# Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2023

Grammatiken und die Chomsky-Hierarchie

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik

Stand: 18. April 2023 Folien ursprünglich von PD Dr. David Sabel



### Formale Sprachen darstellen

- Sei Σ ein Alphabet.
- $\triangleright$  Eine Sprache über  $\Sigma$  ist eine Teilmenge von  $\Sigma^*$ .
- **Σ**.B. für  $\Sigma = \{(,),+,-,*,/,a\}$  sei  $L_{ArFx}$  die Sprache aller korrekt geklammerten Ausdrücke.

Z.B. 
$$((a+a)-a)*a \in L_{ArEx}$$
 aber  $(a-)+a) \notin L_{ArEx}$ .

▶ Unsere bisherigen Operationen auf Sprachen (Mengen) können das nicht darstellen.

**Benötigt:** Formalismus, um  $L_{ArFx}$  zu beschreiben

### Formale Sprachen darstellen (2)

#### Anforderungen:

- ► Endliche Beschreibung
- ► Sprache selbst muss aber auch unendlich viele Objekte erlauben

Zwei wesentliche solchen Formalismen sind

- Grammatiken
- Automaten

#### Grammatiken

#### Grammatik für einen sehr kleinen Teil der deutschen Sprache:

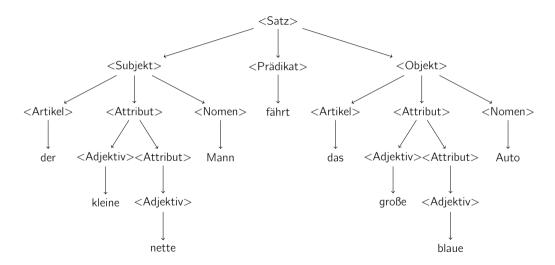
```
<Satz> → <Subjekt><Prädikat><Objekt>
<Subjekt> → <Artikel><Attribut><Nomen>
<Objekt> → <Artikel><Attribut><Nomen>
\langle Artikel \rangle \rightarrow \varepsilon
\langle Artikel \rangle \rightarrow der
\langle Artikel \rangle \rightarrow das
<Attribut> → <Adjektiv>
<Attribut> → <Adjektiv><Attribut>
<Adiektiv> → kleine
<Adjektiv> \rightarrow große
<Adiektiv> → nette
<Adjektiv> → blaue
<Nomen> → Frau
<Nomen> → Mann
<Nomen> → Auto
<Prädikat> → fährt
<Prädikat> → liebt
```

#### Grammatiken

- ► Endliche Menge von Regeln "linke Seite → rechte Seite"
- ► Symbole in spitzen Klammern wie <Artikel> sind Variablen. d.h. sie sind Platzhalter, die weiter ersetzt werden müssen.
- Z.B. kann

"der kleine nette Mann fährt das große blaue Auto" durch die vorige Grammatik abgeleitet werden.

### Syntaxbaum zum Beispiel



#### Definition einer Grammatik

#### **Definition (Grammatik)**

Eine **Grammatik** ist ein 4-Tupel  $G = (V, \Sigma, P, S)$  mit

- ► V ist eine endliche Menge von Variablen (alternativ Nichtterminale, Nichtterminalsymbole)
- ▶  $\Sigma$  (mit  $V \cap \Sigma = \emptyset$ ) ist ein **Alphabet** von **Zeichen** (alternativ **Terminale**, Terminalsymbole)
- ▶ *P* ist eine endliche Menge von **Produktionen** von der Form  $\ell \to r$  wobei  $\ell \in (V \cup \Sigma)^+$  und  $r \in (V \cup \Sigma)^*$  (alternativ Regeln)
- $ightharpoonup S \in V$  ist das **Startsymbol** (alternativ Startvariable)

Manchmal genügt es, *P* alleine zu notieren (wenn klar ist, was Variablen, Zeichen und Startsymbol sind)

### Beispiel für eine Grammatik

$$G = (V, \Sigma, P, E) \text{ mit}$$

$$V = \{E, M, Z\},$$

$$\Sigma = \{+, *, 1, 2, (, )\}$$

$$P = \{E \rightarrow M,$$

$$E \rightarrow E + M,$$

$$M \rightarrow Z,$$

$$M \rightarrow M * Z,$$

$$Z \rightarrow 1,$$

$$Z \rightarrow 2,$$

$$Z \rightarrow (E)\}$$

### Ableitung

Sei  $G = (V, \Sigma, P, S)$  eine Grammatik.

#### **Ableitungsschritt** $\Rightarrow_G$

Eine Satzform ist ein Wort aus  $(V \cup \Sigma)^*$ . Für Satzformen u, v sagen wir:

u geht unter Grammatik G unmittelbar in v über,  $u \Rightarrow_G v$ , wenn

$$u = w_1 \ell w_2$$
 und  $v = w_1 r w_2$  mit  $(\ell \to r) \in P$ 

- ▶ Wenn G klar ist, schreiben wir  $u \Rightarrow v$  statt  $u \Rightarrow_G v$
- ightharpoonup 
  igh

#### **Ableitung**

Eine Folge  $(w_0, w_1, ..., w_n)$  mit  $w_0 = S$ ,  $w_n \in \Sigma^*$  und  $w_{i-1} \Rightarrow w_i$  für i = 1, ..., n heißt Ableitung von  $w_n$ . Statt  $(w_0, ..., w_n)$  schreiben wir auch  $w_0 \Rightarrow ... \Rightarrow w_n$ 

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$F \Rightarrow M$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$E \Rightarrow M \Rightarrow M * Z$$

$$G = (V, \Sigma, P, E)$$
 mit  $V = \{E, M, Z\}$  und  $\Sigma = \{+, *, 1, 2, (,)\}$  und  $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ 

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E)$$

$$G = (V, \Sigma, P, E)$$
 mit  $V = \{E, M, Z\}$  und  $\Sigma = \{+, *, 1, 2, (,)\}$  und  $P = \{E \rightarrow M, \quad E \rightarrow E + M, \quad M \rightarrow Z, \quad M \rightarrow M * Z, \quad Z \rightarrow 1, \quad Z \rightarrow 2, \quad Z \rightarrow (E)$ 

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$
  
  $\Rightarrow (E) * (E + M)$ 

$$G = (V, \Sigma, P, E)$$
 mit  $V = \{E, M, Z\}$  und  $\Sigma = \{+, *, 1, 2, (,)\}$  und  $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ 

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$
  
\Rightarrow (E) \* (E + Z)

$$G = (V, \Sigma, P, E)$$
 mit  $V = \{E, M, Z\}$  und  $\Sigma = \{+, *, 1, 2, (,)\}$  und  $P = \{E \rightarrow M, \quad E \rightarrow E + M, \quad M \rightarrow Z, \quad M \rightarrow M * Z, \quad Z \rightarrow 1, \quad Z \rightarrow 2, \quad Z \rightarrow (E)$ 

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$
  
 
$$\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$$

$$G = (V, \Sigma, P, E)$$
 mit  $V = \{E, M, Z\}$  und  $\Sigma = \{+, *, 1, 2, (, )\}$  und  $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$ 

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$
  
$$\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$$
  
$$\Rightarrow (M + M) * (E + Z)$$

$$G = (V, \Sigma, P, E)$$
 mit  $V = \{E, M, Z\}$  und  $\Sigma = \{+, *, 1, 2, (,)\}$  und  $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ 

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$
  
 
$$\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$$
  
 
$$\Rightarrow (M + M) * (E + Z) \Rightarrow (M + M) * (M + Z)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$
  
 
$$\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$$
  
 
$$\Rightarrow (M + M) * (E + Z) \Rightarrow (M + M) * (M + Z)$$
  
 
$$\Rightarrow (M + M) * (Z + Z)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$
  
 
$$\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$$
  
 
$$\Rightarrow (M + M) * (E + Z) \Rightarrow (M + M) * (M + Z)$$
  
 
$$\Rightarrow (M + M) * (Z + Z) \Rightarrow (M + M) * (Z + 2)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$
  

$$\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$$
  

$$\Rightarrow (M + M) * (E + Z) \Rightarrow (M + M) * (M + Z)$$
  

$$\Rightarrow (M + M) * (Z + Z) \Rightarrow (M + M) * (Z + 2)$$
  

$$\Rightarrow (M + Z) * (Z + 2)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$
  

$$\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$$
  

$$\Rightarrow (M + M) * (E + Z) \Rightarrow (M + M) * (M + Z)$$
  

$$\Rightarrow (M + M) * (Z + Z) \Rightarrow (M + M) * (Z + 2)$$
  

$$\Rightarrow (M + Z) * (Z + 2) \Rightarrow (M + Z) * (2 + 2)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$

$$\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$$

$$\Rightarrow (M + M) * (E + Z) \Rightarrow (M + M) * (M + Z)$$

$$\Rightarrow (M + M) * (Z + Z) \Rightarrow (M + M) * (Z + 2)$$

$$\Rightarrow (M + Z) * (Z + 2) \Rightarrow (M + Z) * (2 + 2)$$

$$\Rightarrow (Z + Z) * (2 + 2)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$

$$\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$$

$$\Rightarrow (M + M) * (E + Z) \Rightarrow (M + M) * (M + Z)$$

$$\Rightarrow (M + M) * (Z + Z) \Rightarrow (M + M) * (Z + 2)$$

$$\Rightarrow (M + Z) * (Z + 2) \Rightarrow (M + Z) * (2 + 2)$$

$$\Rightarrow (Z + Z) * (2 + 2) \Rightarrow (2 + Z) * (2 + 2)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E) \}$$

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E) * (E+M) \Rightarrow (E) * (E+Z) \Rightarrow (E+M) * (E+Z)$$

$$\Rightarrow (M+M) * (E+Z) \Rightarrow (M+M) * (M+Z)$$

$$\Rightarrow (M+M) * (Z+Z) \Rightarrow (M+M) * (Z+2)$$

$$\Rightarrow (M+Z) * (Z+2) \Rightarrow (M+Z) * (2+2)$$

$$\Rightarrow (Z+Z) * (2+2) \Rightarrow (2+Z) * (2+2)$$

$$\Rightarrow (2+1) * (2+2)$$

### Beispiel: Ableitungen sind nicht eindeutig

Ableitung von letzter Folie (keine Linksableitung):

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E) * (E+M) \Rightarrow (E) * (E+Z) \Rightarrow (E+M) * (E+Z)$$

$$\Rightarrow (M+M) * (E+Z) \Rightarrow (M+M) * (M+Z)$$

$$\Rightarrow (M+M) * (Z+Z) \Rightarrow (M+M) * (Z+2)$$

$$\Rightarrow (M+Z) * (Z+2) \Rightarrow (M+Z) * (2+2)$$

$$\Rightarrow (Z+Z) * (2+2) \Rightarrow (2+Z) * (2+2)$$

$$\Rightarrow (2+1) * (2+2)$$

Linksableitung: ersetzt immer die linkeste Variable

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow (E) * Z$$

$$\Rightarrow (E+M) * Z \Rightarrow (M+M) * Z \Rightarrow (Z+M) * Z$$

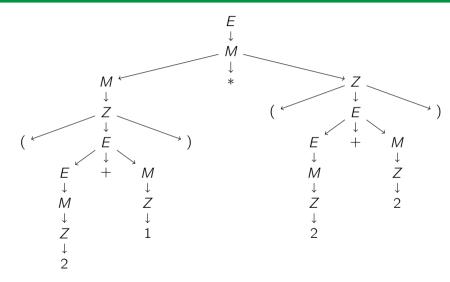
$$\Rightarrow (2+M) * Z \Rightarrow (2+Z) * Z \Rightarrow (2+1) * Z \Rightarrow (2+1) * (E)$$

$$\Rightarrow (2+1) * (E+M) \Rightarrow (2+1) * (M+M) \Rightarrow (2+1) * (Z+M)$$

$$\Rightarrow (2+1) * (2+M) \Rightarrow (2+1) * (2+Z)$$

$$\Rightarrow (2+1) * (2+2)$$

## Syntaxbaum (zu beiden Ableitungen)



#### Nichtdeterminismus beim Ableiten

Für eine Satzform u kann es verschiedene Satzformen v geben mit  $u \Rightarrow_G v$ .

Quellen des Nichtdeterminismus:

- ▶ Wähle welche Produktion  $\ell \rightarrow r$  aus P angewendet wird.
- ▶ Wähle die **Position des Teilworts**  $\ell$  in u, das durch r ersetzt wird.

Aber: Es gibt **nur endlich viele Satzformen** *v* für jeden Schritt.

### Erzeugte Sprache

#### **Erzeugte Sprache einer Grammatik**

Die von einer Grammatik  $G = (V, \Sigma, P, S)$  erzeugte Sprache L(G) ist

$$L(G) := \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$$

$$G_1 = (\{S\}, \{a\}, \{S \to aS\}, S)$$
  
  $L(G_1) = ?$ 

$$G_2 = (\{S'\}, \{a, b\}, \{S' \to aS', S' \to b\}, S')$$
  
  $L(G_2) = ?$ 

$$G_1 = (\{S\}, \{a\}, \{S \to aS\}, S)$$
  
  $L(G_1) = ?$ 

- $\triangleright$   $S \Rightarrow aS \Rightarrow aaS \Rightarrow \dots$  endet nie
- ► Andere Ableitungen gibt es nicht
- ▶ Daher sind keine Wörter aus  $\{a\}^*$  ableitbar

$$G_2 = (\{S'\}, \{a, b\}, \{S' \to aS', S' \to b\}, S')$$
  
  $L(G_2) = ?$ 

$$G_1 = (\{S\}, \{a\}, \{S \to aS\}, S)$$
  
  $L(G_1) = \emptyset$ 

- $\triangleright$   $S \Rightarrow aS \Rightarrow aaS \Rightarrow \dots$  endet nie
- Andere Ableitungen gibt es nicht
- ▶ Daher sind keine Wörter aus  $\{a\}^*$  ableitbar

$$G_2 = (\{S'\}, \{a, b\}, \{S' \to aS', S' \to b\}, S')$$
  
  $L(G_2) = ?$ 

$$G_1 = (\{S\}, \{a\}, \{S \to aS\}, S)$$
  
  $L(G_1) = \emptyset$ 

- $\triangleright$   $S \Rightarrow aS \Rightarrow aaS \Rightarrow \dots$  endet nie
- Andere Ableitungen gibt es nicht
- ▶ Daher sind keine Wörter aus  $\{a\}^*$  ableitbar

$$G_2 = (\{S'\}, \{a, b\}, \{S' \to aS', S' \to b\}, S')$$
 $L(G_2) = ?$ 
 $S' \Longrightarrow aS' \Longrightarrow aaS' \Longrightarrow aaaS' \Longrightarrow aaaaS' \Longrightarrow \cdots$ 
 $b \quad ab \quad aab \quad aaab \quad aaaab$ 

▶ Für alle  $i \in \mathbb{N}$  gilt  $S \Rightarrow^i a^i S \Rightarrow a^i b$ 

$$G_1 = (\{S\}, \{a\}, \{S \to aS\}, S)$$
  
  $L(G_1) = \emptyset$ 

- $\triangleright$   $S \Rightarrow aS \Rightarrow aaS \Rightarrow \dots$  endet nie
- Andere Ableitungen gibt es nicht
- ▶ Daher sind keine Wörter aus  $\{a\}^*$  ableitbar

$$G_{2} = (\{S'\}, \{a, b\}, \{S' \to aS', S' \to b\}, S')$$

$$L(G_{2}) = \{a^{n}b \mid n \in \mathbb{N}\}$$

$$S' \Longrightarrow aS' \Longrightarrow aaS' \Longrightarrow aaaS' \Longrightarrow aaaaS' \Longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$b \qquad ab \qquad aab \qquad aaab \qquad aaaab$$

▶ Für alle  $i \in \mathbb{N}$  gilt  $S \Rightarrow^i a^i S \Rightarrow a^i b$ 

Noam Chomsky teilte die Grammatiken in Typen 0 bis 3:

Sei  $G = (V, \Sigma, P, S)$  eine Grammatik.

Noam Chomsky teilte die Grammatiken in Typen 0 bis 3:

Sei  $G = (V, \Sigma, P, S)$  eine Grammatik.

#### G ist vom Typ 0

G ist automatisch vom Typ 0

Noam Chomsky teilte die Grammatiken in Typen 0 bis 3:

Sei  $G = (V, \Sigma, P, S)$  eine Grammatik.

#### G ist vom Typ 0

G ist automatisch vom Typ 0

G ist vom Typ 1 (kontextsensitive Grammatik), wenn ...

für alle  $(\ell \to r) \in P$ :  $|\ell| \le |r|$ 

Noam Chomsky teilte die Grammatiken in Typen 0 bis 3:

Sei  $G = (V, \Sigma, P, S)$  eine Grammatik.

#### G ist vom Typ 0

G ist automatisch vom Tvp 0

G ist vom Typ 1 (kontextsensitive Grammatik), wenn ...

für alle  $(\ell \to r) \in P$ :  $|\ell| < |r|$ 

G ist vom Typ 2 (kontextfreie Grammatik), wenn ...

G ist vom Typ 1 und für alle  $(\ell \to r) \in P$  gilt  $\ell \in V$ 

Noam Chomsky teilte die Grammatiken in Typen 0 bis 3:

Sei  $G = (V, \Sigma, P, S)$  eine Grammatik.

#### G ist vom Typ 0

G ist automatisch vom Typ 0

### G ist vom Typ 1 (kontextsensitive Grammatik), wenn ...

für alle  $(\ell \to r) \in P$ :  $|\ell| \le |r|$ 

### G ist vom Typ 2 (kontextfreie Grammatik), wenn ...

G ist vom Typ 1 und für alle  $(\ell \to r) \in P$  gilt  $\ell \in V$ 

### G ist vom Typ 3 (reguläre Grammatik), wenn ...

*G* ist vom Typ 2 und für alle  $(A \to r) \in P$  gilt: r = a oder r = aA' für  $a \in \Sigma$ ,  $A' \in V$  (die rechten Seiten sind Wörter aus  $\Sigma \cup \Sigma V$ )

### Typ *i*-Sprachen

#### **Definition**

Für i = 0, 1, 2, 3 nennt man eine formale **Sprache**  $L \subseteq \Sigma^*$  **vom Typ** i, falls es eine Typ i-Grammatik G gibt, sodass L(G) = L gilt.

Spricht man von **dem Typ einer formalen Sprache**, so ist meistens der größtmögliche Typ gemeint.

►  $G_1 = (\{S\}, \{a, b\}, \{S \to aS, S \to b\}, S)$  ist regulär (Typ 3)

- ▶  $G_1 = (\{S\}, \{a, b\}, \{S \to aS, S \to b\}, S)$  ist regulär (Typ 3)
- ►  $G_2 = (\{E, M, Z\}, \{+, *, 1, 2, (,)\}, P, E)$  mit  $P = \{E \to M, E \to E + M, M \to Z, M \to M * Z, Z \to 1, Z \to 2, Z \to (E)\}$  ist kontextfrei (Typ 2)

- ▶  $G_1 = (\{S\}, \{a, b\}, \{S \to aS, S \to b\}, S)$  ist regulär (Typ 3)
- ►  $G_2 = (\{E, M, Z\}, \{+, *, 1, 2, (,)\}, P, E)$  mit  $P = \{E \to M, E \to E + M, M \to Z, M \to M * Z, Z \to 1, Z \to 2, Z \to (E)\}$  ist kontextfrei (Typ 2)
- ▶  $G_3 = (\{S, B, C\}, \{a, b, c\}, P, S)$  mit  $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$  ist kontextsensitiv (Typ 1)

- ▶  $G_1 = (\{S\}, \{a, b\}, \{S \to aS, S \to b\}, S)$  ist regulär (Typ 3)
- ►  $G_2 = (\{E, M, Z\}, \{+, *, 1, 2, (,)\}, P, E)$  mit  $P = \{E \to M, E \to E + M, M \to Z, M \to M * Z, Z \to 1, Z \to 2, Z \to (E)\}$  ist kontextfrei (Typ 2)
- ▶  $G_3 = (\{S, B, C\}, \{a, b, c\}, P, S)$  mit  $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$  ist kontextsensitiv (Typ 1)
- ▶  $G_4 = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$  mit  $P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA, Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$  ist vom Typ 0