Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2024

13c

Wiederholung und Fragestunde

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 16. Juli 2024 Basierend auf Folien von PD Dr. David Sabel

Inhaltsübersicht Teil I: Formale Sprachen und Automatentheorie

- Chomsky-Grammatiken und die Chomsky-Hierarchie
- Reguläre Sprachen: DFAs, Minimierung von DFAs,
 NFAs (ohne und mit ε-Übergängen), reguläre Ausdrücke,
 Abschlusseigenschaften, Entscheidbarkeitsresultate, Pumping-Lemma,
 Satz von Myhill und Nerode
- Kontextfreie Sprachen: Chomsky-Normalform, Pumping-Lemma, Greibach-Normalform, Abschlusseigenschaften, CYK-Algorithmus, Kellerautomaten (PDAs und DPDAs), Entscheidbarkeitsresultate
- ► Kontextsensitive und Typ 0-Sprachen: Turingmaschinen (DTMs und NTMs), LBAs, Entscheiden des Wortproblems für Typ 1-Sprachen

Blau: Nur FSK

Inhaltsübersicht Teil II: Berechenbarkeitstheorie

- Berechenbarkeit
- ► Turingmaschinen und Turingberechenbarkeit
- ► LOOP-, WHILE-, GOTO-Programme und -Berechenbarkeit
- \triangleright Primitiv rekursive und μ -rekursive Funktionen
- Unentscheidbarkeit: Halteproblem
- ► Reduktionen, PCP, Satz von Rice

Blau: Nur FSK

Inhaltsübersicht Teil III: Komplexitätstheorie

- $\triangleright \mathcal{P}$ und \mathcal{NP}
- \triangleright \mathcal{NP} -Schwere und \mathcal{NP} -Vollständigkeit
- Polynomialzeitreduktionen
- Satz von Cook
- $ightharpoonup \mathcal{NP}$ -vollständige Probleme

Klassiker: "X angeben"

- Automaten angeben
- Grammatik angeben
- ► Regulären Ausdruck angeben

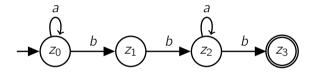
Klassiker: "Rechenaufgaben"

- ▶ NFA in DFA mit Potenzmengenkonstruktion transformieren
- DFA minimieren
- ► Chomsky-Normalform berechnen
- CYK-Algorithmus ausführen
- ► Wortproblem für Typ 1-Grammatiken entscheiden

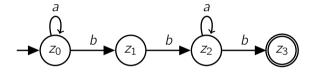
Blau: Nur FSK

Geben Sie einen NFA über $\Sigma = \{a, b\}$ an, der $L = \{a^i bba^j b \mid i, j \in \mathbb{N}\}$ erkennt.

Geben Sie einen NFA über $\Sigma = \{a, b\}$ an, der $L = \{a^i bba^j b \mid i, j \in \mathbb{N}\}$ erkennt.

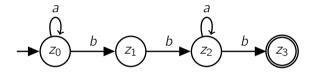


Geben Sie einen NFA über $\Sigma = \{a, b\}$ an, der $L = \{a^i bba^j b \mid i, j \in \mathbb{N}\}$ erkennt.

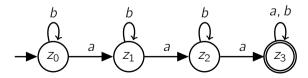


Geben Sie einen DFA über $\Sigma = \{a, b\}$ an, der $L = \{w \mid \#_a(w) > 2\}$ erkennt.

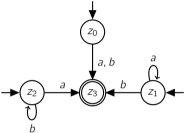
Geben Sie einen NFA über $\Sigma = \{a, b\}$ an, der $L = \{a^i bba^j b \mid i, j \in \mathbb{N}\}$ erkennt.



Geben Sie einen DFA über $\Sigma = \{a, b\}$ an, der $L = \{w \mid \#_a(w) > 2\}$ erkennt.

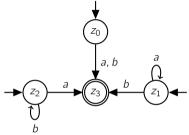


Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



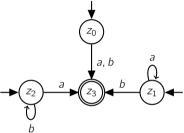
- a) Welche Sprache erkennt der gezeigte NFA?
- b) Geben Sie die Sprache durch einen regulären Ausdruck an.
- c) Erzeugen Sie einen äquivalenten DFA durch die Potenzmengenkonstruktion (erreichbare Zustände reichen aus).
- d) Minimieren Sie den DFA (Partitionstabelle erforderlich).

Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



a) Welche Sprache erkennt der gezeigte NFA?

Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.

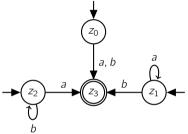


a) Welche Sprache erkennt der gezeigte NFA?

$$L = \{a, b\} \cup \{b^i a \mid i \ge 0\} \cup \{a^i b \mid i \ge 0\}$$

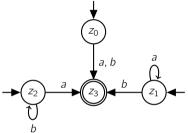
= \{b^i a \| i \ge 0\} \cup \{a^i b \| i \ge 0\}

Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



- a) Welche Sprache erkennt der gezeigte NFA?
 - $L = \{a, b\} \cup \{b^i a \mid i \ge 0\} \cup \{a^i b \mid i \ge 0\}$ = $\{b^i a \mid i \ge 0\} \cup \{a^i b \mid i \ge 0\}$
- b) Geben Sie die Sprache durch einen regulären Ausdruck an.

Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



a) Welche Sprache erkennt der gezeigte NFA?

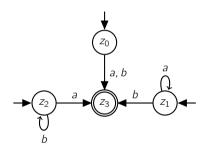
$$L = \{a, b\} \cup \{b^i a \mid i \ge 0\} \cup \{a^i b \mid i \ge 0\}$$

= $\{b^i a \mid i \ge 0\} \cup \{a^i b \mid i \ge 0\}$

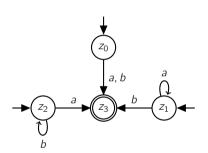
b) Geben Sie die Sprache durch einen regulären Ausdruck an.

$$L = L(\alpha)$$
 mit $\alpha = (a^*b|b^*a)$

Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.

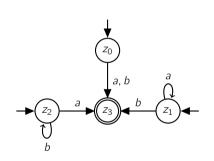


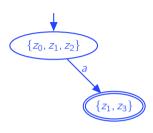
Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



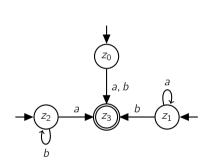


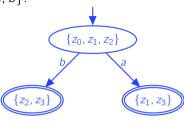
Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



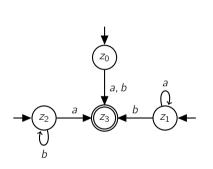


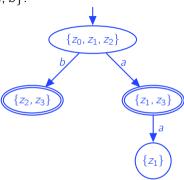
Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



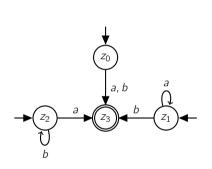


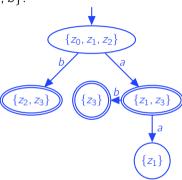
Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



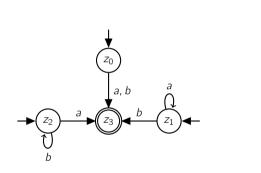


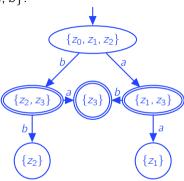
Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



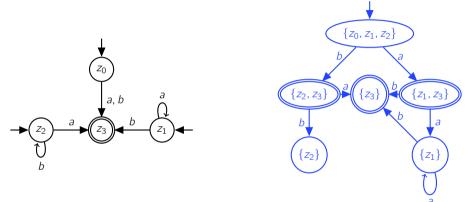


Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.

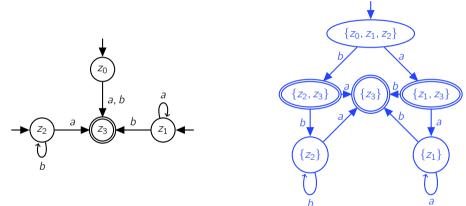




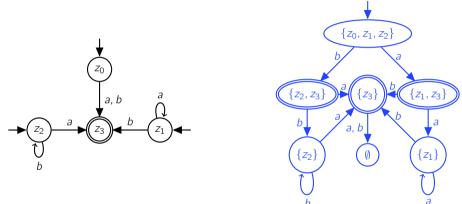
Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



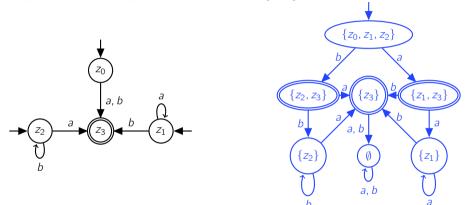
Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



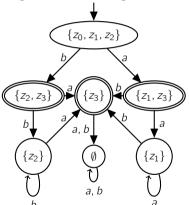
Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



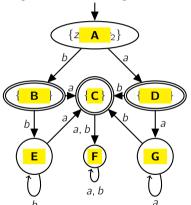
Gegeben sei der folgende NFA über $\Sigma = \{a, b\}$.



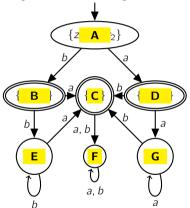
Gegeben sei der folgende DFA über $\Sigma = \{a, b\}$.



Gegeben sei der folgende DFA über $\Sigma = \{a, b\}$.



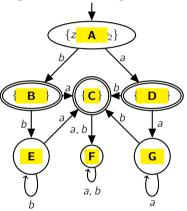
Gegeben sei der folgende DFA über $\Sigma = \{a, b\}$.



Partitionstabelle:

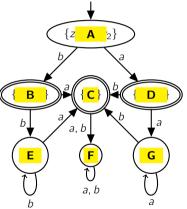
0. A E F G B C D

Gegeben sei der folgende DFA über $\Sigma = \{a, b\}$.



Partitionstabelle:

Gegeben sei der folgende DFA über $\Sigma = \{a, b\}$.



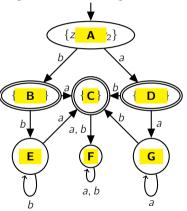
Partitionstabelle:

0. A E F G B C D

1. A E F G B C D mit a

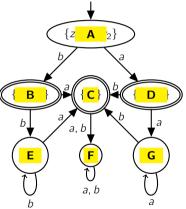
2. A E F G B C D mit b

Gegeben sei der folgende DFA über $\Sigma = \{a, b\}$.



Partitionstabelle:

Gegeben sei der folgende DFA über $\Sigma = \{a, b\}$.



Partitionstabelle:

Der Automat war schon minimal.

Beispielaufgabe zum CYK-Algorithmus

Sei
$$G = (V, \Sigma, P, S)$$
 mit $V = \{S, A, B, C\}$, $\Sigma = \{a, b\}$ und $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}$.

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

Beispielaufgabe zum CYK-Algorithmus

Sei
$$G = (V, \Sigma, P, S)$$
 mit $V = \{S, A, B, C\}, \Sigma = \{a, b\}$ und $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

	a	а 2	а 3	a	а 5	b 6
	1		<u> </u>	4	5	
1	A	Α	Α	A	A	B, C, S
2					С	
3				С		'
4			С			
5		C				
6	С					

Beispielaufgabe zum CYK-Algorithmus

Sei
$$G = (V, \Sigma, P, S)$$
 mit $V = \{S, A, B, C\}, \Sigma = \{a, b\}$ und $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

	a	а	a	a	а	b
	1	2	3	4	5	6
1	Α	Α	Α	Α	Α	B, C, S
2					С	
3				С		•
4			С			
5		С				
6	С		•			

Da unten links nicht das Startsymbol S in der Tabelle steht, liegt das Wort nicht in L(G).

Klassiker: "Beweisaufgaben"

- Nichtregulärität einer Sprache zeigen mit dem Pumping-Lemma für reguläre Sprachen
- ► Nichtregulärität einer Sprache zeigen mit dem Satz von Myhill und Nerode
- Nicht-Kontextfreiheit einer Sprache zeigen mit dem Pumping-Lemma für kontextfreie Sprachen
- Unentscheidbarkeit zeigen mit einer Reduktion
- Unentscheidbarkeit zeigen mit dem Satz von Rice
- $ightharpoonup \mathcal{NP} ext{-Schwere zeigen mit einer Polynomialzeitreduktion}$

Blau: nur FSK

Zeigen Sie, dass $L = \{a^j \$ b^j \mid j \in \mathbb{N}\}$ nicht regulär ist.

Zeigen Sie, dass $L = \{a^{j} \$ b^{j} \mid j \in \mathbb{N}\}$ nicht regulär ist.

Mit dem Pumping-Lemma.

Sei n > 0 beliebig.

Wir wählen $z \in L$ als $z = a^n \$ b^n$. Wir haben $|z| \ge n$.

Sei z = uvw ein beliebige Zerlegung von z.

sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ für jedes $i \in \mathbb{N}$. Dann $u = a^i$, $v = a^j$. $w = a^{k} \$ b^{n}$ mit i + i + k = n und i > 1.

Wir wählen i = 0. Dann gilt $uv^0w = a^{n-j}\$b^n \notin L$. Widerspruch.

Zeigen Sie, dass $L = \{a^j \$ b^j \mid j \in \mathbb{N}\}$ nicht regulär ist durch Verwendung des Satzes von Myhill und Nerode.

Zeigen Sie, dass $L = \{a^j \$ b^j \mid j \in \mathbb{N}\}$ nicht regulär ist durch Verwendung des Satzes von Myhill und Nerode.

Die Nerode-Relation \sim_L eine Sprache L ist so definiert: $u \sim_L v$ g.d.w.

$$\forall w \in \Sigma^*$$
, $uw \in L$ g.d.w. $vw \in L$

Der Satz von Myhill und Nerode sagt: Index(\sim_L) ist endlich g.d.w. L regulär ist.

Zeigen Sie, dass $L = \{a^j \$ b^j \mid j \in \mathbb{N}\}$ nicht regulär ist durch Verwendung des Satzes von Myhill und Nerode.

Die Nerode-Relation \sim_L eine Sprache L ist so definiert: $u \sim_L v$ g.d.w.

$$\forall w \in \Sigma^*$$
, $uw \in L$ g.d.w. $vw \in L$

Der Satz von Myhill und Nerode sagt: Index (\sim_L) ist endlich g.d.w. L regulär ist. Für die Aufgabe müssen wir unendlich viele verschiedene Äquivalenzklassen finden.

Zeigen Sie, dass $L = \{a^j \$ b^j \mid j \in \mathbb{N}\}$ nicht regulär ist durch Verwendung des Satzes von Myhill und Nerode.

Die Nerode-Relation \sim_L eine Sprache L ist so definiert: $u \sim_L v$ g.d.w.

$$\forall w \in \Sigma^*$$
, $uw \in L$ g.d.w. $vw \in L$

Der Satz von Myhill und Nerode sagt: Index(\sim_L) ist endlich g.d.w. L regulär ist.

Für die Aufgabe müssen wir unendlich viele verschiedene Äquivalenzklassen finden.

Für $u_i = a^i \$$ und $w_i = b^i$ gilt $u_i \$ w_i \in L$, aber $u_j \$ w_i \not\in L$.

Damit $u_i \not\sim_L u_j$ für $i \neq j$.

Zeigen Sie, dass $L = \{a^j \$ b^j \mid j \in \mathbb{N}\}$ nicht regulär ist durch Verwendung des Satzes von Myhill und Nerode.

Die Nerode-Relation \sim_L eine Sprache L ist so definiert: $u \sim_L v$ g.d.w.

$$\forall w \in \Sigma^*$$
, $uw \in L$ g.d.w. $vw \in L$

Der Satz von Myhill und Nerode sagt: Index(\sim_L) ist endlich g.d.w. L regulär ist.

Für die Aufgabe müssen wir unendlich viele verschiedene Äquivalenzklassen finden.

Für $u_i = a^i \$$ und $w_i = b^i$ gilt $u_i \$ w_i \in L$, aber $u_j \$ w_i \notin L$.

Damit $u_i \not\sim_L u_j$ für $i \neq j$.

Es gibt also unendlich viele disjunkte Äquivalenzklassen: $[u_1]_{\sim_L}$, $[u_2\$]_{\sim_L}$,

Daher: Index(\sim_L) = ∞ .

Mit dem Satz von Myhill und Nerode folgt, dass L nicht regulär ist.

Sei $X = \{w \mid M_w \text{ hält genau bei Eingabe 0}\}.$

Zeigen Sie die Unentscheidbarkeit mithilfe einer Reduktion.

Sei $X = \{w \mid M_w \text{ hält genau bei Eingabe 0}\}.$

Zeigen Sie die Unentscheidbarkeit mithilfe einer Reduktion.

Sei $H_0 = \{w \mid M_w \text{ hält bei leerer Eingabe}\}$. Aus der Vorlesung: H_0 ist unentscheidbar.

Sei $X = \{w \mid M_w \text{ hält genau bei Eingabe 0}\}.$ Zeigen Sie die Unentscheidbarkeit mithilfe einer Reduktion.

Sei $H_0 = \{ w \mid M_w \text{ hält bei leerer Eingabe} \}$. Aus der Vorlesung: H_0 ist unentscheidbar. Wir zeigen $H_0 \le X$:

Sei $X = \{w \mid M_w \text{ hält genau bei Eingabe 0}\}.$

Zeigen Sie die Unentscheidbarkeit mithilfe einer Reduktion.

Sei $H_0 = \{w \mid M_w \text{ hält bei leerer Eingabe}\}$. Aus der Vorlesung: H_0 ist unentscheidbar.

Wir zeigen $H_0 \leq X$:

Die Reduktionsfunktion f nimmt eine Turingmaschinenbeschreibung und erstellt daraus eine neue Turingmaschinenbeschreibung.

Sei $X = \{w \mid M_w \text{ hält genau bei Eingabe 0}\}.$

Zeigen Sie die Unentscheidbarkeit mithilfe einer Reduktion.

Sei $H_0 = \{w \mid M_w \text{ hält bei leerer Eingabe}\}$. Aus der Vorlesung: H_0 ist unentscheidbar.

Wir zeigen $H_0 \leq X$:

Die Reduktionsfunktion f nimmt eine Turingmaschinenbeschreibung und erstellt daraus eine neue Turingmaschinenbeschreibung.

Sei w ein Wort. Sei M_w die Turingmaschine zu w.

Sei $X = \{w \mid M_w \text{ hält genau bei Eingabe 0}\}.$

Zeigen Sie die Unentscheidbarkeit mithilfe einer Reduktion.

Sei $H_0 = \{w \mid M_w \text{ hält bei leerer Eingabe}\}$. Aus der Vorlesung: H_0 ist unentscheidbar.

Wir zeigen $H_0 \leq X$:

Die Reduktionsfunktion f nimmt eine Turingmaschinenbeschreibung und erstellt daraus eine neue Turingmaschinenbeschreibung.

Sei w ein Wort. Sei M_w die Turingmaschine zu w.

f erstellt daraus eine Turingmaschine N, sodass

- N prüft, ob die Eingabe 0 ist. Falls nicht, geht N in eine Endlosschleife.
- N löscht das Eingabeband.
- ightharpoonup N simuliert M_w bei leerer Eingabe.
- ightharpoonup Wenn M_w akzeptiert, dann akzeptiert N, ansonsten läuft N endlos.

Es gilt:

 $w \in H_0$

```
Es gilt: w \in H_0 g.d.w. M_w hält bei leerer Eingabe
```

Es gilt:

$$w \in H_0$$

g.d.w. M_w hält bei leerer Eingabe

$$f(w) \in X$$

```
Es gilt: w \in H_0 g.d.w. M_w hält bei leerer Eingabe N = M_{f(w)} hält genau bei Eingabe 0 g.d.w. f(w) \in X
```

```
Es gilt: w \in H_0 g.d.w. M_w hält bei leerer Eingabe g.d.w. N = M_{f(w)} hält genau bei Eingabe 0 g.d.w. f(w) \in X
```

Es gilt:

$$w \in H_0$$

g.d.w. M_w hält bei leerer Eingabe

g.d.w. $N = M_{f(w)}$ hält genau bei Eingabe 0

g.d.w. $f(w) \in X$

Da f total und berechenbar ist, gilt $H_0 \leq X$.

Weitere typische Aufgaben

- ► Formalismen ineinander überführen (z.B. regulärer Ausdruck in DFA)
- ▶ Programme schreiben als Turingmaschine, WHILE-, LOOP-, GOTO-Programm, primitiv rekursive Funktion, μ -rekursive Funktion
- ► Sprachen in der Chomsky-Hierarchie einordnen

Blau: Nur FSK

SORRY GUYS NO COMIC TODAY, I'VE GOTTA GO TO THE DOCTOR TO GET MY THIGHS ROTATED.

BUT HERE'S SOME NEW CHARACTER ART I'M WORKING ON!

xkcd.com/157/