Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2023

Das Postsche Korrespondenzproblem

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik

Stand: 4. Juli 2023 Folien ursprünglich von PD Dr. David Sabel

Das Postsche Korrespondenzproblem

Überblick

- ► Vorgeschlagen von Emil Post 1946
- Es ist ein einfaches aber unentscheidbares Problem.
- Es wird häufig verwendet, um es auf andere Probleme zu reduzieren und deren Unentscheidbarkeit zu zeigen.
- Es hat nichts mit Turingmaschinen und deren Akzeptanzverhalten zu tun (im Gegensatz zu den verschiedenen Varianten vom Halteproblem).

Definition des Postschen Korrespondenzproblems

Definition (Postsches Korrespondenzproblem)

Gegeben sei ein Alphabet Σ und eine Folge von Wortpaaren

$$K = ((x_1, y_1), \dots, (x_k, y_k))$$

mit $x_i, y_i \in \Sigma^+$. Das **Postsche Korrespondenzproblem (PCP)** ist die Frage, ob es für die gegebene Folge K eine Folge von Indizes i_1, \ldots, i_m mit $i_i \in \{1, \ldots, k\}$ gibt, sodass

$$x_{i_1}\cdots x_{i_m}=y_{i_1}\cdots y_{i_m}$$

PCP ist wie ein Domino-Spiel

Spielstein**arten**:
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_k \\ y_k \end{pmatrix}$$

Gesucht: Aneinandereihung der Spielsteine, sodass oben wie unten dasselbe Wort abgelesen werden kann. Dabei dürfen beliebig (aber endlich) viele Spielsteine verwendet werden.

PCP ist wie ein Domino-Spiel

Spielstein**arten**:
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_k \\ y_k \end{pmatrix}$$

Gesucht: Aneinandereihung der Spielsteine, sodass oben wie unten dasselbe Wort abgelesen werden kann. Dabei dürfen beliebig (aber endlich) viele Spielsteine verwendet werden.

Beispiel:

Sei
$$K = \left(\begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \right)$$

I = (1, 2, 3, 2) ist eine Lösung, da

$$\begin{bmatrix} a \\ aba \end{bmatrix} \begin{bmatrix} baa \\ aa \end{bmatrix} \begin{bmatrix} ab \\ bb \end{bmatrix} \begin{bmatrix} baa \\ aa \end{bmatrix} = abaaabbaa$$

PCP: Beispiel

Instanz
$$K = \begin{pmatrix} \begin{bmatrix} ab \\ bba \end{bmatrix}, \begin{bmatrix} ba \\ baa \end{bmatrix}, \begin{bmatrix} ba \\ aba \end{bmatrix}, \begin{bmatrix} bba \\ b \end{bmatrix} \end{pmatrix}$$

PCP: Beispiel

Instanz
$$K = \begin{pmatrix} \begin{bmatrix} ab \\ bba \end{bmatrix}, \begin{bmatrix} ba \\ baa \end{bmatrix}, \begin{bmatrix} ba \\ aba \end{bmatrix}, \begin{bmatrix} bba \\ b \end{bmatrix} \end{pmatrix}$$

Die kürzeste Lösung benötigt 66 Paare:

(2, 1, 3, 1, 1, 2, 4, 2, 1, 3, 1, 3, 1, 1, 3, 1, 1, 2, 4, 1, 1, 2, 4, 3, 1, 4, 4, 3, 1, 1, 1, 1, 2, 4, 2, 4, 4, 4, 3, 1, 3, 1, 4, 2, 4, 1, 1, 2, 4, 1, 4, 4, 3, 1, 4, 4, 3, 4, 4, 3, 4, 2, 4, 1, 4, 4, 3).

Unentscheidbarkeit von PCP

Beweis in 2 Schritten:

1. MPCP < PCP

MPCP ist das Modifzierte Postsche Korrespondenzproblem:

Nur Lösungen zulässig, die mit dem ersten Spielstein $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ beginnen

2. $H \leq MPCP$

Damit folgt aus der Unentscheidbarkeit von H die Unentscheidbarkeit von MPCP und damit die Unentscheidbarkeit von PCP.

Definition (Modifiziertes Postsches Korrespondenzproblem)

Gegeben sei ein Alphabet Σ und eine Folge von Wortpaaren

$$K = ((x_1, y_1), \ldots, (x_k, y_k))$$

mit $x_i, y_i \in \Sigma^+$. Das Modifizierte Postsche Korrespondenzproblem (MPCP) ist die Frage, ob es für die gegebene Folge K eine Folge von Indizes $i_1 = 1, i_2, \dots, i_m$ mit $i_i \in \{1, \dots, k\}$ gibt, sodass

$$x_{i_1}\cdots x_{i_m}=y_{i_1}\cdots y_{i_m}$$

$MPCP \leq PCP$

Lemma

 $MPCP \leq PCP$.

Lemma

MPCP < PCP.

Beweis: Gesucht: Berechenbares f mit: K MPCP-lösbar g.d.w. f(K) PCP-lösbar.

Für
$$w = a_1 \cdots a_n \in \Sigma^+$$
 sei

$$\bar{w} = \#a_1\#a_2\#\cdots\#a_n\#$$
 $\hat{w} = a_1\#a_2\#\cdots\#a_n\#$ $\hat{w} = \#a_1\#a_2\#\cdots\#a_n$

$$w = a_1 \# a_2 \# \cdots \# a_n \#$$

$$\dot{w} = \#a_1\#a_2\#\cdots\#a_r$$

Lemma

MPCP < PCP.

Beweis: Gesucht: Berechenbares f mit: K MPCP-lösbar g.d.w. f(K) PCP-lösbar.

Für
$$w = a_1 \cdots a_n \in \Sigma^+$$
 sei

$$\bar{w} = \#a_1\#a_2\#\cdots\#a_n\#$$
 $\dot{w} = a_1\#a_2\#\cdots\#a_n\#$ $\dot{w} = \#a_1\#a_2\#\cdots\#a_n$

Sei
$$f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_k \\ y_k \end{bmatrix}\right) = \left(\underbrace{\begin{bmatrix} \bar{x}_1 \\ \hat{y}_1 \end{bmatrix}}, \underbrace{\begin{bmatrix} \hat{x}_1 \\ \hat{y}_1 \end{bmatrix}}, \dots, \underbrace{\begin{bmatrix} \hat{x}_k \\ \hat{y}_k \end{bmatrix}}, \underbrace{\begin{bmatrix} \$ \\ \#\$ \end{bmatrix}}\right)$$

Lemma

MPCP < PCP.

Beweis: Gesucht: Berechenbares f mit: K MPCP-lösbar g.d.w. f(K) PCP-lösbar.

Für
$$w = a_1 \cdots a_n \in \Sigma^+$$
 sei

$$\bar{w} = \#a_1 \# a_2 \# \cdots \# a_n \#$$
 $\hat{w} = a_1 \# a_2 \# \cdots \# a_n \#$ $\hat{w} = \#a_1 \# a_2 \# \cdots \# a_n \#$

Sei
$$f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_k \\ y_k \end{bmatrix}\right) = \left(\underbrace{\begin{bmatrix} \bar{x}_1 \\ \dot{y}_1 \end{bmatrix}}, \underbrace{\begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \end{bmatrix}}, \dots, \underbrace{\begin{bmatrix} \dot{x}_k \\ \dot{y}_k \end{bmatrix}}, \underbrace{\begin{bmatrix} \$ \\ \#\$ \end{bmatrix}}\right)$$

• 1, i_2, \ldots, i_m Lösung für $K \Rightarrow 1, i_2+1, \ldots, i_m+1, k+2$ Lösung für f(K).

Lemma

MPCP < PCP.

Beweis: Gesucht: Berechenbares f mit: K MPCP-lösbar g.d.w. f(K) PCP-lösbar.

Für
$$w = a_1 \cdots a_n \in \Sigma^+$$
 sei

$$\bar{w} = \#a_1 \# a_2 \# \cdots \# a_n \#$$
 $\dot{w} = a_1 \# a_2 \# \cdots \# a_n \#$ $\dot{w} = \#a_1 \# a_2 \# \cdots \# a_n \#$

Sei
$$f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_k \\ y_k \end{bmatrix}\right) = \left(\underbrace{\begin{bmatrix} \bar{x}_1 \\ \dot{y}_1 \end{bmatrix}}, \underbrace{\begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \end{bmatrix}}, \dots, \underbrace{\begin{bmatrix} \dot{x}_k \\ \dot{y}_k \end{bmatrix}}, \underbrace{\begin{bmatrix} \$ \\ \#\$ \end{bmatrix}}\right)$$

- 1, i_2, \ldots, i_m Lösung für $K \Rightarrow 1, i_2+1, \ldots, i_m+1, k+2$ Lösung für f(K).
- i_1, \ldots, i_m Lösung für $f(K) \Rightarrow i_1, i_2 1, \ldots, i_{\ell-1} 1$ Lösung für K, wo $\ell \leq m$.

Für Lösungen muss gelten:
$$i_1=1$$
, $\begin{bmatrix} x_{i_\ell} \\ y_{i_\ell} \end{bmatrix} = \begin{bmatrix} \$ \\ \#\$ \end{bmatrix}$ und $\begin{bmatrix} x_{i_j} \\ y_{i_j} \end{bmatrix} = \begin{bmatrix} \dot{x}_{j(r)} \\ \dot{y}_{j(r)} \end{bmatrix}$ für $2 \le i_\ell \le i_{\ell-1}$.

MPCP: Beispiel

Sei
$$K = \left(\begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \right)$$

I = (1, 2, 3, 2) ist eine Lösung:

$$\begin{bmatrix}
 a \\
 aba
 \end{bmatrix}
 \begin{bmatrix}
 baa \\
 aa
 \end{bmatrix}
 \begin{bmatrix}
 ab \\
 bb
 \end{bmatrix}
 \begin{bmatrix}
 baa \\
 aa
 \end{bmatrix}$$

MPCP: Beispiel

Sei
$$K = \left(\begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \right)$$

I = (1, 2, 3, 2) ist eine Lösung:

$$\left[\begin{array}{c} a \\ aba \end{array}\right] \left[\begin{array}{c} baa \\ aa \end{array}\right] \left[\begin{array}{c} ab \\ bb \end{array}\right] \left[\begin{array}{c} baa \\ aa \end{array}\right]$$

$$f(K) = \left(\begin{bmatrix} \#a\# \\ \#a\#b\#a \end{bmatrix}, \begin{bmatrix} a\# \\ \#a\#b\#a \end{bmatrix}, \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix}, \begin{bmatrix} a\#b\# \\ \#b\#b \end{bmatrix}, \begin{bmatrix} \$ \\ \#\$ \end{bmatrix} \right)$$

MPCP: Beispiel

Sei
$$K = \left(\begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \right)$$

I = (1, 2, 3, 2) ist eine Lösung:

$$\left[\begin{array}{c} a \\ aba \end{array}\right] \left[\begin{array}{c} baa \\ aa \end{array}\right] \left[\begin{array}{c} ab \\ bb \end{array}\right] \left[\begin{array}{c} baa \\ aa \end{array}\right]$$

$$f(K) = \left(\begin{bmatrix} \#a\# \\ \#a\#b\#a \end{bmatrix}, \begin{bmatrix} a\# \\ \#a\#b\#a \end{bmatrix}, \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix}, \begin{bmatrix} a\#b\# \\ \#b\#b \end{bmatrix}, \begin{bmatrix} \$ \\ \#\$ \end{bmatrix} \right)$$

J = (1, 3, 4, 3, 5) ist eine Lösung:

$$\begin{bmatrix} \#a\# \\ \#a\#b\#a \end{bmatrix} \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix} \begin{bmatrix} a\#b\# \\ \#b\#b \end{bmatrix} \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix} \begin{bmatrix} \$ \\ \#\$ \end{bmatrix}$$

$H \leq MPCP$

Lemma

 $H \leq MPCP$.

 $H \leq MPCP$

Lemma

 $H \leq MPCP$.

Beweis:

- ▶ m#w mit Turingmaschinenbeschreibung m und Eingabe w
- ► Erstelle MPCP-Instanz K = f(m#w), die genau dann lösbar ist, wenn TM M_m auf Eingabe w anhält.
- ► Sei $M_m = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$.
- ▶ Alphabet für das MPCP: $\Gamma \cup Z \cup \{\#\}$.
- Idee: Lösung des MPCP simuliert Übergangsfolge der TM.
- ► Erstes Wortpaar (mit dem jede Lösung anfangen muss): $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \# \\ \#z_0w\# \end{bmatrix}$
- ► Weitere Paare lassen sich in Gruppen von Regeln aufteilen: Kopierregeln, Übergangsregeln, Löschregeln, Abschlussregeln.

$H \leq MPCP$: Kopierregeln

$H \leq MPCP$: Übergangsregeln

►
$$\begin{bmatrix} bz\#\\ z'bc\# \end{bmatrix}$$
 falls $\delta(z, \Box) = (z', c, L)$ für alle $b \in \Gamma$

H < MPCP: Löschregeln

- ▶ $\begin{bmatrix} az_e \\ z_e \end{bmatrix}$ für alle $a \in \Gamma$, $z_e \in E$ ▶ $\begin{bmatrix} z_e a \\ z_e \end{bmatrix}$ für alle $a \in \Gamma$, $z_e \in E$

H < MPCP: Abschlussregeln

H < MPCP: Korrespondenz

Wenn TM akzeptierenden Lauf hat, dann gibt es Folge

$$K_0 \vdash K_1 \vdash \cdots \vdash K_n$$

wobei $K_0 = z_0 w$ und $K_n = u z_e v$ für ein $z_e \in E$. Dann hat das MPCP eine Lösung, die oben und unten das Wort

$$\#K_0\#K_1\#\cdots\#K_n\#K_{n+1}\#\cdots\#K_m\#\#$$

erzeugt, wobei $K_m = z_e$ und jedes K_i mit n+1 < i < m jeweils aus K_{i-1} entsteht durch Löschen eines der benachbarten Zeichen von z_e in $u'z_ev'$ entsteht.

$H \leq MPCP$: Korrespondenz (2)

Obere Folge hinkt der unteren um eine Konfiguration hinterher

```
oben: \#K_1 \# K_2 \# \cdots \# K_i \#
unten: \#K_1 \# K_2 \# \cdots \# K_i \# K_{i+1} \#
```

Verlängerung:

- Kopierregeln anwenden bis in die Nähe des Zustands
- ► Dann Übergangsregeln anwenden
- ► Kopierregeln anwenden zum Vervollständigen

Ab K_n :

- Löschregeln anwenden, um die Symbole auf dem Band zu löschen.
- ▶ Wenn in unterer Folge $z_e\#$ steht, dann Abschlussregel anwenden.

$H \leq MPCP$: Beispiel

$$z_0abc \vdash dz_1bc \vdash dez_2c \vdash defz_3\Box \vdash defz_e\Box$$

$H \leq MPCP$: Beispiel

$$z_0abc \vdash dz_1bc \vdash dez_2c \vdash defz_3 \Box \vdash defz_e \Box$$

Lösende Spielsteinfolge:

$$\begin{bmatrix} \# \\ \# z_0 a b c \# \end{bmatrix} \begin{bmatrix} z_0 a \\ d z_1 \end{bmatrix} \begin{bmatrix} b \\ c \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} \begin{bmatrix} d \\ d \end{bmatrix} \begin{bmatrix} z_1 b \\ c \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} \begin{bmatrix} d \\ d \end{bmatrix} \begin{bmatrix} e \\ d \end{bmatrix} \begin{bmatrix} e \\ d \end{bmatrix} \begin{bmatrix} d \\ e \end{bmatrix} \begin{bmatrix} d \\ d \end{bmatrix} \begin{bmatrix} e \\ e \end{bmatrix} \begin{bmatrix} f \\ g \end{bmatrix} \begin{bmatrix} g \\ g \end{bmatrix}$$

Umgekehrte Richtung

Umgekehrt erzeugt jede Lösung für das MPCP (welches ja mit dem ersten Spielstein beginnen muss) eine akzeptierende Konfigurationsfolge, die bezeugt, dass die Turingmaschine bei Eingabe w hält.

18/27

Schließlich prüfe, dass f berechenbar ist.

Daher folgt: $m#w \in H \iff MPCP \ f(m#w)$ lösbar.

Unentscheidbarkeit PCP und MPCP

Satz

Das Postsche Korrespondenzproblem (sowie das modifizierte Postsche Korrespondenzproblem) ist unentscheidbar.

Unentscheidbarkeit PCP und MPCP

Satz

Das Postsche Korrespondenzproblem (sowie das modifizierte Postsche Korrespondenzproblem) ist unentscheidbar.

Beweis: Da H unentscheidbar ist und $H \leq \mathsf{MPCP} \leq \mathsf{PCP}$ gilt, folgt, dass MPCP und PCP unentscheidbar sind.

01-PCP

Lemma (Unentscheidbarkeit des 01-PCP)

Das Postsche Korrespondenzproblem über dem Alphabet Σ mit $|\Sigma|=2$ (01-PCP) ist unentscheidbar.

Lemma (Unentscheidbarkeit des 01-PCP)

Das Postsche Korrespondenzproblem über dem Alphabet Σ mit $|\Sigma|=2$ (01-PCP) ist unentscheidbar.

Beweis:

- Reduziere PCP auf 01-PCP.
- Sei $K = (x_1, y_1), \dots, (x_k, y_k)$ eine Instanz des PCP über dem Alphabet $\{a_1, \dots, a_j\}$.
- ► Sei $\Sigma = \{0, 1\}$.
- ► Sei $f(a_i) = 10^i$, $f(\varepsilon) = \varepsilon$, $f(a_i w) = f(a_i) f(w)$ und $f(K) = (f(x_1), f(y_1)), \dots, (f(x_k), f(y_k))$.
- ▶ Dann ist f(K) eine Instanz des 01-PCPs und gilt: i_1, \ldots, i_n ist eine Lösung für K g.d.w. i_1, \ldots, i_n ist eine Lösung für f(K).
- ▶ f ist Turingberechenbar und daher folgt PCP \leq 01-PCP.

01-PCP: Beispiel

Sei
$$K = \left(\begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}, \begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix}, \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \right)$$

I = (2, 1, 3, 1) ist eine Lösung:

$$\begin{bmatrix} a_3 \\ a_3a_2a_1 \end{bmatrix} \begin{bmatrix} a_2a_1a_1 \\ a_1a_1 \end{bmatrix} \begin{bmatrix} a_1a_2 \\ a_2a_2 \end{bmatrix} \begin{bmatrix} a_2a_1a_1 \\ a_1a_1 \end{bmatrix}$$

01-PCP: Beispiel

Sei
$$K = \left(\begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}, \begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix}, \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \right)$$

I = (2, 1, 3, 1) ist eine Lösung:

$$\begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix} \begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix} \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}$$

$$f(K) = \left(\begin{bmatrix} 1001010 \\ 1010 \end{bmatrix}, \begin{bmatrix} 1000 \\ 100010010 \end{bmatrix}, \begin{bmatrix} 10100 \\ 100100 \end{bmatrix} \right)$$

01-PCP: Beispiel

Sei
$$K = \left(\begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}, \begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix}, \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \right)$$

I = (2, 1, 3, 1) ist eine Lösung:

$$\begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix} \begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix} \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}$$

$$f(K) = \left(\begin{bmatrix} 1001010 \\ 1010 \end{bmatrix}, \begin{bmatrix} 1000 \\ 100010010 \end{bmatrix}, \begin{bmatrix} 10100 \\ 100100 \end{bmatrix} \right)$$

I = (2, 1, 3, 1) ist eine Lösung:

$$\begin{bmatrix} 1000 \\ 100010010 \end{bmatrix} \begin{bmatrix} 1001010 \\ 1010 \end{bmatrix} \begin{bmatrix} 10100 \\ 100100 \end{bmatrix} \begin{bmatrix} 1001010 \\ 1010 \end{bmatrix}$$

PCP mit unärem Alphabet

Lemma

Das PCP für unäre Alphabete ist entscheidbar.

PCP mit unärem Alphabet

Lemma

Das PCP für unäre Alphabete ist entscheidbar.

Beweis:

- ► Alle Spielsteine von der Form $\begin{bmatrix} a^n \\ a^m \end{bmatrix}$.
- ▶ Wenn für alle (x_i, y_i) : $|x_i| < |y_i|$, dann gibt es keine Lösung.
- ▶ Wenn für alle (x_i, y_i) : $|x_i| > |y_i|$, dann gibt es keine Lösung.
- ▶ Wenn $(x_i, y_i) = (a^n, a^{n+r})$ und $(x_j, y_j) = (a^{m+s}, a^m)$ mit $s, r \ge 0$, dann ist das PCP immer lösbar:

Die Lösung ist
$$\underbrace{i, \ldots, i}_{s-\text{mal}}, \underbrace{j, \ldots, j}_{r-\text{mal}}$$
, denn:

oben $a^{s \cdot n + r \cdot (m+s)}$ und unten $a^{s \cdot (n+r) + r \cdot m}$.

Daher oben wie unten sn + rm + rs viele a's.

PCP mit unärem Alphabet: Beispiel

Sei
$$K = \left(\begin{bmatrix} a \\ aaaa \end{bmatrix}, \begin{bmatrix} aaa \\ a \end{bmatrix} \right)$$

I = (1, 1, 2, 2, 2) ist eine Lösung:

$$\left[\begin{array}{c} a \\ aaaa \end{array}\right] \left[\begin{array}{c} a \\ aaaa \end{array}\right] \left[\begin{array}{c} aaa \\ a \end{array}\right] \left[\begin{array}{c} aaa \\ a \end{array}\right]$$

Anzahl k der Spielsteinarten beschränken

PCP mit k vielen verschiedenen Spielsteinarten:

- k = 1 oder k = 2: als entscheidbar gezeigt 1982
- ▶ $k \ge 5$: als unentscheidbar gezeigt 2015
- k = 3, 4: unbekannt

PCP semi-entscheidbar

PCP ist semi-entscheidbar:

- ▶ Probiere alle Folgen von *i* Spielsteinen aus.
- Lasse *i* wachsen.

Findet Lösung, wenn eine existiert, in endlich vielen Schritten, aber terminiert nicht, wenn keine Lösung existiert.

Universelle Turingmaschine

Da $H \leq PCP$ folgt auch, dass H semi-entscheidbar ist.

Universelle Turingmaschine

Da $H \leq PCP$ folgt auch, dass H semi-entscheidbar ist.

D.h. es gibt eine Turingmaschine, die sich bei Eingabe w # x so verhält wie M_w auf Eingabe x was das Halten betrifft.

Universelle Turingmaschine

Da $H \leq PCP$ folgt auch, dass H semi-entscheidbar ist.

D.h. es gibt eine Turingmaschine, die sich bei Eingabe w # x so verhält wie M_w auf Eingabe x was das Halten betrifft.

Ferner: Es gibt eine Turingmaschine U, die sich bei Eingabe w#x so verhält wie M_w auf Eingabe x.

Die TM *U* nennt man eine universelle Turingmaschine:

- verhält sich wie ein Interpreter für Turingmaschinen
- ▶ wird durch die Eingabe w programmiert und x ist dann die eigentliche Eingabe für das Programm.

Zusammenfassung

- ► Entscheidbarkeit, Semi-Entscheidbarkeit
- Das Halteproblem ist unentscheidbar
- ▶ Reduktion $L_1 \le L_2$ als Werkzeug zum Nachweis der Unentscheidbarkeit/(Semi-)Entscheidbarkeit
- ▶ PCP als "einfaches" unentscheidbares Problem