Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2023

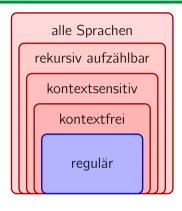
Das Pumping-Lemma für reguläre Sprachen

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik

Stand: 9. Mai 2023 Folien ursprünglich von PD Dr. David Sabel

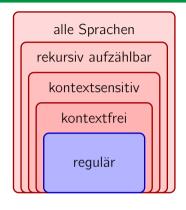
Hintergrund zum Pumping-Lemma



Formalismen zur Darstellung von regulären Sprachen:

- endliche Automaten
- reguläre Grammatiken
- reguläre Ausdrücke

Hintergrund zum Pumping-Lemma



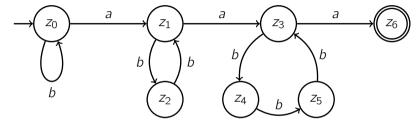
Formalismen zur Darstellung von regulären Sprachen:

- endliche Automaten
- reguläre Grammatiken
- reguläre Ausdrücke

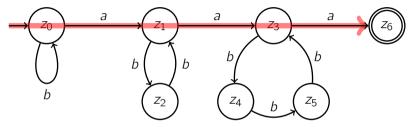
Wie zeigt man, dass eine formale Sprache nicht regulär ist?

⇒ Das Pumping-Lemma ist ein Werkzeug dafür.

Beispiel: DFA M:

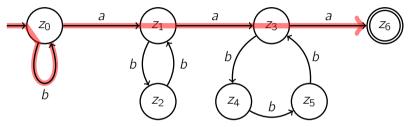


Beispiel: DFA M:



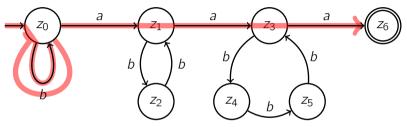
► Von *M* erkannte Wörter der Länge 3,

Beispiel: DFA M:



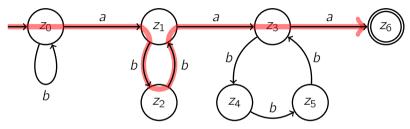
▶ Von *M* erkannte Wörter der Länge 3, 4,

Beispiel: DFA M:



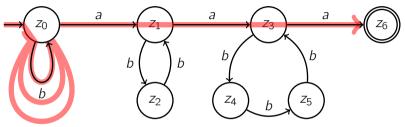
▶ Von *M* erkannte Wörter der Länge 3, 4, 5,

Beispiel: DFA M:



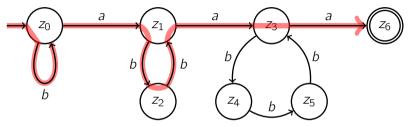
▶ Von *M* erkannte Wörter der Länge 3, 4, 5,

Beispiel: DFA M:



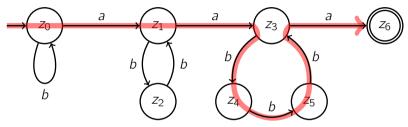
► Von *M* erkannte Wörter der Länge 3, 4, 5, 6, ...

Beispiel: DFA M:



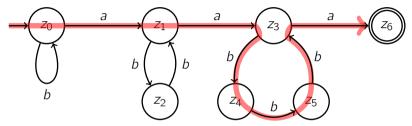
▶ Von *M* erkannte Wörter der Länge 3, 4, 5, 6, ...

Beispiel: DFA M:



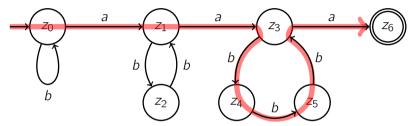
► Von *M* erkannte Wörter der Länge 3, 4, 5, 6, ...

Beispiel: DFA M:



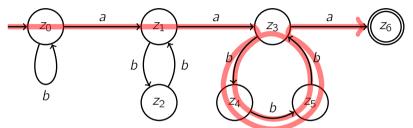
- ▶ Von *M* erkannte Wörter der Länge 3, 4, 5, 6, . . .
- ▶ Beobachtung 1: Jedes Wort z mit Länge > 3, das M erkennt, muss mindestens eine Schleife durchlaufen.

Beispiel: DFA M:



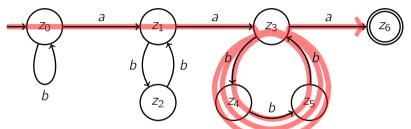
- ▶ Von *M* erkannte Wörter der Länge 3, 4, 5, 6, . . .
- ▶ Beobachtung 1: Jedes Wort z mit Länge > 3, das M erkennt, muss mindestens eine Schleife durchlaufen.
- Beobachtung 2: Wenn wir die Schleife mehrfach durchlaufen, wird das entsprechende Wort immer noch erkannt, d.h.

Beispiel: DFA M:



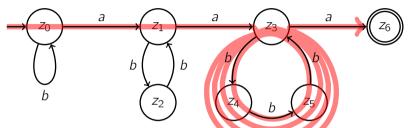
- ▶ Von *M* erkannte Wörter der Länge 3, 4, 5, 6, . . .
- ▶ Beobachtung 1: Jedes Wort z mit Länge > 3, das M erkennt, muss mindestens eine Schleife durchlaufen.
- Beobachtung 2: Wenn wir die Schleife mehrfach durchlaufen, wird das entsprechende Wort immer noch erkannt, d.h.

Beispiel: DFA M:



- ▶ Von *M* erkannte Wörter der Länge 3, 4, 5, 6, . . .
 - Beobachtung 1: Jedes Wort z mit Länge > 3, das M erkennt, muss mindestens eine Schleife durchlaufen.
- Beobachtung 2: Wenn wir die Schleife mehrfach durchlaufen, wird das entsprechende Wort immer noch erkannt, d.h.

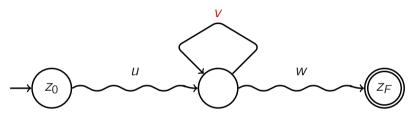
Beispiel: DFA M:



- ▶ Von M erkannte Wörter der Länge 3, 4, 5, 6, . . .
- ▶ Beobachtung 1: Jedes Wort z mit Länge > 3, das M erkennt, muss mindestens eine Schleife durchlaufen.
- Beobachtung 2: Wenn wir die Schleife mehrfach durchlaufen, wird das entsprechende Wort immer noch erkannt, d.h.

Idee des Pumping-Lemmas: allgemeiner

Gilt das allgemein?



- Wenn ein endlicher Automat n Zustände hat, dann müssen akzeptierte Wörter der Länge $\geq n$ eine Schleife durchlaufen
- Diese Wörter kann man aufpumpen: uvw, uvvw, uvvw, ... Allgemein: uv^iw für i=0,1,2,... liegen in der erkannten Sprache

Das Pumping-Lemma

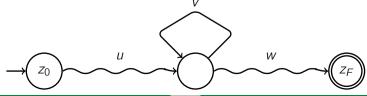
Lemma 4.9.1 (Pumping-Lemma)

Jede reguläre Sprache *L* hat die folgende Pumping-Eigenschaft:

Es gibt eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, welches Mindestlänge n hat $(d.h. |z| \ge n)$, als z = uvw geschrieben werden kann, sodass gilt:

- $|uv| \le n$
- $|v| \ge 1$
- ▶ für alle $i \ge 0$: $uv^i w \in L$.

Die Zahl *n* nennt man die Pumping-Konstante der Sprache *L*.

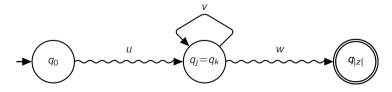


▶ Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der L akzeptiert mit n = |Z|.

- ▶ Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der L akzeptiert mit n = |Z|.
- ▶ Sei $z \in L$ mit $|z| \ge n$. Jeder Lauf für z besucht |z| + 1 Zustände. Sei $q_0, q_1, \ldots q_{|z|}$ die besuchte Folge mit $q_0 = z_0$ und $q_{|z|} \in E$.

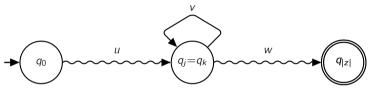
- ▶ Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der L akzeptiert mit n = |Z|.
- Sei $z \in L$ mit $|z| \ge n$. Jeder Lauf für z besucht |z| + 1 Zustände. Sei $q_0, q_1, \ldots q_{|z|}$ die besuchte Folge mit $q_0 = z_0$ und $q_{|z|} \in E$.
- ▶ Da |Z| = n, wird spätestens nach Lesen von n Zeichen ein Zustand erneut besucht.

- ▶ Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der L akzeptiert mit n = |Z|.
- ▶ Sei $z \in L$ mit $|z| \ge n$. Jeder Lauf für z besucht |z| + 1 Zustände. Sei $q_0, q_1, \ldots, q_{|z|}$ die besuchte Folge mit $q_0 = z_0$ und $q_{|z|} \in E$.
- ▶ Da |Z| = n, wird spätestens nach Lesen von n Zeichen ein Zustand erneut besucht.
- Sei q_k (mit $k \le n$) der erste Zustand, der bereits besucht wurde. D.h. es gibt j < k, sodass $q_k = q_j$ und k ist minimal, z = uvw mit



. . .

D.h. es gibt j < k, sodass $q_k = q_j$ und k ist minimal, z = uvw mit



Wir zeigen nun die drei geforderten Eigenschaften der Zerlegung:

- ▶ Aus j < k folgt $|v| \ge 1$.
- ▶ Aus $k \le n$ folgt $|uv| \le n$.
- Für i=0: Aus $q_j=q_k$ folgt $\widehat{\delta}(q_0,u)=q_j=\widehat{\delta}(q_0,uv)=q_k$ und somit $\widehat{\delta}(q_0,uw)=\widehat{\delta}(q_0,uvw)=q_{|z|}\in E$, d.h. $uv^0w\in L(M)$. Sei i>0. Aus $\widehat{\delta}(q_j,v)=q_k=q_j$ folgt $\widehat{\delta}(q_j,v^i)=q_j$ und daher

Endliche Sprachen

Zur Erinnerung: Pumping-Eigenschaft

Es gibt eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, welches Mindestlänge n hat $(d.h. |z| \ge n)$, als z = uvw geschrieben werden kann, sodass gilt:

- $|uv| \le n$
- $|v| \ge 1$
- ▶ für alle $i \ge 0$: $uv^i w \in L$.

Als prädikatenlogische Formel:

$$\exists n \in \mathbb{N}_{>0} : \forall z \in L : (|z| \ge n \Rightarrow \exists u, v, w : (z = uvw \land |uv| \le n \land |v| \ge 1 \land \forall i \ge 0 : (uv^i w \in L)))$$

Endliche Sprachen

Zur Erinnerung: Pumping-Eigenschaft

Es gibt eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, welches Mindestlänge n hat $(d.h. |z| \ge n)$, als z = uvw geschrieben werden kann, sodass gilt:

- $|uv| \le n$
- $|v| \ge 1$
- ▶ für alle $i \ge 0$: $uv^i w \in L$.

Als prädikatenlogische Formel:

$$\exists n \in \mathbb{N}_{>0} : \forall z \in L : (|z| \ge n \Rightarrow \exists u, v, w : (z = uvw \land |uv| \le n \land |v| \ge 1 \land \forall i \ge 0 : (uv^iw \in L)))$$

Warum erfüllen endliche Sprachen das Pumping-Lemma?

Endliche Sprachen

Zur Erinnerung: Pumping-Eigenschaft

Es gibt eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, welches Mindestlänge n hat $(d.h. |z| \ge n)$, als z = uvw geschrieben werden kann, sodass gilt:

- $|uv| \le n$
- $|v| \ge 1$
- ▶ für alle $i \ge 0$: $uv^i w \in L$.

Als prädikatenlogische Formel:

$$\exists n \in \mathbb{N}_{>0} : \forall z \in L : (|z| \ge n \Rightarrow \exists u, v, w : (z = uvw \land |uv| \le n \land |v| \ge 1 \land \forall i \ge 0 : (uv^iw \in L)))$$

Warum erfüllen endliche Sprachen das Pumping-Lemma?

Wähle *n* größer als die Länge des längsten Worts

- ▶ Pumping-Lemma: Sprache regulär ⇒ Sprache erfüllt die Pumping-Eigenschaft
- ► Zeige, dass eine Sprache nicht regulär ist, durch Kontraposition:

```
Sprache erfüllt nicht die Pumping-Eigenschaft \implies Sprache ist nicht regulär
```

Umformung der negierten Pumping-Eigenschaft

```
 \neg (\exists n \in \mathbb{N}_{>0}: \forall z \in L: (|z| \geq n \Rightarrow \exists u, v, w: (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L)))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: \neg (\forall z \in L: (|z| \geq n \Rightarrow \exists u, v, w: (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L)))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: (\neg (|z| \geq n \Rightarrow \exists u, v, w: (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: (\neg (\neg (|z| \geq n) \lor (\exists u, v, w: (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L)))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: ((|z| \geq n) \land \neg (\exists u, v, w: (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: ((|z| \geq n) \land (\forall u, v, w: (\neg (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: ((|z| \geq n) \land (\forall u, v, w: (\neg (z = uvw \land |uv| \leq n \land |v| \geq 1) \lor \neg (\forall i \geq 0: uv^{i}w \in L))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: ((|z| \geq n) \land (\forall u, v, w: ((z = uvw \land |uv| \leq n \land |v| \geq 1) \Rightarrow \neg (\forall i \geq 0: uv^{i}w \in L))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: ((|z| \geq n) \land (\forall u, v, w: ((z = uvw \land |uv| \leq n \land |v| \geq 1) \Rightarrow \exists i \geq 0: uv^{i}w \notin L)))))
```

Umformung der negierten Pumping-Eigenschaft

```
 \neg (\exists n \in \mathbb{N}_{>0}: \forall z \in L: (|z| \geq n \Rightarrow \exists u, v, w: (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L)))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: \neg (\forall z \in L: (|z| \geq n \Rightarrow \exists u, v, w: (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L)))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: (\neg (|z| \geq n \Rightarrow \exists u, v, w: (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: (\neg (\neg (|z| \geq n) \lor (\exists u, v, w: (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L)))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: ((|z| \geq n) \land \neg (\exists u, v, w: (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: ((|z| \geq n) \land (\forall u, v, w: (\neg (z = uvw \land |uv| \leq n \land |v| \geq 1 \land \forall i \geq 0: (uv^{i}w \in L))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: ((|z| \geq n) \land (\forall u, v, w: (\neg (z = uvw \land |uv| \leq n \land |v| \geq 1) \lor \neg (\forall i \geq 0: uv^{i}w \in L))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: ((|z| \geq n) \land (\forall u, v, w: ((z = uvw \land |uv| \leq n \land |v| \geq 1) \Rightarrow \neg (\forall i \geq 0: uv^{i}w \in L))))) 
 \longleftrightarrow \forall n \in \mathbb{N}_{>0}: (\exists z \in L: ((|z| \geq n) \land (\forall u, v, w: ((z = uvw \land |uv| \leq n \land |v| \geq 1) \Rightarrow \neg (\forall i \geq 0: uv^{i}w \in L)))))
```

Formale Sprache L erfüllt nicht die Pumping-Eigenschaft:

Für jede Zahl $n \in \mathbb{N}_{>0}$ gibt es ein Wort $z \in L$ mit $|z| \ge n$, sodass für jede Zerlegung z = uvw mit

- $|uv| \le n$ und
- $|v| \ge 1$

ein i > 0 existiert mit $uv^i w \notin L$.

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis: Wir zeigen, dass *L* die Pumping-Eigenschaft nicht erfüllt und schließen mit dem Pumping-Lemma, dass *L* nicht regulär ist:

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis: Wir zeigen, dass L die Pumping-Eigenschaft nicht erfüllt und schließen mit dem Pumping-Lemma, dass L nicht regulär ist:

Sei $n \in \mathbb{N}_{>0}$ beliebig. Wir wählen $z \in L$: $z = a^n b^n$ (damit ist auch $|z| \ge n$ erfüllt).

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis: Wir zeigen, dass L die Pumping-Eigenschaft nicht erfüllt und schließen mit dem Pumping-Lemma, dass L nicht regulär ist:

- Sei $n \in \mathbb{N}_{>0}$ beliebig. Wir wählen $z \in L$: $z = a^n b^n$ (damit ist auch $|z| \ge n$ erfüllt).
- Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$ und $|v| \ge 1$.

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis: Wir zeigen, dass *L* die Pumping-Eigenschaft nicht erfüllt und schließen mit dem Pumping-Lemma, dass *L* nicht regulär ist:

- Sei $n \in \mathbb{N}_{>0}$ beliebig. Wir wählen $z \in L$: $z = a^n b^n$ (damit ist auch $|z| \ge n$ erfüllt).
- Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$ und $|v| \ge 1$.
- Dann ist $u = a^r$, $v = a^s$ mit $r + s \le n$, $s \ge 1$ und $w = a^t b^n$ mit r + s + t = n. Daher können wir z.B. i = 2 wählen und erhalten $uv^i w = uv^2 w = a^r a^s a^s a^t b^n = a^{n+s} b^n \notin L$. da s > 0.

Beweise Nichtregularität als Spiel

Sei *L* die formale Sprache.

- 1. Der **Gegner** wählt die Zahl $n \in \mathbb{N}_{>0}$.
- 2. Wir wählen das Wort $z \in L$ mit $|z| \ge n$.
- 3. Der **Gegner** wählt Zerlegung z = uvw mit $|uv| \le n$ und $|v| \ge 1$.
- 4. **Wir** gewinnen das Spiel, wenn wir ein $i \ge 0$ angeben können, sodass $uv^iw \notin L$.

Wenn wir das Spiel **für alle Wahlmöglichkeiten des Gegners** gewinnen, dann haben wir die Nichtregularität von *L* nachgewiesen.

Beispiel

Satz

Die Sprache $L = \{a^p \mid p \text{ ist Primzahl}\}$ ist nicht regulär.

Wir zeigen, dass wir das eben eingeführte Spiel stets gewinnen:

1. Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.

Beispiel

Satz

Die Sprache $L = \{a^p \mid p \text{ ist Primzahl}\}$ ist nicht regulär.

Wir zeigen, dass wir das eben eingeführte Spiel stets gewinnen:

- 1. Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wir wählen $z \in L$ als $z = a^p$ mit p ist die nächste Primzahl, die größer gleich n ist.

Satz

Die Sprache $L = \{a^p \mid p \text{ ist Primzahl}\}$ ist nicht regulär.

Wir zeigen, dass wir das eben eingeführte Spiel stets gewinnen:

- 1. Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wir wählen $z \in L$ als $z = a^p$ mit p ist die nächste Primzahl, die größer gleich n ist.
- 3. Der Gegner wählt Zerlegung $u=a^r$, $v=a^s$, $w=a^t$ mit $uvw=a^p$, $|uv| \le n$, $|v| \ge 1$ (und damit $s \ge 1$).

Satz

Die Sprache $L = \{a^p \mid p \text{ ist Primzahl}\}$ ist nicht regulär.

Wir zeigen, dass wir das eben eingeführte Spiel stets gewinnen:

- 1. Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wir wählen $z \in L$ als $z = a^p$ mit p ist die nächste Primzahl, die größer gleich n ist.
- 3. Der Gegner wählt Zerlegung $u=a^r$, $v=a^s$, $w=a^t$ mit $uvw=a^p$, $|uv| \le n$, $|v| \ge 1$ (und damit $s \ge 1$).
- 4. Wir wählen i=p+1. Dann ist $uv^iw \not\in L$, denn $uv^iw=a^r(a^s)^{p+1}a^t=a^{r+s\cdot(p+1)+t}=a^{r+s\cdot p+s+t}=a^{s\cdot p+p}=a^{p\cdot(s+1)}$ und für $s\geq 1$ folgt, dass $p\cdot(s+1)$ keine Primzahl sein kann.

Satz

Die Sprache $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ ist nicht regulär.

1. Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.

Satz

Die Sprache $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ ist nicht regulär.

- 1. Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wir wählen $z = a^{n^2} \in L$.

Satz

Die Sprache $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ ist nicht regulär.

- 1. Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wir wählen $z = a^{n^2} \in L$.
- 3. Sei z = uvw vom Gegner zerlegt, sodass $|uv| \le n$ und $|v| \ge 1$.

Satz

Die Sprache $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ ist nicht regulär.

- 1. Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wir wählen $z = a^{n^2} \in L$.
- 3. Sei z = uvw vom Gegner zerlegt, sodass $|uv| \le n$ und $|v| \ge 1$.
- 4. Wir wählen i = 2, d.h. wir betrachten $uv^2w = a^k$.
 - $1 + n^2 \le k \text{ (denn } |v| \ge 1)$
 - $ightharpoonup k \le n^2 + n \text{ (denn } |uv| \le n \text{ und daher } |v| \le n \text{)}$

D.h. wir haben $n^2 < k < n^2 + n = (n+1) \cdot n < (n+1)^2$.

Dann kann k keine Quadratzahl sein.

Daher gilt $uv^2w \notin L$.

Das Pumping-Lemma zeigt somit, dass L nicht regulär ist.

Satz

Die Sprache $L = \{a^{2^n} \mid n \in \mathbb{N}\}$ ist nicht regulär.

Beweis:

- ▶ Sei $n \in \mathbb{N}_{>0}$ beliebig.
- ▶ Sei $z \in L$ mit $|z| \ge n$ das Wort $z = a^{2^n}$.
- ▶ Sei z = uvw mit $|uv| \le n$ und $|v| = k \ge 1$.
- ▶ Dann ist $1 \le k \le n$ und $uv^2w = a^{2^n+k}$ und $2^n + k \ne 2^\ell$ da $2^n + k < 2^{n+1} = 2^n + 2^n$ denn $k \le n < 2^n$.

 Daher ist $uv^2w \notin L$.

Mit dem Pumping-Lemma folgt, dass L nicht regulär ist.

Satz

Die Sprache $L = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}$ ist nicht regulär.

Satz

Die Sprache $L = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}$ ist nicht regulär.

▶ Sei $n \in \mathbb{N}_{>0}$ beliebig.

Satz

Die Sprache $L = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}$ ist nicht regulär.

- ▶ Sei $n \in \mathbb{N}_{>0}$ beliebig.
- ▶ Wir wählen $z = a^n b a^n \in L$ als Wort mit Mindestlänge n.

Satz

Die Sprache $L = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}$ ist nicht regulär.

- ▶ Sei $n \in \mathbb{N}_{>0}$ beliebig.
- ▶ Wir wählen $z = a^n b a^n \in L$ als Wort mit Mindestlänge n.
- Sei z = uvw mit $|uv| \le n$ und $|v| \ge 1$.

Satz

Die Sprache $L = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}$ ist nicht regulär.

- ▶ Sei $n \in \mathbb{N}_{>0}$ beliebig.
- ▶ Wir wählen $z = a^n b a^n \in L$ als Wort mit Mindestlänge n.
- ► Sei z = uvw mit $|uv| \le n$ und $|v| \ge 1$.
- ▶ Dann ist $uv^0w = a^kba^n$ mit k = n |v| < n kein Palindrom.

Mit dem Pumping-Lemma folgt, dass L nicht regulär ist.

Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft erfüllen aber nicht regulär sind. Die Sprache $L=\{a^kb^\ell c^\ell\mid k,\ell\in\mathbb{N}_{>0}\}$ ist eine solche Sprache.

Beweis, dass *L* die Pumping-Eigenschaft erfüllt:

Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft erfüllen aber nicht regulär sind. Die Sprache $L=\{a^kb^\ell c^\ell\mid k,\ell\in\mathbb{N}_{>0}\}$ ist eine solche Sprache.

Beweis, dass *L* die Pumping-Eigenschaft erfüllt:

ightharpoonup Wir wählen n=1.

Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft erfüllen aber nicht regulär sind. Die Sprache $L=\{a^kb^\ell c^\ell\mid k,\ell\in\mathbb{N}_{>0}\}$ ist eine solche Sprache.

Beweis, dass L die Pumping-Eigenschaft erfüllt:

- ightharpoonup Wir wählen n=1.
- ▶ Sei $z \in L$ mit $|z| \ge n$.

Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft erfüllen aber nicht regulär sind. Die Sprache $L=\{a^kb^\ell c^\ell\mid k,\ell\in\mathbb{N}_{>0}\}$ ist eine solche Sprache.

Beweis, dass L die Pumping-Eigenschaft erfüllt:

- ightharpoonup Wir wählen n=1.
- ▶ Sei $z \in L$ mit $|z| \ge n$.
- ▶ Da z von der Form $a^kb^\ell c^\ell$ ist, dann muss k>0 gelten und wir zerlegen z=uvw mit $u=\varepsilon$, v=a, $w=a^{k-1}b^\ell c^\ell$. Da |v|=1, $|uv|\leq n$ und $uv^iw=a^{k+i-1}b^\ell c^\ell\in L$ für alle $i\in\mathbb{N}$, erfüllt L die Pumping-Eigenschaft.

Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft erfüllen aber nicht regulär sind. Die Sprache $L=\{a^kb^\ell c^\ell\mid k,\ell\in\mathbb{N}_{>0}\}$ ist eine solche Sprache.

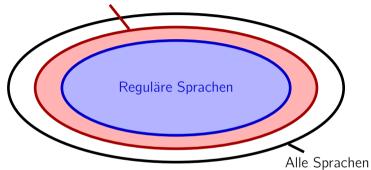
Beweis, dass L die Pumping-Eigenschaft erfüllt:

- ightharpoonup Wir wählen n=1.
- ▶ Sei $z \in L$ mit $|z| \ge n$.
- ▶ Da z von der Form $a^kb^\ell c^\ell$ ist, dann muss k>0 gelten und wir zerlegen z=uvw mit $u=\varepsilon$, v=a, $w=a^{k-1}b^\ell c^\ell$. Da |v|=1, $|uv|\leq n$ und $uv^iw=a^{k+i-1}b^\ell c^\ell\in L$ für alle $i\in\mathbb{N}$, erfüllt L die Pumping-Eigenschaft.

Beweis, dass *L* nicht regulär ist folgt **später** (nur FSK).

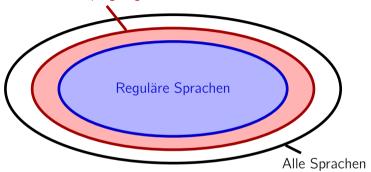
Mengendiagramm

Sprachen, die die Pumping-Eigenschaft erfüllen



Mengendiagramm

Sprachen, die die Pumping-Eigenschaft erfüllen



Wichtige Konsequenz

Das Pumping-Lemma kann <u>nicht</u> verwendet werden, um zu zeigen, dass eine Sprache regulär ist.

Zusammenfassung Pumping-Lemma

▶ Das Pumping-Lemma formuliert eine notwendige Bedingung für reguläre Sprachen:

Sehr informell:

Wörter einer regulären Sprache können aufgepumpt werden, wenn sie lang genug sind.

Anwendung:

L erfüllt die **Pumping-Eigenschaft nicht** ⇒ L **nicht regulär**

- ▶ Das Pumping-Lemma gibt keine hinreichende Bedingung für reguläre Sprachen, d.h. Regularität kann nicht mit dem Pumping-Lemma gezeigt werden.
- Nichtregularität widerlegen funktioniert nicht in jedem Fall mit dem Pumping-Lemma.