Ludwig-Maximilians-Universität München Institut für Informatik Abgabe bis 29. Mai 2024, 10:00 Uhr

Lösungsvorschlag zur Übung 5 zur Vorlesung Theoretische Informatik für Studierende der Medieninformatik

TIMI5-1 Reguläre und nicht-reguläre Sprachen

(2 Punkte)

a) Zeigen Sie, dass die Sprache $\{a^ib^jc^k \mid i,j,k \in \mathbb{N} \text{ und wenn } i=2,\text{ dann } j< k \}$ über dem Alphabet $\Sigma=\{a,b,c\}$ die Pumping-Eigenschaft erfüllt.

LÖSUNGSVORSCHLAG:

Wir wählen n = 4.

Sei $z = a^i b^j c^k \in L$ mit $|z| \ge n$.

Wir müssen für jedes solche z eine Zerlegung z=uvw angeben mit $|uv| \le n$, |v| > 1 und $uv^lw \in L$ für alle $l \in \mathbb{N}$.

Vollständige Fallunterscheidung:

- i = 2. Wähle die Zerlegung $u = \varepsilon$, v = aa, $w = b^j c^k$. Es ist $uv^l w \in L$ für jedes $l \in \mathbb{N}$, denn:
 - Für l = 1 ist $uv^l w = z \in L$.
 - Für $l \neq 1$ enthält uv^lw nicht genau 2 a's und somit ist die Anzahl der b's und c's wieder irrelevant.
- $i \ge 4$. Wähle die Zerlegung $u = a^3$, v = a, $w = a^{i-4}b^jc^k$ mit $|uv| \le 4$ und $|v| \ge 1$. Es ist $uv^lw \in L$ für jedes $l \in \mathbb{N}$, da die Anzahl der a's in uv^lw immer mindestens 3 ist und somit die Anzahl der b's und c's irrelevant ist.
- i < 4 und $i \neq 2$. Wegen $|z| \geq 4$ ist $j \geq 1$ oder $k \geq 1$.
 - Wenn $j \ge 1$: Wähle die Zerlegung $u = a^i$, v = b, $w = b^{j-1}c^k$ mit $|uv| \le 4$ und $|v| \ge 1$. Es ist $uv^lw \in L$ für jedes $l \in \mathbb{N}$, da die Anzahl der a's in uv^lw immer $i \ne 2$ bleibt und somit die Anzahl der b's und c's irrelevant ist.
 - Wenn j=0: Wähle die Zerlegung $u=a^i, v=c, w=c^{k-1}$. Diese Zerlegung erfüllt mit analoger Begründung alle Bedingungen.
- b) Sind die folgenden Sprachen L_i , $i \in \{1,2,3\}$, über den Alphabeten Σ_i regulär? Wenn ja, geben Sie einen regulären Ausdruck an, der L_i erkennt. (Sie müssen nicht beweisen, dass der reguläre Ausdruck L_i erkennt.) Wenn nein, zeigen Sie die Nichtregularität mit dem Pumping-Lemma für reguläre Sprachen.

i) $L_1 = \{ac^iba^jb \mid i, j \in \mathbb{N}\} \text{ mit } \Sigma_1 = \{a, b, c\}$

LÖSUNGSVORSCHLAG:

Regulär; $L_1 = L(ac^*ba^*b)$.

ii) $L_2 = \{a^p b^p \mid p \in \mathbb{N} \text{ ist prim}\} \text{ mit } \Sigma_2 = \{a, b\}$

LÖSUNGSVORSCHLAG:

Nicht regulär. Beweis mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L_2$ als $z = a^p b^p$, wobei p die kleinste Primzahl mit $p \ge n$ ist. Damit ist $|z| \ge n$.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_2$ für jedes $i \in \mathbb{N}$. Da $|uv| \le n$ ist, ist $v = a^k$ für ein $k \in \mathbb{N}_{>0}$.

Wir wählen i = 0. Das Wort uv^iw hat weniger a's als b's und somit ist $uv^iw \notin L_2$. Widerspruch.

iii) $L_3 = \{a^{2n+1} \mid n \in \mathbb{N}\} \text{ mit } \Sigma_3 = \{a\}.$

LÖSUNGSVORSCHLAG:

Regulär; $L_3 = L(a(aa)^*)$.

TIMI5-2 Konservative Erweiterungen regulärer Ausdrücke

(0 Punkte)

In der Praxis werden reguläre Ausdrücke häufig mit weiteren Operatoren erweitert. Eine solche Erweiterung ist *konservativ*, wenn die erweiterten regulären Ausdrücke nur reguläre Sprachen beschreiben. Geben Sie in jeder Teilaufgabe an, ob die beschriebene Erweiterung konservativ ist, und beweisen Sie Ihre Antwort. Dabei sei α ein regulärer Ausdruck über einem beliebigen Alphabet.

a) α ?: Teilwörter, die von α erkannt werden, dürfen vorkommen, müssen aber nicht. Die Semantik von α ? ist also $L(\alpha) = \{\epsilon\} \cup L(\alpha)$.

LÖSUNGSVORSCHLAG:

Die Erweiterung ist konservativ. Es ist $L(\alpha?) = L(\alpha|\epsilon)$, das heißt jeder Teilausdruck α ? kann durch den regulären Ausdruck $\alpha|\epsilon$ ersetzt werden, ohne die Bedeutung des gesamten Ausdrucks zu ändern.

b) α^+ : wie α^* , aber α muss mindestens einmal vorkommen.

$$L(\alpha^+) = \bigcup_{i \in \mathbb{N}_{>0}} L(\alpha)^i = L(\alpha) \cup L(\alpha)^2 \cup L(\alpha)^3 \cup \cdots$$

LÖSUNGSVORSCHLAG:

Konservativ, denn $L(\alpha^+) = L(\alpha \alpha^*)$.

c) $\alpha^{\{i,j\}}$ mit $i,j \in \mathbb{N}$ und $i \leq j$: wie α^* , aber α muss mindestens i-mal und darf höchstens j-mal wiederholt werden.

$$L(\alpha^{\{i,j\}}) = \bigcup_{k=i}^{j} L(\alpha)^k = L(\alpha)^i \cup L(\alpha)^{i+1} \cup L(\alpha)^{i+2} \cup \dots \cup L(\alpha)^j$$

LÖSUNGSVORSCHLAG:

Konservativ, denn

$$L(\alpha^{\{i,j\}}) = L(\underbrace{\alpha\alpha\ldots\alpha}_{i\text{-mal}}\underbrace{\alpha?\alpha?\ldots\alpha?}_{(j-i)\text{-mal}})$$

LÖSUNGSVORSCHLAG:

Nicht konservativ. Der Ausdruck $((a|b)^*)\setminus 1$ erkennt die Sprache $\{ww\mid w\in \{a,b\}^*\}$, die bekanntlich nicht regulär ist.