Used for domain-specific automation, e.g. continuity,
measurability, …
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Metavariables

Aesop supports rules that generate metavariables:

example {a b c d : Nat} (h₁ : a < b)
(h₂ : a < c) (h₃ : c < d) : a < d := by

apply Nat.lt_trans
-- ⊢ a < ?x
-- ⊢ ?x < d

example {a b c d : Nat} (h₁ : a < b)
(h₂ : a < c) (h₃ : c < d) : a < d := by

aesop (add 1% Nat.lt_trans)

• Aesop’s search algorithm should be complete
even in the presence of metavariables

• This is very expensive
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Applications, Shortcomings and Work In
Progress



Applications

• General-purpose automation

• Domain-specific solvers: continuity,
measurability, aesop_cat, …

• Domain-specific ‘goal preprocessors’ with aesop?
• Tree search backend for LLMs: Peiyang Song,
Kaiyu Yang, and Anima Anandkumar. “Towards
Large Language Models as Copilots for Theorem
Proving in Lean”. In: Workshop on Mathematical
Reasoning and AI. 2023. URL:
https://mathai2023.github.io/papers/4.pdf
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Shortcomings and Work In Progress

• The built-in logical rules do not deal well with
all-quantified hypotheses and sometimes negation

• The default rule set is currently missing many rules
• Repeated calls to simp during normalisation are
bad for performance

• Nontrivial sets of forward rules are very slow (WIP)
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