Formale Sprachen und Komplexität Sommersemester 2024

9a

Konstruktionen von Turingmaschinen und LOOP-Programme

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 18. Juni 2024 Basierend auf Folien von PD Dr. David Sabel

Wiederholung: Turingberechenbarkeit

Definition

Eine Funktion $f: \Sigma^* \to \Sigma^*$ heißt turingberechenbar, falls es eine deterministische Turingmaschine $M = (Z, \Sigma, \Gamma, \delta, z_0, \Box, E)$ gibt, sodass für alle $u, v \in \Sigma^*$ gilt:

$$f(u) = v$$

g.d.w.

es gibt $z \in E$, sodass $Start_M(u) \vdash^* \Box \cdots \Box zv \Box \cdots \Box$

Wiederholung: Turingberechenbarkeit

Definition

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt turingberechenbar, falls es eine deterministische Turingmaschine $M = (Z, \Sigma, \Gamma, \delta, z_0, \Box, E)$ gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt:

$$f(n_1,\ldots,n_k)=m$$
 g.d.w.

es gibt $z \in E$, sodass $z_0 bin(n_1) \# \cdots \# bin(n_k) \vdash^* \Box \cdots \Box z bin(m) \Box \cdots \Box$

wobei bin(n) die Binärzahldarstellung von $n \in \mathbb{N}$ ist.

Wiederholung: Mehrband-Turingmaschinen

Definition

Eine k-Band-Turingmaschine (für $k \in \mathbb{N}_{>0}$) ist ein 7-Tupel $(Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ mit

- ► Z ist eine endliche Menge von Zuständen
- ► ∑ ist das (endliche) Eingabealphabet
- ▶ $\Gamma \supset \Sigma$ ist das (endliche) Bandalphabet
- ▶ δ ist die Überführungsfunktion
 - ▶ für DTM: δ : $Z \times \Gamma^k \to Z \times \Gamma^k \times \{L, R, N\}^k$
 - ▶ für NTM: δ : $Z \times \Gamma^k \to \mathcal{P}(Z \times \Gamma^k \times \{L, R, N\}^k)$
- $ightharpoonup z_0 \in Z$ ist der Startzustand
- ▶ $\square \in \Gamma \setminus \Sigma$ ist das Blank-Symbol
- $ightharpoonup E \subseteq Z$ ist die Menge der Endzustände.

Konstruktion von Turingmaschinen und Notationen

DTMs können Programme einer einfachen imperativen Programmiersprache mit Zuweisungen, Verzweigungen und Schleifen simulieren.

Notationen:

- ▶ Wenn M eine 1-Band-Turingmaschine ist, dann schreiben wir M(i, k) für die k-Band-Turingmaschine (mit $i \le k$), die die Operationen von M auf dem i-ten Band durchführt und alle anderen Bänder unverändert lässt.
- ▶ Wenn k nicht von Bedeutung, schreiben wir M(i) statt M(i, k).

Konstruktion von Turingmaschinen

Beispiel:

- ▶ Die TM, die 1 addiert nennen wir "Band := Band + 1".
- ▶ Die k-Band-TM, die 1 auf dem i-ten Band addiert nennen wir "Band := Band + 1"(i, k), "Band := Band + 1"(i) oder sogar "Band i := Band i + 1".

Konstruktion von Turingmaschinen

Beispiel:

- ightharpoonup Die TM, die 1 addiert nennen wir "Band := Band + 1".
- Die k-Band-TM, die 1 auf dem i-ten Band addiert nennen wir "Band := Band + 1"(i, k), "Band := Band + 1"(i) oder sogar ".Band i := Band i + 1".

Weitere Turingmaschinen folgen. Die Konstruktionen sind relativ einfach.

- ▶ "Band i := (Band i) 1": k-Band-TM ($k \ge i$), die eine angepasste Subtraktion von 1 auf Band i durchführt. Beispiel für die Anpassung: 0-1=0.
- ▶ "Band i := 0": k-Band-TM ($k \ge i$), die Band i mit 0 überschreibt.
- ightharpoonup "Band i := Band i": k-Band-TM ($k \ge i$ und $k \ge i$), welche die Zahl von Band i auf Band i kopiert.

Seien $M_i = (Z_i, \Sigma, \Gamma_i, \delta_i, z_{0i}, \square, E_i)$ für $i \in \{1, 2\}$ k-Band-TMs. O.B.d.A. $Z_1 \cap Z_2 = \emptyset$.

Seien $M_i = (Z_i, \Sigma, \Gamma_i, \delta_i, z_{0i}, \square, E_i)$ für $i \in \{1, 2\}$ k-Band-TMs. O.B.d.A. $Z_1 \cap Z_2 = \emptyset$.

Die TM M_1 ; M_2 führt M_1 und M_2 hintereinandergeschaltet aus:

$$M_1$$
; $M_2 = (Z_1 \cup Z_2, \Sigma, \Gamma_1 \cup \Gamma_2, \delta, z_{01}, \square, E_2)$ mit

$$\delta(z, (a_1, ..., a_k)) = \begin{cases} \delta_1(z, (a_1, ..., a_k)) & \text{falls } z \in Z_1 \setminus E_1 \\ (z_{02}, (a_1, ..., a_k), N^k) & \text{falls } z \in E_1 \\ \delta_2(z, (a_1, ..., a_k)) & \text{falls } z \in Z_2 \setminus E_2 \end{cases}$$

Seien $M_i = (Z_i, \Sigma, \Gamma_i, \delta_i, z_{0i}, \square, E_i)$ für $i \in \{1, 2\}$ k-Band-TMs. O.B.d.A. $Z_1 \cap Z_2 = \emptyset$.

Die TM M_1 ; M_2 führt M_1 und M_2 hintereinandergeschaltet aus:

$$M_1$$
; $M_2 = (Z_1 \cup Z_2, \Sigma, \Gamma_1 \cup \Gamma_2, \delta, z_{01}, \square, E_2)$ mit

$$\delta(z, (a_1, ..., a_k)) = \begin{cases} \delta_1(z, (a_1, ..., a_k)) & \text{falls } z \in Z_1 \setminus E_1 \\ (z_{02}, (a_1, ..., a_k), N^k) & \text{falls } z \in E_1 \\ \delta_2(z, (a_1, ..., a_k)) & \text{falls } z \in Z_2 \setminus E_2 \end{cases}$$

Die TM $M_1: M_2$

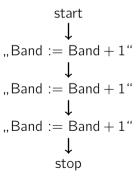
- ► führt erst M₁ aus
- wechselt im Endzustand $z \in E_1$ in Startzustand z_{02} von M_2
- ► führt anschließend M₂ aus.

Flussdiagramm für M_1 ; M_2 :

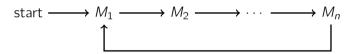
$$start \longrightarrow M_1 \longrightarrow M_2 \longrightarrow stop$$

Beispiel: "Band := Band + 3" wird konstruiert durch "Band := Band + 1";"Band := Band + 1";"Band := Band + 1"

Flussdiagramm dazu:

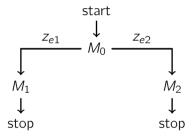


Zyklische Verkettung von M_1, \ldots, M_n :



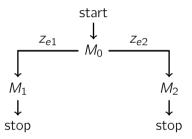
Verzweigende Fortsetzung

Seien M_0 , M_1 , M_2 TMs und seien z_{e1} und z_{e2} die Endzustände von M_0 . Verzweigende Fortsetzung von M_0 :



Verzweigende Fortsetzung

Seien M_0 , M_1 , M_2 TMs und seien Z_{e1} und Z_{e2} die Endzustände von M_0 . Verzweigende Fortsetzung von M_0 :



Die Konstruktion fügt Übergänge

$$\delta(z_{e1}, (a_1, \dots, a_k)) = (z_{01}, (a_1, \dots, a_k), N^k)$$

$$\delta(z_{e2}, (a_1, \dots, a_k)) = (z_{02}, (a_1, \dots, a_k), N^k)$$

ein, wobei z_{0i} der Startzustand von M_i ist (für $i \in \{1, 2\}$).

Beispiel für Test auf 0

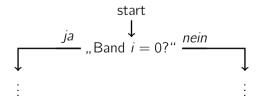
Folgende TM M_0 prüft, ob das Band eine 0 enthält oder nicht.

 M_0 hat die Zustände $\{z_0, z_1, j_a, nein\}$ und

$$\delta(z_0, a) = (nein, a, N)$$
 für $a \neq 0$
 $\delta(z_0, 0) = (z_1, 0, R)$
 $\delta(z_1, a) = (nein, a, L)$ für $a \neq \square$
 $\delta(z_1, \square) = (ja, \square, L)$

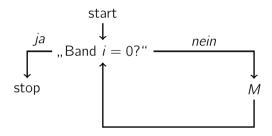
mit z_0 Startzustand und ja und nein Endzustände.

Notationen: "Band = 0?" und "Band i = 0?".



Schleife

Mit Verzweigung, "Band i = 0?", zyklischer Hintereinanderschaltung und einer TM M erstellen wir die Schleife



Die TM M wird solange wieder aufgerufen, bis das i-te Band die Zahl 0 enthält.

Die Maschine nennen wir "WHILE Band $i \neq 0$ DO M".

LOOP-, WHILE-, GOTO-Programme

Ziel:

- Betrachte drei einfache imperative Programmiersprachen
 - ► LOOP-Programme
 - WHILE-Programme
 - GOTO-Programme

und die dazugehörigen Berechenbarkeitsbegriffe.

▶ Welche Berechenbarkeitsbegriffe sind gleich bzw. verschieden (untereinander aber auch bezüglich Turingberechenbarkeit)?

Syntax von LOOP-Programmen

LOOP-Programme werden durch die kontextfreie Grammatik (V, Σ, P, Prg) erzeugt, wobei:

```
V = \{Prg, Var, Id, Const\}
\Sigma = \{\textbf{LOOP}, \textbf{DO}, \textbf{END}, x, 0, \dots, 9, ;, :=, +, -\}
P = \{Prg \rightarrow \textbf{LOOP} \ Var \ \textbf{DO} \ Prg \ \textbf{END}
| Prg; Prg
| Var := Var + Const
| Var := Var - Const,
Var \rightarrow x_{Id},
Const \rightarrow Id,
Id \rightarrow 0 \mid 1 \mid \dots \mid 9 \mid 1Id \mid 2Id \mid \dots \mid 9Id\}
```

Beachte:

- ightharpoonup Var erzeugt Variablen x_0, x_1, x_2, \ldots
- Const erzeugt alle natürlichen Zahlen.

Definition (Variablenbelegung)

Eine Variablenbelegung ρ ist eine endliche Abbildung mit Einträgen $x_i \mapsto n$ mit x_i ist Variable und $n \in \mathbb{N}$.

Wir definieren

$$\rho(x_i) := \begin{cases} n & \text{wenn } x_i \mapsto n \in \rho \\ 0 & \text{sonst} \end{cases}$$

Definition (Variablenbelegung)

Eine Variablenbelegung ρ ist eine endliche Abbildung mit Einträgen $x_i \mapsto n$ mit x_i ist Variable und $n \in \mathbb{N}$.

Wir definieren

$$\rho(x_i) := \begin{cases} n & \text{wenn } x_i \mapsto n \in \rho \\ 0 & \text{sonst} \end{cases}$$

Wir definieren auch

$$\rho\{x_i \mapsto m\}(x_j) := \begin{cases} m & \text{wenn } x_j = x_i \\ \rho(x_j) & \text{wenn } x_j \neq x_i \end{cases}$$

Definition (Variablenbelegung)

Eine Variablenbelegung ρ ist eine endliche Abbildung mit Einträgen $x_i \mapsto n$ mit x_i ist Variable und $n \in \mathbb{N}$.

Wir definieren

$$\rho(x_i) := \begin{cases} n & \text{wenn } x_i \mapsto n \in \rho \\ 0 & \text{sonst} \end{cases}$$

Wir definieren auch

$$\rho\{x_i \mapsto m\}(x_j) := \begin{cases} m & \text{wenn } x_j = x_i \\ \rho(x_j) & \text{wenn } x_j \neq x_i \end{cases}$$

Die Notation $\rho\{x_i \mapsto m\}$ steht also für die Variablenbelegung, die überall mit ρ übereinstimmt außer bei x_i , wofür m ausgegeben wird.

Definition

Die Berechnungsschritte $(\rho, P) \xrightarrow[\text{LOOP}]{} (\rho', P')$, wobei ρ, ρ' Variablenbelegungen und P, P' LOOP-Programme oder das leere Programm ε sind, sind durch folgende Regeln definiert:

- $(\rho, x_i := x_j + c) \xrightarrow[\text{LOOP}]{} (\rho', \varepsilon), \text{ wobei } \rho' = \rho\{x_i \mapsto \rho(x_j) + c\}$
- $\blacktriangleright (\rho, x_i := x_j c) \xrightarrow[\text{LOOP}]{} (\rho', \varepsilon), \text{ wobei } \rho' = \rho\{x_i \mapsto \max(0, \rho(x_j) c)\}$
- $\blacktriangleright \ (\rho, P_1; P_2) \xrightarrow[\text{LOOP}]{} (\rho', P_1'; P_2) \text{ wenn } (\rho, P_1) \xrightarrow[\text{LOOP}]{} (\rho', P_1') \text{ und } P_1' \neq \varepsilon$
- $(\rho, \mathbf{LOOP} \ x_i \ \mathbf{DO} \ P \ \mathbf{END}) \xrightarrow[\mathsf{LOOP}]{} (\rho, \underbrace{P; \dots; P}_{\rho(x_i)\text{-mal}})$

Definition

Die Berechnungsschritte $(\rho, P) \xrightarrow[\text{LOOP}]{} (\rho', P')$, wobei ρ, ρ' Variablenbelegungen und P, P' LOOP-Programme oder das leere Programm ε sind, sind durch folgende Regeln definiert:

- $(\rho, x_i := x_j + c) \xrightarrow[\text{LOOP}]{} (\rho', \varepsilon), \text{ wobei } \rho' = \rho\{x_i \mapsto \rho(x_j) + c\}$
- $\blacktriangleright (\rho, x_i := x_j c) \xrightarrow[\text{LOOP}]{} (\rho', \varepsilon), \text{ wobei } \rho' = \rho\{x_i \mapsto \max(0, \rho(x_j) c)\}$
- $(\rho, P_1; P_2) \xrightarrow[\text{LOOP}]{} (\rho', P_2) \text{ wenn } (\rho, P_1) \xrightarrow[\text{LOOP}]{} (\rho', \varepsilon)$
- $\blacktriangleright \ (\rho, P_1; P_2) \xrightarrow[\text{LOOP}]{} (\rho', P_1'; P_2) \text{ wenn } (\rho, P_1) \xrightarrow[\text{LOOP}]{} (\rho', P_1') \text{ und } P_1' \neq \varepsilon$
- $(\rho, \mathbf{LOOP} \ x_i \ \mathbf{DO} \ P \ \mathbf{END}) \xrightarrow[\mathsf{LOOP}]{} (\rho, \underbrace{P; \dots; P}_{\rho(x_i)\text{-mal}})$

Wir schreiben $\xrightarrow{100P}^{i}$ für i Schritte und $\xrightarrow{100P}^{*}$ für 0 oder beliebig viele Schritte.

Programm: $x_2 := x_1 + 1$;

LOOP x_2 **DO** $x_3 := x_3 + 1$ **END**

Variablenbelegung: $\{x_1 \mapsto 2\}$

Programm:
$$x_2 := x_1 + 1$$
; Variablenbelegung: $\{x_1 \mapsto 2\}$
LOOP x_2 **DO** $x_3 := x_3 + 1$ **END**

$$(\{x_1 \mapsto 2\}, x_2 := x_1 + 1; LOOP x_2 DO x_3 := x_3 + 1 END)$$

Programm:
$$x_2 := x_1 + 1;$$
 Variablenbelegung: $\{x_1 \mapsto 2\}$ LOOP x_2 DO $x_3 := x_3 + 1$ END

Programm:
$$x_2 := x_1 + 1;$$
 Variablenbelegung: $\{x_1 \mapsto 2\}$ LOOP x_2 DO $x_3 := x_3 + 1$ END

Programm:
$$x_2:=x_1+1;$$
 Variablenbelegung: $\{x_1\mapsto 2\}$ LOOP x_2 DO $x_3:=x_3+1$ END

Programm:
$$x_2 := x_1 + 1$$
; Variablenbelegung: $\{x_1 \mapsto 2\}$
LOOP x_2 **DO** $x_3 := x_3 + 1$ **END**

Programm:
$$x_2 := x_1 + 1$$
; Variablenbelegung: $\{x_1 \mapsto 2\}$
LOOP x_2 DO $x_3 := x_3 + 1$ END

LOOP-Berechenbarkeit

Definition (LOOP-berechenbare Funktion)

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar, wenn es ein LOOP-Programm P gibt, sodass für alle $n_1, \ldots, n_k \in \mathbb{N}$ gilt $(\rho, P) \xrightarrow[\text{LOOP}]{}^* (\rho', \varepsilon)$, wobei $\rho = \{x_1 \mapsto n_1, \ldots, x_k \mapsto n_k\}$ und $\rho'(x_0) = f(n_1, \ldots, n_k)$.

LOOP-Berechenbarkeit

Definition (LOOP-berechenbare Funktion)

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar, wenn es ein LOOP-Programm P gibt, sodass für alle $n_1, \ldots, n_k \in \mathbb{N}$ gilt $(\rho, P) \xrightarrow[\text{LOOP}]{}^* (\rho', \varepsilon)$, wobei $\rho = \{x_1 \mapsto n_1, \ldots, x_k \mapsto n_k\}$ und $\rho'(x_0) = f(n_1, \ldots, n_k)$.

D.h. das LOOP-Programm

- ightharpoonup empfängt die Eingaben über die Variablen x_1, \ldots, x_k
- ightharpoonup liefert sein Ergebnis in Variable x_0 .

Beispiel für die LOOP-Berechenbarkeit

Die Funktion $f(n_1) = n_1 + c$ ist LOOP-berechenbar.

Das Programm $x_0 := x_1 + c$ belegt dies, denn für alle $n_1 \in \mathbb{N}$:

$$(\{x_1 \mapsto n_1\}, x_0 := x_1 + c) \xrightarrow[\text{LOOP}]{} (\{x_0 \mapsto n_1 + c, x_1 \mapsto n_1\}, \varepsilon)$$

Terminierung von LOOP-Programmen

Satz

Alle LOOP-Programme terminieren. Daher sind alle LOOP-berechenbaren Funktionen total.

Terminierung von LOOP-Programmen

Satz

Alle LOOP-Programme terminieren. Daher sind alle LOOP-berechenbaren Funktionen total.

Beweis Zeige für alle (ρ, P) : Es gibt $j \in \mathbb{N}$ und ρ' , sodass $(\rho, P) \xrightarrow[LOOP]{} (\rho', \varepsilon)$. Durch Induktion über die Größe von P.

Terminierung von LOOP-Programmen

Satz

Alle LOOP-Programme terminieren. Daher sind alle LOOP-berechenbaren Funktionen total.

Beweis Zeige für alle (ρ, P) : Es gibt $j \in \mathbb{N}$ und ρ' , sodass $(\rho, P) \xrightarrow[\text{LOOP}]{}^{j} (\rho', \varepsilon)$. Durch Induktion über die Größe von P.

▶ Fall $(\rho, x_i := x_i \pm c)$: Es wird genau 1 Schritt benötigt.

Terminierung von LOOP-Programmen

Satz

Alle LOOP-Programme terminieren. Daher sind alle LOOP-berechenbaren Funktionen total.

Beweis Zeige für alle (ρ, P) : Es gibt $j \in \mathbb{N}$ und ρ' , sodass $(\rho, P) \xrightarrow[\text{LOOP}]{}^{j} (\rho', \varepsilon)$. Durch Induktion über die Größe von P.

- ▶ Fall $(\rho, x_i := x_j \pm c)$: Es wird genau 1 Schritt benötigt.
- Fall P_1 ; P_2 : Die Induktionshypothese liefert j_1 und j_2 mit $(\rho, P_1; P_2) \xrightarrow[\text{LOOP}]{j_1} (\rho', P_2) \xrightarrow[\text{LOOP}]{j_2} (\rho'', \varepsilon)$. Es werden genau $j_1 + j_2$ Schritte benötigt.

Terminierung von LOOP-Programmen

Satz

Alle LOOP-Programme terminieren. Daher sind alle LOOP-berechenbaren Funktionen total.

Beweis Zeige für alle (ρ, P) : Es gibt $j \in \mathbb{N}$ und ρ' , sodass $(\rho, P) \xrightarrow[\text{LOOP}]{}^{j} (\rho', \varepsilon)$. Durch Induktion über die Größe von P.

- ▶ Fall $(\rho, x_i := x_j \pm c)$: Es wird genau 1 Schritt benötigt.
- Fall P_1 ; P_2 : Die Induktionshypothese liefert j_1 und j_2 mit $(\rho, P_1; P_2) \xrightarrow[\text{LOOP}]{j_1} (\rho', P_2) \xrightarrow[\text{LOOP}]{j_2} (\rho'', \varepsilon)$. Es werden genau $j_1 + j_2$ Schritte benötigt.
- Fall **LOOP** x_i **DO** P **END**: Die Induktionshypothese j_i 's und ρ_i 's mit $(\rho_1, \textbf{LOOP} \ x_i \ \textbf{DO} \ P \ \textbf{END}) \xrightarrow[\text{LOOP}]{} (\rho_1, P; P; \dots; P) \xrightarrow[\text{LOOP}]{}^{j_1} (\rho_2, P; \dots; P) \xrightarrow[\text{LOOP}]{}^{j_2} \cdots \xrightarrow[\text{LOOP}]{}^{j_n} (\rho_{n+1}, \varepsilon) \text{ mit } n = \rho_1(x_i).$ Es werden genau $1 + j_1 + j_2 + \dots + j_n$ Schritte benötigt.

LOOP-Berechenbarkeit

▶ Da es partielle turingberechenbare Funktionen gibt, gilt: Es gibt turingberechenbare Funktionen, die nicht LOOP-berechenbar sind. Ein Beispiel ist die überall undefinierte Funktion.

LOOP-Berechenbarkeit

- Da es partielle turingberechenbare Funktionen gibt, gilt: Es gibt turingberechenbare Funktionen, die nicht LOOP-berechenbar sind. Ein Beispiel ist die überall undefinierte Funktion.
- Es gilt sogar:
 Es gibt intuitiv berechenbare Funktionen, die total sind, aber trotzdem nicht LOOP-berechenbar sind.
 - Ein Beispiel ist die Ackermannfunktion (später heute).

Befehl: $x_i := c$

Kodierung: $x_i := x_n + c$

wobei x_n keine der Eingabevariablen ist und

an keiner anderen Stelle im Programm verwendet wird

(und daher $\rho(x_n) = 0$)

Befehl: $x_i := c$

Kodierung: $x_i := x_n + c$

wobei x_n keine der Eingabevariablen ist und

an keiner anderen Stelle im Programm verwendet wird

(und daher $\rho(x_n) = 0$)

Befehl: $x_i := x_j$

Kodierung: $x_i := x_j + 0$

Befehl: $x_i := c$

Kodierung: $x_i := x_n + c$

wobei x_n keine der Eingabevariablen ist und

an keiner anderen Stelle im Programm verwendet wird

(und daher $\rho(x_n) = 0$)

Befehl: $x_i := x_j$

Kodierung: $x_i := x_j + 0$

Befehl: **IF** $x_i = 0$ **THEN** P **END**

Kodierung: $x_n := 1$;

LOOP x_i **DO** $x_n := 0$ **END**;

LOOP x_n **DO** P **END**

wobei x_n nicht in der Eingabe und nicht in P vorkommt

```
Befehl: IF x_i = 0 THEN P_1 ELSE P_2 END

Kodierung: x_m := 1; x_n := 1; LOOP x_i DO x_m := 0 END; LOOP x_m DO x_n := 0; P_1 END; LOOP x_n DO P_2 END

wobei x_m, x_n nicht in der Eingabe und nicht sonst irgendwo im Programm vorkommen
```

```
Befehl: IF x_i = 0 THEN P_1 ELSE P_2 END

Kodierung: x_m := 1;
x_n := 1;
LOOP x_i DO x_m := 0 END;
LOOP x_m DO x_n := 0; P_1 END;
LOOP x_n DO P_2 END

wobei x_m, x_n nicht in der Eingabe und nicht sonst irgendwo im Programm vorkommen
```

Kompliziertere if-Bedingungen gehen auch.

Befehl: $x_i := x_j + x_k$

Kodierung: $x_{\ell} := x_j$;

LOOP x_k **DO** $x_\ell := x_\ell + 1$ **END**;

 $x_i := x_\ell$

wobei x_ℓ nicht in der Eingabe

und nicht sonst irgendwo im Programm vorkommt

Befehl: $x_i := x_j + x_k$

Kodierung: $x_{\ell} := x_j$;

LOOP x_k **DO** $x_\ell := x_\ell + 1$ **END**;

 $x_i := x_\ell$

wobei x_{ℓ} nicht in der Eingabe

und nicht sonst irgendwo im Programm vorkommt

Dies zeigt auch, dass die Additionsfunktion $f(x_1, x_2) = x_1 + x_2$ LOOP-berechenbar ist.

Andere Rechenoperationen (wie *, mod, div) gehen analog.