Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2023

NP-Vollständigkeit von SETCOVER, SUBSETSUM, KNAPSACK, PARTITION und BINPACKING

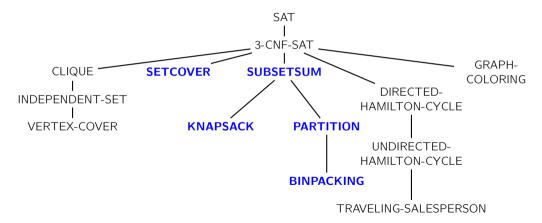
Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik

Stand: 17. Juli 2023 Folien ursprünglich von PD Dr. David Sabel

Inhalt der kommenden Vorlesungen

 \mathcal{NP} -Vollständigkeitsbeweise für eine Auswahl an Problemen.



Das SETCOVER-Problem

Definition (SETCOVER-Problem)

Das SETCOVER-Problem lässt sich in der gegeben/gefragt-Notation formulieren durch

gegeben: Mengen T_1, \ldots, T_k mit $T_1, \ldots, T_k \subseteq M$, wobei M eine endliche Grundmenge ist und eine Zahl n < k

gefragt: Gibt es eine Auswahl von n Mengen T_{i_1}, \ldots, T_{i_n} $(i_i \in \{1, \ldots, k\})$ mit

 $T_{i_1} \cup \cdots \cup T_{i_n} = M$?

Das SETCOVER-Problem

Definition (SETCOVER-Problem)

Das SETCOVER-Problem lässt sich in der gegeben/gefragt-Notation formulieren durch

gegeben: Mengen T_1, \ldots, T_k mit $T_1, \ldots, T_k \subseteq M$, wobei M eine endliche Grundmenge ist und eine Zahl n < k

gefragt: Gibt es eine Auswahl von *n* Mengen T_{i_1}, \ldots, T_{i_n} $(i_i \in \{1, \ldots, k\})$ mit $T_{i_1} \cup \cdots \cup T_{i_n} = M$?

Beispiel:

 $T_1 = \{1, 2, 3, 5\}, T_2 = \{1, 2\}, T_3 = \{3, 4\}, T_4 = \{3\} \text{ mit } M = \{1, 2, 3, 4, 5\} \text{ und } n = 2$

Das SETCOVER-Problem

Definition (SETCOVER-Problem)

Das SETCOVER-Problem lässt sich in der gegeben/gefragt-Notation formulieren durch

gegeben: Mengen T_1, \ldots, T_k mit $T_1, \ldots, T_k \subseteq M$, wobei M eine endliche Grundmenge ist und eine Zahl n < k

gefragt: Gibt es eine Auswahl von *n* Mengen T_{i_1}, \ldots, T_{i_n} $(i_i \in \{1, \ldots, k\})$ mit $T_{i_1} \cup \cdots \cup T_{i_n} = M$?

Beispiel:

$$T_1 = \{1, 2, 3, 5\}, T_2 = \{1, 2\}, T_3 = \{3, 4\}, T_4 = \{3\} \text{ mit } M = \{1, 2, 3, 4, 5\} \text{ und } n = 2$$
 Lösung: T_1, T_3 , da $T_1 \cup T_3 = M$.

\mathcal{NP} -Vollständigkeit von SETCOVER (1)

Satz

SETCOVER ist \mathcal{NP} -vollständig.

Beweis, Teil 1: SETCOVER $\in \mathcal{NP}$

- ▶ Rate nichtdeterministisch die n Mengen T_{i_1}, \ldots, T_{i_n} .
- ▶ Verifiziere deterministisch, ob $T_{i_1} \cup \cdots \cup T_{i_n} = M$ gilt.
- ▶ Daher kann SETCOVER in Polynomialzeit auf einer NTM entschieden werden.

\mathcal{NP} -Vollständigkeit von SETCOVER (2)

Beweis, Teil 2: SETCOVER ist \mathcal{NP} -schwer.

- ► Ziel: 3-CNF-SAT <_n SETCOVER.
- ightharpoonup Sei $F = K_1 \wedge \cdots \wedge K_m$ eine 3-CNF.
- \triangleright Seien x_1, \ldots, x_n die in F vorkommenden aussagenlogischen Variablen.
- ► Setze $M = \{1, ..., m + n\}$.
- ightharpoonup Für $i = 1, \ldots, n$ sei

$$T_{i,a} = \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$$

 $T_{i,b} = \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$

- ▶ Das Mengensystem sei $T_{1,a}, \ldots, T_{n,a}, T_{1,b}, \ldots, T_{n,b} \subseteq M$.
- Gesucht wird die Vereinigung von *n* Mengen.

5/28

3-CNF:

$$(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2)$$

3-CNF

$$(x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

SET-COVER-Instanz dazu:

```
T_{1,a} = \{i \mid x_1 \text{ kommt in Klausel } K_i \text{ vor}\} \cup \{m+1\} = \{1,3,5\}
T_{1,b} = \{i \mid \neg x_1 \text{ kommt in Klausel } K_i \text{ vor}\} \cup \{m+1\} = \{2,4,5\}
T_{2,a} = \{i \mid x_2 \text{ kommt in Klausel } K_i \text{ vor}\} \cup \{m+2\} = \{1,4,6\}
T_{2,b} = \{j \mid \neg x_2 \text{ kommt in Klausel } K_i \text{ vor}\} \cup \{m+2\} = \{2,3,6\}
```

3-CNF

$$(x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

SET-COVER-Instanz dazu:

$$\begin{array}{lll} T_{1,a} &= \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{1,3,5\} \\ T_{1,b} &= \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{2,4,5\} \\ T_{2,a} &= \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{1,4,6\} \\ T_{2,b} &= \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{2,3,6\} \end{array}$$

Gesucht: Vereinigung von n=2 Mengen T_{i_1,i_2} , T_{i_2,i_2} mit

$$T_{i_1,j_1} \cup T_{i_2,j_2} = \{1, 2, 3, 4, 5, 6\}$$

3-CNF

$$(x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

SET-COVER-Instanz dazu:

$$\begin{array}{lll} T_{1,a} &= \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{1,3,5\} \\ T_{1,b} &= \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{2,4,5\} \\ T_{2,a} &= \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{1,4,6\} \\ T_{2,b} &= \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{2,3,6\} \end{array}$$

Gesucht: Vereinigung von n=2 Mengen T_{i_1,i_2} , T_{i_2,i_2} mit

 $T_{i_1 i_2} \cup T_{i_2 i_3} = \{1, 2, 3, 4, 5, 6\}$

Keine Lösung

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SET-COVER-Instanz dazu:

```
\begin{array}{lll} T_{1,a} &= \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{1,2,4\} \\ T_{1,b} &= \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{3,4\} \\ T_{2,a} &= \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{1,5\} \\ T_{2,b} &= \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{2,3,5\} \\ T_{3,a} &= \{j \mid x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} &= \{1,3,6\} \\ T_{3,b} &= \{j \mid \neg x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} &= \{6\} \end{array}
```

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SET-COVER-Instanz dazu:

$$\begin{array}{lll} T_{1,a} &= \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{1,2,4\} \\ T_{1,b} &= \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{3,4\} \\ T_{2,a} &= \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{1,5\} \\ T_{2,b} &= \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{2,3,5\} \\ T_{3,a} &= \{j \mid x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} &= \{1,3,6\} \\ T_{3,b} &= \{j \mid \neg x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} &= \{6\} \end{array}$$

Gesucht: Vereinigung von n=3 Mengen T_{i_1,j_1} , T_{i_2,j_2} , T_{i_3,j_3} mit $T_{i_1,j_1} \cup T_{i_2,j_2} \cup T_{i_3,j_3} = \{1,2,3,4,5,6\}$

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SFT-COVFR-Instanz dazu:

$$\begin{array}{lll} T_{1,a} &= \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{1,2,4\} \\ T_{1,b} &= \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{3,4\} \\ T_{2,a} &= \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{1,5\} \\ T_{2,b} &= \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{2,3,5\} \\ T_{3,a} &= \{j \mid x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} &= \{1,3,6\} \\ T_{3,b} &= \{j \mid \neg x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} &= \{6\} \end{array}$$

Gesucht: Vereinigung von n = 3 Mengen $T_{i_1 i_2}$, $T_{i_2 i_3}$, $T_{i_3 i_4}$ mit $T_{i_1,i_2} \cup T_{i_2,i_2} \cup T_{i_3,i_4} = \{1,2,3,4,5,6\}$

Lösung z.B. $T_{1,a}, T_{2,b}, T_{3,b}$

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SET-COVER-Instanz dazu:

$$\begin{array}{lll} T_{1,a} &= \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{1,2,4\} \\ T_{1,b} &= \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{3,4\} \\ T_{2,a} &= \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{1,5\} \\ T_{2,b} &= \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{2,3,5\} \\ T_{3,a} &= \{j \mid x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} &= \{1,3,6\} \\ T_{3,b} &= \{j \mid \neg x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} &= \{6\} \end{array}$$

Gesucht: Vereinigung von n = 3 Mengen $T_{i_1,i_1}, T_{i_2,i_2}, T_{i_3,i_3}$ mit $T_{i_1,i_2} \cup T_{i_2,i_2} \cup T_{i_3,i_4} = \{1,2,3,4,5,6\}$

Lösung z.B. $T_{1,a}, T_{2,b}, T_{3,b}$

Belegung dazu $I(x_1) = 1$, $I(x_2) = 0$, $I(x_3) = 0$

7/28

\mathcal{NP} -Vollständigkeit von SETCOVER (3)

```
Zur Erinnerung: T_{i,a} = \{j \mid Literal \ x_i \ kommt \ in \ Klausel \ K_j \ vor\} \cup \{m+i\}

T_{i,b} = \{j \mid Literal \ \neg x_i \ kommt \ in \ Klausel \ K_i \ vor\} \cup \{m+i\}
```

Sei I Belegung mit I(F) = 1.

- \blacktriangleright Wenn $I(x_i) = 1$, dann wähle $T_{i,a}$, sonst wähle $T_{i,b}$.
- Ergibt n gewählte Mengen.
- ▶ Jede Zahl aus M kommt vor:
 - ▶ Da jede Klausel durch / erfüllt ist, kommen alle 1,..., m vor.
 - Da jede Variable x_i mit 0 oder 1 belegt wird, kommen alle $m+1, \ldots, m+n$ vor.
- ▶ Vereinigung der *n* Mengen ergibt daher *M*.
- SETCOVER ist lösbar.

\mathcal{NP} -Vollständigkeit von SETCOVER (4)

$$\textit{Zur Erinnerung:} \begin{array}{ll} T_{i,a} &= \{j \mid \textit{Literal } x_i \textit{ kommt in Klausel } K_j \textit{ vor}\} \cup \{m+i\} \\ T_{i,b} &= \{j \mid \textit{Literal } \neg x_i \textit{ kommt in Klausel } K_j \textit{ vor}\} \cup \{m+i\} \end{array}$$

Umgekehrt: Seien $U_1, \ldots, U_n \subseteq T_{1,a}, \ldots, T_{n,a}, T_{1,b}, \ldots, T_{n,b}$ mit $U_1 \cup \cdots \cup U_n = M$.

- ▶ Da m+1,...,m+n in der Vereinigung sind, muss für jedes i=1,...,n genau entweder $T_{i,a}$ oder $T_{i,b}$ in der Vereinigung sein.
- ▶ O.B.d.A. $U_i \in \{T_{i,a}, T_{i,b}\}.$
- Setze $I(x_i) = 1$ wenn $U_i = T_{i,a}$ und $I(x_i) = 0$ wenn $U_i = T_{i,b}$.
- ▶ Da 1,..., m in der Vereinigung sind, wird in jeder Klausel ein Literal durch / wahr gemacht.
- F ist erfüllbar.

Da diese Übersetzung in Polynomialzeit berechenbar ist, gilt 3-SAT-CNF \leq_p SETCOVER.

Das SUBSETSUM-Problem

Definition (SUBSETSUM-Problem)

Das SUBSETSUM-Problem lässt sich in der gegeben/gefragt-Notation wie folgt formulieren:

gegeben: Natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$ und $s \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} a_i = s$?

Beispiel: $a_1, \ldots, a_6 = 1, 21, 5, 16, 12, 19$ und s = 49

Lösung: 2, 4, 5, da 21 + 16 + 12 = 49

Satz

Das SUBSETSUM-Problem ist \mathcal{NP} -vollständig.

Beweis, Teil 1: SUBSETSUM $\in \mathcal{NP}$:

- ▶ Rate nichtdeterministisch eine Teilmenge $I \subseteq \{1, ..., k\}$.
- ▶ Prüfe deterministisch, ob $\sum_{i \in I} a_i = s$ gilt.
- ▶ Daher: SUBSETSUM in Polynomialzeit auf NTM entscheidbar.

SUBSETSUM ist \mathcal{NP} -schwer: Zeige 3-CNF-SAT \leq_p SUBSETSUM.

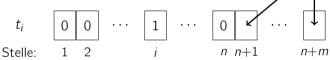
- ▶ Sei $F = K_1 \land \cdots \land K_m$ eine 3-CNF.
- Annahme: Alle Klauseln K_j bestehen aus genau 3 Literalen. (Vermehrfache Literale anderenfalls.)
- ▶ Seien $Var(F) = \{x_1, ..., x_n\}$ die Variablen in F.

Konstruktion der SUBSETSUM-Instanz:

Erzeuge (n + m)-stellige Zahlen t_i , f_i für $i = 1, \ldots, n$:

Konstruktion der SUBSETSUM-Instanz:

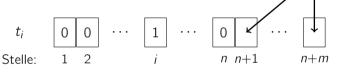
Erzeuge (n+m)-stellige Zahlen t_i, f_i für $i=1,\ldots,n$: 0 oder 1, je nachdem, $\text{ob } x_i \in K_j \text{ vorkommt}$



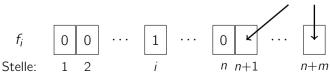
Konstruktion der SUBSETSUM-Instanz

Erzeuge (n+m)-stellige Zahlen t_i , f_i für $i=1,\ldots,n$:

0 oder 1, je nachdem, ob $x_i \in K_i$ vorkommt



0 oder 1, je nachdem, ob $\neg x_i \in K_i$ vorkommt



13/28

Weitere Zahlen:

Erzeuge (n + m)-stellige Zahlen c_i , d_i für j = 1, ..., m:

Weitere Zahlen:

Erzeuge (n+m)-stellige Zahlen c_j , d_j für $j=1,\ldots,m$:

$$C_j$$
 $\begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots & 1 & \cdots & 0 \end{bmatrix}$ Stelle: $\begin{bmatrix} 1 & 2 & & n & n+1 & & n+j & & n+m \end{bmatrix}$ $\begin{bmatrix} n+m & n+j & & n+m \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots & 2 & \cdots & 0 \end{bmatrix}$ Stelle: $\begin{bmatrix} 1 & 2 & & n & n+1 & & n+j & & n+m \end{bmatrix}$

Weitere Zahlen:

Erzeuge (n + m)-stellige Zahlen c_i , d_i für j = 1, ..., m:

$$c_j$$
 0 0 \cdots 0 0 \cdots 1 \cdots 0

$$d_j$$
 0 0 \cdots 0 0 \cdots 2 \cdots 0

Stelle: 1 2 n n + 1n+i

Zielsumme s:

Sei also
$$f(F) = ((t_1, ..., t_n, f_1, ..., f_n, c_1, ..., c_m, d_1, ..., d_m), s).$$

Es gilt:

- ▶ Die Summe jeder Teilmenge der Zahlen erzeugt keine Überträge.
- ▶ Die n Einsen in s sorgen dafür, dass in l jeweils t_i oder f_i enthalten ist aber nicht beide.
- ▶ Die Wahl der t_i und f_i in I zählt gleichzeitig in den Stellen n+1 bis n+m, welche Klauseln durch Setzen von x_i auf 1 (bzw. x_i auf 0) wahr gemacht werden.
- ▶ In der Summe kann dies pro Stelle *j* eine Zahl zwischen 0 und 3 sein.
- ▶ Durch Hinzunahme der c_j und/oder d_j kann die Zielsumme 4 pro Stelle j erreicht werden, wenn mindestens 1 Literal wahr ist.

$$F = (x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor \neg x_1)$$
 wird übersetzt in:

$$a_1 = t_1 = 110$$
 $a_2 = f_1 = 101$
 $a_3 = c_1 = 010$
 $a_4 = c_2 = 001$
 $a_5 = d_1 = 020$
 $a_6 = d_2 = 002$
 $s = 144$

$$F = (x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor \neg x_1)$$
 wird übersetzt in:

$$a_1 = t_1 = 110$$
 $a_2 = f_1 = 101$
 $a_3 = c_1 = 010$
 $a_4 = c_2 = 001$
 $a_5 = d_1 = 020$
 $a_6 = d_2 = 002$
 $s = 144$

Keine Lösung

$$F = (x_1 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_4) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3 \lor x_4)$$
 wird übersetzt in

$$a_1 = t_1 = 100010100$$
 $a_2 = t_2 = 010011010$
 $a_3 = t_3 = 001000001$
 $a_4 = t_4 = 000100101$
 $a_5 = f_1 = 100001010$
 $a_6 = f_2 = 010000101$
 $a_7 = f_3 = 001001010$
 $a_8 = f_4 = 000110000$

$$a_9 = c_1 = 000010000$$
 $a_{10} = c_2 = 000001000$
 $a_{11} = c_3 = 000000100$
 $a_{12} = c_4 = 000000010$
 $a_{13} = c_5 = 000000001$

$$a_{14} = d_1 = 000020000$$

 $a_{15} = d_2 = 000002000$
 $a_{16} = d_3 = 000000200$
 $a_{17} = d_4 = 000000020$
 $a_{18} = d_5 = 000000002$

$$s = 111144444$$

$$F = (x_1 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_4) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3 \lor x_4)$$
 wird übersetzt in

Lösung
$$I = \{2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18\}$$

Erfüllende Belegung $J(x_1) = 0, J(x_2) = 1, J(x_3) = 0, J(x_4) = 1$

Sei / eine Lösung der SUBSETSUM-Instanz $((t_1,\ldots,t_n,f_1,\ldots,f_n,c_1,\ldots,c_m,d_1,\ldots,d_m),s).$ Konstruiere Belegung *J* für *F*:

- ▶ Setze für $i \in I$ mit 1 < i < n: $J(x_i) = 1$.
- ▶ Setze für $i \in I$ mit $n+1 \le n+i \le n+n$: $J(x_i) = 0$.
- Macht in ieder Klausel mindestens 1 Literal wahr.

18/28

Sei / eine Lösung der SUBSETSUM-Instanz $((t_1,\ldots,t_n,f_1,\ldots,f_n,c_1,\ldots,c_m,d_1,\ldots,d_m),s).$ Konstruiere Belegung *J* für *F*:

- ▶ Setze für $i \in I$ mit 1 < i < n: $J(x_i) = 1$.
- ▶ Setze für $i \in I$ mit $n+1 \le n+i \le n+n$: $J(x_i) = 0$.
- ▶ Macht in ieder Klausel mindestens 1 Literal wahr.

Umgekehrt: Sei J erfüllende Belegung für F. Konstruiere Indexmenge I:

- ▶ I enthält den Index von t_i wenn $J(x_i) = 1$.
- ▶ I enthält den Index von f_i wenn $J(x_i) = 0$.
- \blacktriangleright I enthält die Indizes der c_i , d_i , sodass sich die hinteren m Stellen zu 4 aufsummieren: Immer möglich, da für jede Stelle die Summe schon mindestens 1 ist (da *J* eine erfüllende Belegung ist).

Sei / eine Lösung der SUBSETSUM-Instanz

$$((t_1,\ldots,t_n,f_1,\ldots,f_n,c_1,\ldots,c_m,d_1,\ldots,d_m),s).$$

Konstruiere Belegung *J* für *F*:

- ▶ Setze für $i \in I$ mit 1 < i < n: $J(x_i) = 1$.
- ▶ Setze für $i \in I$ mit $n+1 \le n+i \le n+n$: $J(x_i) = 0$.
- ▶ Macht in ieder Klausel mindestens 1 Literal wahr.

Umgekehrt: Sei J erfüllende Belegung für F. Konstruiere Indexmenge I:

- ▶ I enthält den Index von t_i wenn $J(x_i) = 1$.
- ▶ I enthält den Index von f_i wenn $J(x_i) = 0$.
- \blacktriangleright I enthält die Indizes der c_i , d_i , sodass sich die hinteren m Stellen zu 4 aufsummieren: Immer möglich, da für jede Stelle die Summe schon mindestens 1 ist (da *J* eine erfüllende Belegung ist).

Damit folgt: 3-CNF-SAT \leq_n SUBSETSUM.

Das KNAPSACK-Problem

Definition (KNAPSACK-Problem)

Das KNAPSACK-Problem lässt sich in der gegeben/gefragt-Notation wie folgt formulieren:

gegeben: k Gegenstände mit Gewichten $w_1, \ldots, w_k \in \mathbb{N}$ und

Nutzenwerten $n_1, \ldots, n_k \in \mathbb{N}$.

sowie zwei Schwellenwerte $s_w, s_n \in \mathbb{N}$

gefragt: Gibt es Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i=1}^{n} w_i \leq s_w$ und $\sum_{i=1}^{n} n_i \geq s_n$?

Das KNAPSACK-Problem

Definition (KNAPSACK-Problem)

Das KNAPSACK-Problem lässt sich in der gegeben/gefragt-Notation wie folgt formulieren:

gegeben: k Gegenstände mit Gewichten $w_1, \ldots, w_k \in \mathbb{N}$ und

Nutzenwerten $n_1, \ldots, n_k \in \mathbb{N}$.

sowie zwei Schwellenwerte $s_w, s_n \in \mathbb{N}$

gefragt: Gibt es Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i=1}^{n} w_i \le s_w$ und $\sum_{i=1}^{n} n_i \ge s_n$?

Beachte: Für $w_i = n_i$ und $s_n = s_w$ ergibt sich genau das SUBSETSUM-Problem.

\mathcal{NP} -Vollständigkeit von KNAPSACK

Satz

KNAPSACK ist \mathcal{NP} -vollständig.

\mathcal{NP} -Vollständigkeit von KNAPSACK

Satz

KNAPSACK ist \mathcal{NP} -vollständig.

Beweis:

$KNAPSACK \in \mathcal{NP}$:

- ▶ Rate eine Teilmenge $I \subseteq \{1, ..., k\}$ nichtdeterministisch.
- ▶ Prüfe deterministisch, ob $\sum_{i \in I} w_i \leq s_w$ und $\sum_{i \in I} n_i \geq s_n$.
- ▶ Daher kann KNAPSACK in Polynomialzeit auf einer NTM entschieden werden.

\mathcal{NP} -Vollständigkeit von KNAPSACK

Satz

KNAPSACK ist \mathcal{NP} -vollständig.

Beweis:

$KNAPSACK \in \mathcal{NP}$:

- ▶ Rate eine Teilmenge $I \subseteq \{1, ..., k\}$ nichtdeterministisch.
- ▶ Prüfe deterministisch, ob $\sum_{i \in I} w_i \leq s_w$ und $\sum_{i \in I} n_i \geq s_n$.
- ▶ Daher kann KNAPSACK in Polynomialzeit auf einer NTM entschieden werden.

KNAPSACK ist \mathcal{NP} -schwer:

- ▶ Sei $((a_1, \ldots, a_k), s)$ eine SUBSETSUM-Instanz
- ▶ Sei $f((a_1, ..., a_k), s) = ((w_1, ..., w_k), (n_1, ..., n_k), s_w, s_m)$ mit $w_i = a_i, n_i = a_i$ für $i = 1, \ldots, k$ und $s_w = s$ und $s_m = s$.
- \blacktriangleright $((a_1,\ldots,a_k),s)$ lösbar q.d.w. $f((a_1,\ldots,a_k),s)$ lösbar.
- f ist in polynomieller Zeit von einer DTM berechenbar.
- ► SUBSETSUM < , KNAPSACK.

Das PARTITION-Problem

Definition (PARTITION-Problem)

Das PARTITION-Problem lässt sich in der gegeben/gefragt-Notation wie folgt formulieren:

gegeben: Natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} a_i = \sum_{i \in \{1, ..., k\} \setminus I} a_i$?

$\mathcal{NP} ext{-Vollständigkeit}$ von PARTITION

Satz

PARTITION ist \mathcal{NP} -vollständig.

Beweis:

PARTITION $\in \mathcal{NP}$

- ▶ Rate nichtdeterministisch $I \subseteq \{1, ..., k\}$.
- ▶ Prüfe deterministisch, ob $\sum_{i \in I} a_i = \sum_{i \in \{1,...,k\} \setminus I} a_i$.
- ▶ Daher kann PARTITION in Polynomialzeit auf einer NTM entschieden werden.

\mathcal{NP} -Vollständigkeit von PARTITION (2)

PARTITION ist \mathcal{NP} -schwer: Wir zeigen SUBSETSUM \leq_p PARTITION.

- ightharpoonup Sei $f((a_1, \ldots, a_k), s) = (a_1, \ldots, a_k, a_{k+1}, a_{k+2})$ mit $a_{k+1} = A + s$ und $a_{k+2} = 2A - s$, wobei $A = \sum_{i=1}^{k} a_i$.
- ▶ Beachte: $\sum_{i=1}^{k+2} a_i = 4A$.

Beispiel

- ► Sei ((1, 2, 3, 4, 5, 6), 14) eine SUBSETSUM-Instanz.
- ► PARTITION-Instanz dazu: (1, 2, 3, 4, 5, 6, 35, 28)
- ► Lösung $I = \{1, 3, 4, 6, 8\}$ da 1 + 3 + 4 + 6 + 28 = 42 = 2 + 5 + 35
- Lösung der SUBSETSUM-Instanz: {1, 3, 4, 6}

\mathcal{NP} -Vollständigkeit von PARTITION (3)

- ▶ Wenn $(a_1, \ldots, a_k, a_{k+1}, a_{k+2})$ eine Lösung $I \subseteq \{1, \ldots, k+2\}$ hat, dann $\sum_{i \in I} a_i = 2A = \sum_{i \in \{1, ..., k+2\} \setminus I} a_i$.
 - Nicht k + 1 und k + 2 in I. da sonst die Summe zu groß ist.
 - \blacktriangleright Wenn $k+2 \in I$, dann $I'=I \setminus \{k+2\}$.
 - ▶ Wenn $k + 1 \in I$, dann $I' = (\{1, ..., k + 2\} \setminus I) \setminus \{k + 2\}$.
 - ▶ In beiden Fällen ist $\sum_{i \in I'} = s$ und I' ist Lösung von $((a_1, \ldots, a_k), s)$.

Umgekehrt: Wenn $I \subseteq \{1, ..., k\}$ eine Lösung für $((a_1, ..., a_k), s)$ ist, dann ist $I \cup \{k+2\}$ eine Lösung für $(a_1, \ldots, a_k, a_{k+1}, a_{k+2})$.

- ▶ Daher gilt $((a_1, \ldots, a_k), s)$ lösbar g.d.w. $f((a_1, \ldots, a_k), s)$ lösbar.
- Zudem: f kann von einer DTM in polynomieller Zeit berechnet werden.
- ▶ SUBSETSUM \leq_p PARTITION.

Das BINPACKING-Problem

Definition (BINPACKING-Problem)

Das BINPACKING-Problem lässt sich in der gegeben/gefragt-Notation wie folgt formulieren:

gegeben: Natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$, die Behältergröße $b \in \mathbb{N}$ und

die Anzahl der Behälter m

gefragt: Kann man alle gegeben Zahlen so auf die Behälter aufteilen, sodass keiner

der Behälter überläuft?

Formal: Gibt es eine totale Funktion assign : $\{1, ..., k\} \rightarrow \{1, ..., m\}$,

sodass für alle $j \in \{1, ..., m\}$ gilt: $\left(\sum_{i: assign(i)=j} a_i\right) \leq b$?

\mathcal{NP} -Vollständigkeit von BINPACKING (1)

Satz

BINPACKING ist \mathcal{NP} -vollständig.

Beweis: BINPACKING $\in \mathcal{NP}$

- \triangleright Rate nichtdeterministisch für jede Zahl a_i in welchen Behälter sie gehört.
- ► Prüfe deterministisch, dass die geratene Zuordnung keinen Behälter überlaufen lässt.
- ▶ BINPACKING kann daher in Polynomialzeit auf einer NTM entschieden werden.

\mathcal{NP} -Vollständigkeit von BINPACKING (2)

BINPACKING ist \mathcal{NP} -schwer

- ▶ Sei $(a_1, ..., a_k)$ eine PARTITION-Instanz.
- ▶ Sei $f(a_1, ..., a_k)$ die BINPACKING-Instanz mit Zahlen $a_1, ..., a_k$,

Behältergröße
$$b = \left\lfloor \frac{\sum_{i=1}^{k} a_i}{2} \right\rfloor$$
 und $m = 2$ Behältern.

- Wenn $\sum_{i=1}^{k} a_i$ ungerade, dann ist die PARTITION-Instanz unlösbar und die BINPACKING-Instanz ebenso.
- Wenn $I \subseteq \{1, ..., k\}$ Lösung für PARTITION, dann ist $assign(i) = \begin{cases} 1, & \text{wenn } i \in I \\ 2, & \text{wenn } i \notin I \end{cases}$ eine Lösung für BINPACKING.
- Mit $I = \{i \mid 1 \le i \le k, assign(i) = 1\}$ kann aus Lösung für BINPACKING eine Lösung für PARTITION erstellt werden.
- ▶ f ist polynomiell berechenbar: PARTITION \leq_p BINPACKING.

