
7
Pseudorandom Generators

7.1 Motivation and Definition

In the previous sections, we have seen a number of interesting
derandomization results:

• Derandomizing specific algorithms, such as the ones for
MaxCut and Undirected S-T Connectivity;

• Giving explicit (efficient, deterministic) constructions of
various pseudorandom objects, such as expanders, extrac-
tors, and list-decodable codes, as well as showing various
relations between them;

• Reducing the randomness needed for certain tasks, such
as sampling and amplifying the success probability of
randomized algorithm; and

• Simulating BPP with any weak random source.

However, all of these still fall short of answering our original
motivating question, of whether every randomized algorithm can be
efficiently derandomized. That is, does BPP = P?

As we have seen, one way to resolve this question in the positive is
to use the following two-step process: First show that the number of

212

7.1 Motivation and Definition 213

random bits for any BPP algorithm can be reduced from poly(n) to
O(logn), and then eliminate the randomness entirely by enumeration.

Thus, we would like to have a function G that stretches a seed
of d = O(logn) truly random bits into m = poly(n) bits that “look
random.” Such a function is called a pseudorandom generator. The
question is how we can formalize the requirement that the output
should “look random” in such a way that (a) the output can be used
in place of the truly random bits in any BPP algorithm, and (b) such
a generator exists.

Some candidate definitions for what it means for the random
variable X = G(Ud) to “look random” include the following:

• Information-theoretic or statistical measures: For example,
we might measure entropy of G(Ud), its statistical difference
from the uniform distribution, or require pairwise indepen-
dence. All of these fail one of the two criteria. For example,
it is impossible for a deterministic function to increase
entropy from O(logn) to poly(n). And it is easy to construct
algorithms that fail when run using random bits that are
only guaranteed to be pairwise independent.

• Kolmogorov complexity : A string x “looks random” if it is
incompressible (cannot be generated by a Turing machine
with a description of length less than |x|). An appealing
aspect of this notion is that it makes sense of the randomness
in a fixed string (rather than a distribution). Unfortunately,
it is not suitable for our purposes. Specifically, if the function
G is computable (which we certainly want) then all of its
outputs have Kolmogorov complexity d = O(logn) (just
hardwire the seed into the TM computing G), and hence are
very compressible.

• Computational indistinguishability : This is the measure we
will use. Intuitively, we say that a random variable X “looks
random” if no efficient algorithm can distinguish X from a
truly uniform random variable. Another perspective comes
from the definition of statistical difference:

∆(X,Y) = max
T
|Pr[X ∈ T] − Pr[Y ∈ T]|.

214 Pseudorandom Generators

With computational indistinguishability, we simply restrict
the max to be taken only over “efficient” statistical tests T —
that is, T s for which membership can be efficiently tested.

7.1.1 Computational Indistinguishability

Definition 7.1 (computational indistinguishability). Random
variables X and Y taking values in {0,1}m are (t,ε) indistinguishable
if for every nonuniform algorithm T running in time at most t, we have

|Pr[T (X) = 1] − Pr[T (Y) = 1]| ≤ ε.

The left-hand side above is called also the advantage of T .

Recall that a nonuniform algorithm is an algorithm that may have
some nonuniform advice hardwired in. (See Definition 3.10.) If the
algorithm runs in time t we require that the advice string is of length at
most t. Typically, to make sense of complexity measures like running
time, it is necessary to use asymptotic notions, because a Turing
machine can encode a huge lookup table for inputs of any bounded size
in its transition function. However, for nonuniform algorithms, we can
avoid doing so by using Boolean circuits as our nonuniform model of
computation. Similarly to Fact 3.11, every nonuniform Turing machine
algorithm running in time t(n) can be simulated by a sequence of
Boolean circuit Cn of size Õ(t(n)) and conversely every sequence of
Boolean circuits of size s(n) can be simulated by a nonuniform Turing
machine running in time Õ(s(n)). Thus, to make our notation cleaner,
from now on, by “nonuniform algorithm running in time t,” we mean
“Boolean circuit of size t,” where we measure the size by the number
of AND and OR gates in the circuit. (For convenience, we don’t
count the inputs and negations in the circuit size.) Note also that in
Definition 7.1 we have not specified whether the distinguisher is deter-
ministic or randomized; this is because a probabilistic distinguisher
achieving advantage greater than ε can be turned into a deterministic
distinguisher achieving advantage greater than ε by nonuniformly
fixing the randomness. (This is another example of how “nonuniformity
is more powerful than randomness,” like in Corollary 3.12.)

7.1 Motivation and Definition 215

It is also of interest to study computational indistinguishability
and pseudorandomness against uniform algorithms.

Definition 7.2 (uniform computational indistinguishability).
Let Xm,Ym be some sequences of random variables on {0,1}m (or
{0,1}poly(m)). For functions t : N→ N and ε : N→ [0,1], we say that
{Xm} and {Ym} are (t(m),ε(m)) indistinguishable for uniform algo-
rithms if for all probabilistic algorithms T running in time t(m), we
have that

|Pr[T (Xm) = 1] − Pr[T (Ym) = 1]| ≤ ε(m)

for all sufficiently large m, where the probabilities are taken over Xm,
Ym and the random coin tosses of T .

We will focus on the nonuniform definition in this survey, but will
mention results about the uniform definition as well.

7.1.2 Pseudorandom Generators

Definition 7.3. A deterministic function G : {0,1}d→ {0,1}m is a
(t,ε) pseudorandom generator (PRG) if

(1) d < m, and
(2) G(Ud) and Um are (t,ε) indistinguishable.

Also, note that we have formulated the definition with respect
to nonuniform computational indistinguishability, but an analogous
uniform definition can be given.

People attempted to construct pseudorandom generators long
before this definition was formulated. Their generators were tested
against a battery of statistical tests (e.g., the number of 1s and 0s are
approximately the same, the longest run is of length O(logm), etc.),
but these fixed set of tests provided no guarantee that the generators
will perform well in an arbitrary application (e.g., in cryptography
or derandomization). Indeed, most classical constructions (e.g., linear

216 Pseudorandom Generators

congruential generators, as implemented in the standard C library)
are known to fail in some applications.

Intuitively, the above definition guarantees that the pseudorandom
bits produced by the generator are as good as truly random bits for all
efficient purposes (where efficient means time at most t). In particular,
we can use such a generator for derandomizing any algorithm of
running time at most t. For the derandomization to be efficient, we
will also need the generator to be efficiently computable.

Definition 7.4. We say a sequence of generators {Gm : {0,1}d(m)→
{0,1}m} is computable in time t(m) if there is a uniform and deter-
ministic algorithm M such that for every m ∈ N and x ∈ {0,1}d(m),
we have M(m,x) = Gm(x) and M(m,x) runs in time at most t(m). In
addition, M(m) (with no second input) should output the value d(m)
in time at most t(m).

Note that even when we define the pseudorandomness property of
the generator with respect to nonuniform algorithms, the efficiency
requirement refers to uniform algorithms. As usual, for readability, we
will usually refer to a single generator G : {0,1}d(m)→ {0,1}m, with it
being implicit that we are really discussing a family {Gm}.

Theorem 7.5. Suppose that for all m there exists an (m,1/8)
pseudorandom generator G : {0,1}d(m)→ {0,1}m computable in time
t(m). Then BPP ⊂ ⋃c DTIME(2d(nc) · (nc + t(nc))).

Proof. Let A(x;r) be a BPP algorithm that on inputs x of length n,
can be simulated by Boolean circuits of size at most most nc, using coin
tosses r. Without loss of generality, we may assume that |r| = nc. (It will
often be notationally convenient to assume that the number of random
bits used by an algorithm equals its running time or circuit size, so as
to avoid an extra parameter. However, most interesting algorithms will
only actually read and compute with a smaller number of these bits, so
as to leave time available for computation. Thus, one should actually
think of an algorithm as only reading a prefix of its random string r.)

7.1 Motivation and Definition 217

The idea is to replace the random bits used by A with pseudoran-
dom bits generated by G, use the pseudorandomness property to show
that the algorithm will still be correct with high probability, and finally
enumerate over all possible seeds to obtain a deterministic algorithm.

Claim 7.6. For every x of length n, A(x;G(Ud(nc))) errs with
probability smaller than 1/2.

Proof of Claim: Suppose that there exists some x on which
A(x;G(Ud(nc))) errs with probability at least 1/2. Then T (·) = A(x, ·)
is a Boolean circuit of size at most nc that distinguishes G(Ud(nc))
from Unc with advantage at least 1/2 − 1/3 > 1/8. (Notice that we are
using the input x as nonuniform advice; this is why we need the PRG
to be pseudorandom against nonuniform tests.)

Now, enumerate over all seeds of length d(nc) and take a majority
vote. There are 2d(nc) of them, and for each we have to run both G

and A.

Notice that we can afford for the generator G to have running time
t(m) = poly(m) or even t(m) = poly(m) · 2O(d(m)) without affecting
the time of the derandomization by than more than a polynomial
amount. In particular, for this application, it is OK if the generator
runs in more time than the tests it fools (which are time m in this
theorem). That is, for derandomization, it suffices to have G that is
mildly explicit according to the following definition:

Definition 7.7.

(1) A generator G : {0,1}d(m)→ {0,1}m is mildly explicit if it is
computable in time poly(m,2d(m)).

(2) A generator G : {0,1}d(m)→ {0,1}m is fully explicit if it is
computable in time poly(m).

These definitions are analogous to the notions of mildly explicit
and fully explicit for expander graphs in Section 4.3. The truth table

218 Pseudorandom Generators

of a mildly explicit generator can be constructed in time polynomial in
its size (which is of size m · 2d(m)), whereas a fully explicit generator
can be evaluated in time polynomial in its input and output lengths
(like the neighbor function of a fully explicit expander).

Theorem 7.5 provides a tradeoff between the seed length of the
PRG and the efficiency of the derandomization. Let’s look at some
typical settings of parameters to see how we might simulate BPP in
the different deterministic time classes (see Definition 3.1):

(1) Suppose that for every constant ε > 0, there is an (m,1/8)
mildly explicit PRG with seed length d(m) = mε. Then
BPP ⊂ ⋂ε>0DTIME(2nε

) def= SUBEXP. Since it is
known that SUBEXP is a proper subset of EXP, this is
already a nontrivial improvement on the current inclusion
BPP ⊂ EXP (Proposition 3.2).

(2) Suppose that there is an (m,1/8) mildly explicit
PRG with seed length d(m) = polylog(m). Then
BPP ⊂ ⋃c DTIME(2logc m) def= P̃.

(3) Suppose that there is an (m,1/8) mildly explicit PRG with
seed length d(m) = O(logm). Then BPP = P.

Of course, all of these derandomizations are contingent on the
question of whether PRGs exist. As usual, our first answer is yes but
the proof is not very helpful — it is nonconstructive and thus does not
provide for an efficiently computable PRG:

Proposition 7.8. For all m ∈ N and ε > 0, there exists a (nonexplicit)
(m,ε) pseudorandom generator G : {0,1}d→ {0,1}m with seed length
d = O(logm + log(1/ε)).

Proof. The proof is by the probabilistic method. Choose
G : {0,1}d→ {0,1}m at random. Now, fix a time m algorithm, T .
The probability (over the choice of G) that T distinguishes G(Ud)
from Um with advantage ε is at most 2−Ω(2dε2), by a Chernoff
bound. There are 2poly(m) nonuniform algorithms running in time m

(i.e., circuits of size m). Thus, union-bounding over all possible T ,

7.2 Cryptographic PRGs 219

we get that the probability that there exists a T breaking G

is at most 2poly(m)2−Ω(2dε2), which is less than 1 for d being
O(logm + log(1/ε)).

Note that putting together Proposition 7.8 and Theorem 7.5 gives
us another way to prove that BPP ⊂ P/poly (Corollary 3.12): just let
the advice string be the truth table of an (nc,1/8) PRG (which can be
described by 2d(nc) · nc = poly(n) bits), and then use that PRG in the
proof of Theorem 7.5 to derandomize the BPP algorithm. However, if
you unfold both this proof and our previous proof (where we do error
reduction and then fix the coin tosses), you will see that both proofs
amount to essentially the same “construction.”

7.2 Cryptographic PRGs

The theory of computational pseudorandomness discussed in this sec-
tion emerged from cryptography, where researchers sought a defini-
tion that would ensure that using pseudorandom bits instead of truly
random bits (e.g., when encrypting a message) would retain security
against all computationally feasible attacks. In this setting, the gener-
ator G is used by the honest parties and thus should be very efficient
to compute. On the other hand, the distinguisher T corresponds to an
attack carried about by an adversary, and we want to protect against
adversaries that may invest a lot of computational resources into trying
to break the system. Thus, one is led to require that the pseudorandom
generators be secure even against distinguishers with greater running
time than the generator. The most common setting of parameters in the
theoretical literature is that the generator should run in a fixed polyno-
mial time, but the adversary can run in an arbitrary polynomial time.

Definition 7.9. A generator Gm : {0,1}d(m)→ {0,1}m is a crypto-
graphic pseudorandom generator if:

(1) Gm is fully explicit. That is, there is a constant b such that
Gm is computable in time mb.

220 Pseudorandom Generators

(2) Gm is an (mω(1),1/mω(1)) PRG. That is, for every constant
c, Gm is an (mc,1/mc) pseudorandom generator for all
sufficiently large m.

Due to space constraints and the fact that such generators are
covered in other texts (see the Chapter Notes and References), we will
not do an in-depth study of cryptographic generators, but just survey
what is known about them.

The first question to ask is whether such generators exist at all.
It is not hard to show that cryptographic pseudorandom generators
cannot exist unless P �= NP, indeed unless NP �⊂ P/poly. (See
Problem 7.3.) Thus, we do not expect to establish the existence of such
generators unconditionally, and instead need to make some complexity
assumption. While it would be wonderful to show that NP �⊂ P/poly
implies the existence of cryptographic pseudorandom generators, that
too seems out of reach. However, we can base them on the very
plausible assumption that there are functions that are easy to evaluate
but hard to invert.

Definition 7.10. fn : {0,1}n→ {0,1}n is a one-way function if:

(1) There is a constant b such that fn is computable in time nb

for sufficiently large n.
(2) For every constant c and every nonuniform algorithm A

running in time nc:

Pr[A(fn(Un)) ∈ f−1
n (fn(Un))] ≤ 1

nc

for all sufficiently large n.

Assuming the existence of one-way functions seems stronger than
the assumption NP �⊂ P/poly. For example, it is an average-case
complexity assumption, as it requires that f is hard to invert when
evaluated on random inputs. Nevertheless, there are a number of
candidate functions believed to be one-way. The simplest is integer
multiplication: fn(x,y) = x · y, where x and y are n/2-bit numbers.

7.2 Cryptographic PRGs 221

Inverting this function amounts to the integer factorization problem,
for which no efficient algorithm is known.

A classic and celebrated result in the foundations of cryptography
is that cryptographic pseudorandom generators can be constructed
from any one-way function:

Theorem 7.11. The following are equivalent:

(1) One-way functions exist.
(2) There exist cryptographic pseudorandom generators with

seed length d(m) = m − 1.
(3) For every constant ε > 0, there exist cryptographic pseudo-

random generators with seed length d(m) = mε.

Corollary 7.12. If one-way functions exist, then BPP ⊂ SUBEXP.

What about getting a better derandomization? The proof of the
above theorem is more general quantitatively. It takes any one-way
function f� : {0,1}�→ {0,1}� and a parameter m, and constructs a gen-
erator Gm : {0,1}poly(�)→ {0,1}m. The fact that Gm is pseudorandom
is proven by a reduction as follows. Assuming for contradiction that we
have an algorithm T that runs in time t and distinguishes Gm from uni-
form with advantage ε, we construct an algorithm T ′ running in time
t′ = t · (m/ε)O(1) inverting f� (say with probability 1/2). If t′ ≤ poly(�),
then this contradicts the one-wayness of f , and hence we conclude
that T cannot exist and Gm is a (t,ε) pseudorandom generator.

Quantitatively, if f� is hard to invert by algorithms running in time
s(�) and we take m = 1/ε = s(�)o(1), then we have t′ ≤ s(�) for every
t = poly(m) and sufficiently large �. Thus, viewing the seed length d

of Gm as a function of m, we have d(m) = poly(�) = poly(s−1(mω(1))),
where mω(1) denotes any superpolynomial function of m.

Thus:

• If s(�) = �ω(1), we can get seed length d(m) = mε for any
desired constant ε > 0 and BPP ⊂ SUBEXP (as discussed
above).

222 Pseudorandom Generators

• If s(�) = 2�Ω(1)
(as is plausible for the factoring one-way

function), then we get seed length d(m) = poly(logm) and
BPP ⊂ P̃.

But we cannot get seed length d(m) = O(logm), as needed for con-
cluding BPP = P, from this result. Even for the maximum possible
hardness s(�) = 2Ω(�), we get d(m) = poly(logm). In fact, Problem 7.3
shows that it is impossible to have a cryptographic PRG with seed
length O(logm) meeting Definition 7.9, where we require that Gm

be pseudorandom against all poly(m)-time algorithms. However, for
derandomization we only need Gm to be pseudorandom against a fixed
poly-time algorithm, e.g., running in time t = m, and we would get such
generators with seed length O(logm) if the aforementioned construction
could be improved to yield seed length d = O(�) instead of d = poly(�).

Open Problem 7.13. Given a one-way function f : {0,1}�→ {0,1}�
that is hard to invert by algorithms running in time s = s(�) and a
constant c, it is possible to construct a fully explicit (t,ε) pseudoran-
dom generator G : {0,1}d→ {0,1}m with seed length d = O(�) and
pseudorandomness against time t = s · (ε/m)O(1)?

The best known seed length for such a generator is
d = Õ(�3 · log(m/ε)/ log2 s), which is Õ(�2) for the case that s = 2Ω(�)

and m = 2Ω(�) as discussed above.
The above open problem has long been solved in the positive

for one-way permutations f : {0,1}�→ {0,1}�. In fact, the construc-
tion of pseudorandom generators from one-way permutations has a
particularly simple description:

Gm(x,r) = (〈x,r〉,〈f(x), r〉,〈f(f(x)), r〉, . . . ,〈f (m−1)(x), r〉),
where |r| = |x| = � and 〈·, ·〉 denotes inner product modulo 2. One
intuition for this construction is the following. Consider the sequence
(f (m−1)(U�),f (m−2)(U�), . . . ,f(U�),U�). By the fact that f is hard to
invert (but easy to evaluate) it can be argued that the i + 1’st compo-
nent of this sequence is infeasible to predict from the first i components
except with negligible probability. Thus, it is a computational analogue

7.2 Cryptographic PRGs 223

of a block source. The pseudorandom generator then is obtained by
a computational analogue of block-source extraction, using the strong
extractor Ext(x,r) = 〈x,r〉. The fact that the extraction works in this
computational setting, however, is much more delicate and complex
to prove than in the setting of extractors, and relies on a “local
list-decoding algorithm” for the corresponding code (namely the
Hadamard code). See Problems 7.12 and 7.13. (We will discuss local
list decoding in Section 7.6.)

Pseudorandom Functions. It turns out that a cryptographic pseu-
dorandom generator can be used to build an even more powerful
object — a family of pseudorandom functions. This is a family of func-
tions {fs : {0,1}d→ {0,1}}s∈{0,1}d such that (a) given the seed s, the
function fs can be evaluated in polynomial time, but (b) without the
seed, it is infeasible to distinguish an oracle for fs from an oracle to a
truly random function. Thus in some sense, the d-bit truly random seed
s is stretched to 2d pseudorandom bits (namely the truth table of fs)!

Pseudorandom functions have applications in several domains:

• Cryptography : When two parties share a seed s to a PRF,
they effectively share a random function f : {0,1}d→ {0,1}.
(By definition, the function they share is indistinguishable
from random by any poly-time third party.) Thus, in order
for one party to send a message m encrypted to the other,
they can simply choose a random r

R← {0,1}d, and send
(r,fs(r) ⊕ m). With knowledge of s, decryption is easy;
simply calculate fs(r) and XOR it to the second part of the
received message. However, the value fs(r) ⊕ m would look
essentially random to anyone without knowledge of s.
This is just one example; pseudorandom functions have vast
applicability in cryptography.

• Learning Theory : Here, PRFs are used mainly to prove neg-
ative results. The basic paradigm in computational learning
theory is that we are given a list of examples of a function’s
behavior, (x1,f(x2)),(x2,f(x2)), . . . ,(xk,f(xk))), where the
xis are being selected randomly from some underlying
distribution, and we would like to predict what the func-

224 Pseudorandom Generators

tion’s value will be on a new data point xk+1 coming from
the same distribution. Information-theoretically, correct
prediction is possible after a small number of samples (with
high probability), assuming that the function has a small
description (e.g., is computable by a poly-sized circuit).
However, it is computationally hard to predict the output
of a PRF fs on a new point xk+1 after seeing its value on
k points (and this holds even if the algorithm gets to make
“membership queries” — choose the evaluation points on
its own, in addition to getting random examples from some
underlying distribution). Thus, PRFs provide examples of
functions that are efficiently computable yet hard to learn.

• Hardness of Proving Circuit Lower Bounds: One main
approach to proving P �= NP is to show that some
f ∈NP doesn’t have polynomial size circuits (equivalently,
NP �⊂ P/poly). This approach has had very limited suc-
cess — the only superpolynomial lower bounds that have
been achieved have been using very restricted classes of
circuits (monotone circuits, constant depth circuits, etc).
For general circuits, the best lower bound that has been
achieved for a problem in NP is 5n − O(n).
Pseudorandom functions have been used to help explain
why existing lower-bound techniques have so far not yielded
superpolynomial circuit lower bounds. Specifically, it has
been shown that any sufficiently “constructive” proof of
superpolynomial circuit lower bounds (one that would allow
us to certify that a randomly chosen function has no small cir-
cuits) could be used to distinguish a pseudorandom function
from truly random in subexponential time and thus invert
any one-way function in subexponential time. This is known
as the “Natural Proofs” barrier to circuit lower bounds.

7.3 Hybrid Arguments

In this section, we introduce a very useful proof method for working
with computational indistinguishability, known as the hybrid argument.

7.3 Hybrid Arguments 225

We use it to establish two important facts — that computational
indistinguishability is preserved under taking multiple samples, and
that pseudorandomness is equivalent to next-bit unpredictability.

7.3.1 Indistinguishability of Multiple Samples

The following proposition illustrates that computational indistin-
guishability behaves like statistical difference when taking many
independent repetitions; the distance ε multiplies by at most the num-
ber of copies (cf. Lemma 6.3, Part 6). Proving it will introduce useful
techniques for reasoning about computational indistinguishability, and
will also illustrate how working with such computational notions can
be more subtle than working with statistical notions.

Proposition 7.14. If random variables X and Y are (t,ε) indistin-
guishable, then for every k ∈ N, Xk and Y k are (t,kε) indistinguishable
(where Xk represents k independent copies of X).

Note that when t =∞, this follows from Lemma 6.3, Part 6; the
challenge here is to show that the same holds even when we restrict to
computationally bounded distinguishers.

Proof. We will prove the contrapositive: if there is an efficient
algorithm T distinguishing Xk and Y k with advantage greater than
kε, then there is an efficient algorithm T ′ distinguishing X and Y

with advantage greater than ε. The difference in this proof from the
corresponding result about statistical difference is that we need to
preserve efficiency when going from T to T ′. The algorithm T ′ will
naturally use the algorithm T as a subroutine. Thus this is a reduction
in the same spirit as reductions used elsewhere in complexity theory
(e.g., in the theory of NP-completeness).

Suppose that there exists a nonuniform time t algorithm T such that

|Pr[T (Xk) = 1] − Pr[T (Y k) = 1]| > kε. (7.1)

We can drop the absolute value in the above expression without
loss of generality. (Otherwise we can replace T with its negation; recall
that negations are free in our measure of circuit size.)

226 Pseudorandom Generators

Now we will use a “hybrid argument.” Consider the hybrid
distributions Hi = Xk−iY i, for i = 0, . . . ,k. Note that H0 = Xk and
Hk = Y k. Then Inequality (7.1) is equivalent to

k∑
i=1

Pr[T (Hi−1) = 1] − Pr[T (Hi) = 1] > kε,

since the sum telescopes. Thus, there must exist some i ∈ [k] such that
Pr[T (Hi−1) = 1] − Pr[T (Hi) = 1] > ε, i.e.,

Pr[T (Xk−iXY i−1) = 1] − Pr[T (Xk−iY Y i−1) = 1] > ε.

By averaging, there exists some x1, . . .xk−i and yk−i+2, . . .yk such
that

Pr[T (x1, . . .xk−i,X,yk−i+2, . . .yk) = 1]

−Pr[T (x1, . . .xk−i,Y,yk−i+2, . . .yk) = 1] > ε.

Then, define T ′(z) = T (x1, . . .xk−i,z,yk−i+2, . . . ,yk). Note that T ′

is a nonuniform algorithm with advice i, x1, . . . ,xk−i, yk−i+2, . . .yk

hardwired in. Hardwiring these inputs costs nothing in terms of circuit
size. Thus T ′ is a nonuniform time t algorithm such that

Pr[T ′(X) = 1] − Pr[T ′(Y) = 1] > ε,

contradicting the indistinguishability of X and Y .

While the parameters in the above result behave nicely, with (t,ε)
going to (t,kε), there are some implicit costs. First, the amount of
nonuniform advice used by T ′ is larger than that used by T . This is
hidden by the fact that we are using the same measure t (namely circuit
size) to bound both the time and the advice length. Second, the result is
meaningless for large values of k (e.g., k = t), because a time t algorithm
cannot read more than t bits of the input distributions Xk and Y k.

We note that there is an analogue of the above result for computa-
tional indistinguishability against uniform algorithms (Definition 7.2),
but it is more delicate, because we cannot simply hardwire i,
x1, . . . ,xk−i, yk−i+2, . . . ,yk as advice. Indeed, a direct analogue of
the proposition as stated is known to be false. We need to add the

7.3 Hybrid Arguments 227

additional condition that the distributions X and Y are efficiently
samplable. Then T ′ can choose i

R← [k] at random, and randomly
sample x1, . . . ,xk−i

R← X, yk−i+2, . . . ,yk
R← Y .

7.3.2 Next-Bit Unpredictability

In analyzing the pseudorandom generators that we construct, it will
be useful to work with a reformulation of the pseudorandomness
property, which says that given a prefix of the output, it should be
hard to predict the next bit much better than random guessing.

For notational convenience, we deviate from our usual conventions
and write Xi to denote the ith bit of random variable X, rather than
the ith random variable in some ensemble. We have:

Definition 7.15. Let X be a random variable distributed on {0,1}m.
For t ∈ N and ε ∈ [0,1], we say that X is (t,ε) next-bit unpredictable if
for every nonuniform probabilistic algorithm P running in time t and
every i ∈ [m], we have:

Pr[P (X1X2 · · ·Xi−1) = Xi] ≤ 1
2

+ ε,

where the probability is taken over X and the coin tosses of P .

Note that the uniform distribution X ≡ Um is (t,0) next-bit
unpredictable for every t. Intuitively, if X is pseudorandom, it must
be next-bit unpredictable, as this is just one specific kind of test one
can perform on X. In fact the converse also holds, and that will be
the direction we use.

Proposition 7.16. Let X be a random variable taking values in
{0,1}m. If X is a (t,ε) pseudorandom, then X is (t − O(1),ε) next-bit
unpredictable. Conversely, if X is (t,ε) next-bit unpredictable, then it
is (t,m · ε) pseudorandom.

Proof. Here U denotes an r.v. uniformly distributed on {0,1}m and
Ui denotes the ith bit of U .

228 Pseudorandom Generators

pseudorandom ⇒ next-bit unpredictable. The proof is by
reduction. Suppose for contradiction that X is not (t − 3,ε) next-bit
unpredictable, so we have a predictor P : {0,1}i−1→ {0,1} that
succeeds with probability at least 1/2 + ε. We construct an algorithm
T : {0,1}m→ {0,1} that distinguishes X from Um as follows:

T (x1x2 · · ·xm) =

{
1 if P (x1x2 · · ·xi−1) = xi

0 otherwise.

T can be implemented with the same number of ∧ and ∨ gates as P ,
plus 3 for testing equality (via the formula (x ∧ y) ∨ (¬x ∧ ¬y)).

next-bit unpredictable ⇒ pseudorandom. Also by reduction.
Suppose X is not pseudorandom, so we have a nonuniform algorithm
T running in time t s.t.

Pr[T (X) = 1] − Pr[T (U) = 1] > ε,

where we have dropped the absolute values without loss of generality
as in the proof of Proposition 7.14.

We now use a hybrid argument. Define Hi =
X1X2 · · ·XiUi+1Ui+2 · · ·Um. Then Hm = X and H0 = U . We have:

m∑
i=1

(Pr[T (Hi) = 1] − Pr[T (Hi−1) = 1]) > ε,

since the sum telescopes. Thus, there must exist an i such that

Pr[T (Hi) = 1] − Pr[T (Hi−1) = 1] > ε/m.

This says that T is more likely to output 1 when we put Xi in the
ith bit than when we put a random bit Ui. We can view Ui as being
Xi with probability 1/2 and being Xi with probability 1/2. The only
advantage T has must be coming from the latter case, because in the
former case, the two distributions are identical. Formally,

ε/m < Pr[T (Hi) = 1] − Pr[T (Hi−1) = 1]

= Pr[T (X1 · · ·Xi−1XiUi+1 · · ·Um) = 1]

7.3 Hybrid Arguments 229

−
(

1
2
· Pr[T (X1 · · ·Xi−1XiUi+1 · · ·Um) = 1]

+
1
2
· Pr[T (X1 · · ·Xi−1XiUi+1 · · ·Um) = 1]

)
=

1
2
· (Pr[T (X1 · · ·Xi−1XiUi+1 · · ·Um) = 1]

−Pr[T (X1 · · ·Xi−1XiUi+1 · · ·Um) = 1]).

This motivates the following next-bit predictor: P (x1x2 · · ·xi−1):

(1) Choose random bits ui, . . . ,um
R← {0,1}.

(2) Compute b = T (x1 · · ·xi−1ui · · ·um).
(3) If b = 1, output ui, otherwise output ui.

The intuition is that T is more likely to output 1 when ui = xi than
when ui = xi. Formally, we have:

Pr[P (X1 · · ·Xi−1) = Xi]

=
1
2
· (Pr[T (X1 · · ·Xi−1UiUi+1 · · ·Um) = 1|Ui = Xi]

+Pr[T (X1 · · ·Xi−1UiUi+1 · · ·Um) = 0|Ui �= Xi])

=
1
2
· (Pr[T (X1 · · ·Xi−1XiUi+1 · · ·Um) = 1]

+1 − Pr[T (X1 · · ·Xi−1XiUi+1 · · ·Um) = 1])

>
1
2

+
ε

m
.

Note that as described P runs in time t + O(m). Recalling that we are
using circuit size as our measure of nonuniform time, we can reduce the
running time to t as follows. First, we may nonuniformly fix the coin
tosses ui, . . . ,um of P while preserving its advantage. Then all P does
is run T on x1 · · ·xi−1 concatenated with some fixed bits and and either
output what T does or its negation (depending on the fixed value of ui).
Fixing some input bits and negation can be done without increasing
circuit size. Thus we contradict the next-bit unpredictability of X.

We note that an analogue of this result holds for uniform distin-
guishers and predictors, provided that we change the definition of

230 Pseudorandom Generators

next-bit predictor to involve a random choice of i
R← [m] instead of

a fixed value of i, and change the time bounds in the conclusions to
be t − O(m) rather than t − O(1) and t. (We can’t do tricks like in
the final paragraph of the proof.) In contrast to the multiple-sample
indistinguishability result of Proposition 7.14, this result does not
need X to be efficiently samplable for the uniform version.

7.4 Pseudorandom Generators from Average-Case Hardness

In Section 7.2, we surveyed cryptographic pseudorandom generators,
which have numerous applications within and outside cryptography,
including to derandomizing BPP. However, for derandomization, we
can use generators with weaker properties. Specifically, Theorem 7.5
only requires G : {0,1}d(m)→ {0,1}m such that:

(1) G fools (nonuniform) distinguishers running in time m (as
opposed to all poly(m)-time distinguishers).

(2) G is computable in time poly(m,2d(m)) (i.e., G is mildly
explicit). In particular, the PRG may take more time than
the distinguishers it is trying to fool.

Such a generator implies that every BPP algorithm can be deran-
domized in time poly(n) · 2d(poly(n)).

The benefit of studying such generators is that we can hope to con-
struct them under weaker assumptions than used for cryptographic gen-
erators. In particular, a generator with the properties above no longer
seems to imply P �= NP, much less the existence of one-way functions.
(The nondeterministic distinguisher that tests whether a string is
an output of the generator by guessing a seed needs to evaluate the
generator, which takes more time than the distinguishers are allowed.)

However, as shown in Problem 7.1, such generators still imply
nonuniform circuit lower bounds for exponential time, something that
is beyond the state of the art in complexity theory.

Our goal in the rest of this section is to construct generators as
above from assumptions that are as weak as possible. In this section, we
will construct them from boolean functions computable in exponential
time that are hard on average (for nonuniform algorithms), and in the
section after we will relax this to only require worst-case hardness.

7.4 Pseudorandom Generators from Average-Case Hardness 231

7.4.1 Average-Case Hardness

A function is hard on average if it is hard to compute correctly on
randomly chosen inputs. Formally:

Definition 7.17. For s ∈ N and δ ∈ [0,1], we say that a Boolean func-
tion f : {0,1}�→ {0,1} is (s,δ) average-case hard if for all nonuniform
probabilistic algorithms A running in time s,

Pr[A(X) = f(X)] ≤ 1 − δ,

where the probability is taken over X and the coin tosses of A.

Note that saying that f is (s,δ) hard for some δ > 0 (possibly
exponentially small) amounts to saying that f is worst-case hard.1

Thus, we think of average-case hardness as corresponding to values
of δ that are noticeably larger than zero, e.g., δ = 1/s.1 or δ = 1/3.
Indeed, in this section we will take δ = 1/2 − ε for ε = 1/s. That is, no
efficient algorithm can compute f much better than random guessing.
A typical setting of parameters we use is s = s(�) somewhere in range
from �ω(1) (slightly superpolynomial) to s(�) = 2α� for a constant
α > 0. (Note that every function is computable by a nonuniform
algorithm running in time roughly 2�, so we cannot take s(�) to be
any larger.) We will also require f to be computable in (uniform) time
2O(�) so that our pseudorandom generator will be computable in time
exponential in its seed length. The existence of such an average-case
hard function may seem like a strong assumption, but in later sections
we will see how to deduce it from a worst-case hardness assumption.

Now we show how to obtain a pseudorandom generator from
average-case hardness.

Proposition 7.18. If f : {0,1}�→ {0,1} is (t,1/2 − ε) average-case
hard, then G(x) = x ◦ f(x) is a (t,ε) pseudorandom generator.

1 For probabilistic algorithms, the “right” definition of worst-case hardness is actually that
there exists an input x for which Pr[A(x) = f(x)] < 2/3, where the probability is taken
over the coin tosses of A. But for nonuniform algorithms two definitions can be shown to
be roughly equivalent. See Definition 7.34 and the subsequent discussion.

232 Pseudorandom Generators

We omit the proof of this proposition, but it follows from Prob-
lem 7.5, Part 2 (by setting m = 1, a = 0, and d = � in Theorem 7.24).
Note that this generator includes its seed in its output. This is
impossible for cryptographic pseudorandom generators, but is feasible
(as shown above) when the generator can have more resources than
the distinguishers it is trying to fool.

Of course, this generator is quite weak, stretching by only one bit.
We would like to get many bits out. Here are two attempts:

• Use concatenation: Define G(x1 · · ·xk) = x1 · · ·xkf(x1) · · ·
f(xk). This is a (t,kε) pseudorandom generator because
G(Uk�) consists of k independent samples of a pseudorandom
distribution and thus computational indistinguishability is
preserved by Proposition 7.14. Note that already here we
are relying on nonuniform indistinguishability, because the
distribution (U�,f(U�)) is not necessarily samplable (in time
that is feasible for the distinguishers). Unfortunately, how-
ever, this construction does not improve the ratio between
output length and seed length, which remains very close to 1.

• Use composition: For example, try to get two
bits out using the same seed length by defining
G′(x) = G(G(x)1···�)G(x)�+1, where G(x)1···� denotes
the first � bits of G(x). This works for cryptographic
pseudorandom generators, but not for the generators we are
considering here. Indeed, for the generator G(x) = xf(x) of
Proposition 7.18, we would get G′(x) = xf(x)f(x), which is
clearly not pseudorandom.

7.4.2 The Pseudorandom Generator

Our goal now is to show the following:

Theorem 7.19. For s : N→ N, suppose that there is a function
f ∈ E = DTIME(2O(�))2 such that for every input length � ∈ N, f

2E should be contrasted with the larger class EXP = DTIME(2poly(�)). See Problem 7.2.

7.4 Pseudorandom Generators from Average-Case Hardness 233

is (s(�),1/2 − 1/s(�)) average-case hard, where s(�) is computable in
time 2O(�). Then for every m ∈ N, there is a mildly explicit (m,1/m)
pseudorandom generator G : {0,1}d(m)→ {0,1}m with seed length
d(m) = O(s−1(poly(m))2/ logm) that is computable in time 2O(d(m)).

Note that this is similar to the seed length d(m) =
poly(s−1(poly(m))) mentioned in Section 7.2 for constructing
cryptographic pseudorandom generators from one-way functions, but
the average-case assumption is incomparable (and will be weakened
further in the next section). In fact, it is known how to achieve a seed
length d(m) = O(s−1(poly(m))), which matches what is known for
constructing pseudorandom generators from one-way permutations as
well as the converse implication of Problem 7.1. We will not cover that
improvement here (see the Chapter Notes and References for pointers),
but note that for the important case of hardness s(�) = 2Ω(�), Theo-
rem 7.19 achieves seed length d(m) = O(O(logm)2/ logm) = O(logm)
and thus P = BPP. More generally, we have:

Corollary 7.20. Suppose that E has a (s(�),1/2 − 1/s(�)) average-
case hard function f : {0,1}�→ {0,1}.

(1) If s(�) = 2Ω(�), then BPP = P.
(2) If s(�) = 2�Ω(1)

, then BPP ⊂ P̃.
(3) If s(�) = �ω(1), then BPP ⊂ SUBEXP.

The idea is to apply f repeatedly, but on slightly dependent inputs,
namely ones that share very few bits. The sets of seed bits used for
each output bit will be given by a design:

Definition 7.21. S1, . . . ,Sm ⊂ [d] is an (�,a)-design if

(1) ∀ i, |Si| = �

(2) ∀ i �= j, |Si ∩ Sj | ≤ a

234 Pseudorandom Generators

We want lots of sets having small intersections over a small
universe. We will use the designs established by Problem 3.2:

Lemma 7.22. For every constant γ > 0 and every �,m ∈ N, there
exists an (�,a)-design S1, . . . ,Sm ⊂ [d] with d = O(�2

a) and a = γ · logm.
Such a design can be constructed deterministically in time poly(m,d).

The important points are that intersection sizes are only logarith-
mic in the number of sets, and the universe size d is at most quadratic
in the set size � (and can be linear in � in case we take m = 2Ω(�)).

Construction 7.23. (Nisan–Wigderson Generator) Given a
function f : {0,1}�→ {0,1} and an (�,a)-design S1, . . . ,Sm ⊂ [d], define
the Nisan–Wigderson generator G : {0,1}d→ {0,1}m as

G(x) = f(x|S1)f(x|S2) · · ·f(x|Sm)

where if x is a string in {0,1}d and S ⊂ [d], then x|S is the string of
length |S| obtained from x by selecting the bits indexed by S.

Theorem 7.24. Let G : {0,1}d→ {0,1}m be the Nisan–Wigderson
generator based on a function f : {0,1}�→ {0,1} and some (�,a)
design. If f is (s,1/2 − ε/m) average-case hard, then G is a (t,ε)
pseudorandom generator, for t = s − m · a · 2a.

Theorem 7.19 follows from Theorem 7.24 by setting ε = 1/m

and a = logm, and observing that for � = s−1(m3), then
t = s(�) − m · a · 2a ≥m, so we have an (m,1/m) pseudorandom gen-
erator. The seed length is d = O(�2/ logm) = O(s−1(poly(m))2/ logm).

Proof. Suppose G is not a (t,ε) pseudorandom generator. By Proposi-
tion 7.16, there is a nonuniform time t next-bit predictor P such that

Pr[P (f(X|S1)f(X|S2) · · ·f(X|Si−1)) = f(X|Si)] >
1
2

+
ε

m
, (7.2)

for some i ∈ [m]. From P , we construct A that computes f with
probability greater than 1/2 + ε/m.

7.4 Pseudorandom Generators from Average-Case Hardness 235

Let Y = X|Si . By averaging, we can fix all bits of X|Si
= z (where

Si is the complement of S) such that the prediction probability
remains greater than 1/2 + ε/m (over Y and the coin tosses of the
predictor P). Define fj(y) = f(x|Sj) for j ∈ {1, . . . , i − 1}. (That is,
fj(y) forms x by placing y in the positions in Si and z in the others,
and then applies f to x|Sj). Then

Pr
Y

[P (f1(Y) · · ·fi−1(Y)) = f(Y)] >
1
2

+
ε

m
.

Note that fj(y) depends on only |Si ∩ Sj | ≤ a bits of y. Thus, we
can compute each fj with a look-up table, which we can include in the
advice to our nonuniform algorithm. Indeed, every function on a bits
can be computed by a boolean circuit of size at most a · 2a. (In fact,
size at most O(2a/a) suffices.)

Then, defining A(y) = P (f1(y) · · ·fi−1(y)), we deduce that A(y) can
be computed with error probability smaller than 1/2 − ε/m in nonuni-
form time less than t + m · a · 2a = s. This contradicts the hardness
of f . Thus, we conclude G is an (m,ε) pseudorandom generator.

Some additional remarks on this proof:

(1) This is a very general construction that works for any
average-case hard function f . We only used f ∈ E to deduce
G is computable in E.

(2) The reduction works for any nonuniform class of algorithms
C where functions of logarithmically many bits can be
computed efficiently.

Indeed, in the next section we will use the same construction to
obtain an unconditional pseudorandom generator fooling constant-
depth circuits, and will later exploit the above “black-box” properties
even further.

As mentioned earlier, the parameters of Theorem 7.24 have been
improved in subsequent work, but the newer constructions do not have
the clean structure of Nisan–Wigderson generator, where the seed of
the generator is used to generate m random but correlated evaluation
points, on which the average-case hard function f is evaluated. Indeed,

236 Pseudorandom Generators

each output bit of the improved generators depends on the entire
truth-table of the function f , translating to a construction of signifi-
cantly higher computational complexity. Thus the following remains an
interesting open problem (which would have significance for hardness
amplification as well as constructing pseudorandom generators):

Open Problem 7.25. For every �,s ∈ N, construct an explicit
generator H : {0,1}O(�)→ ({0,1}�)m with m = sΩ(1) such that if f

is (s,1/2 − 1/s) average-case hard and we define G(x) = f(H1(x))
f(H2(x)) · · ·f(Hm(x)) where Hi(x), denotes the ith component of
H(x), then G is an (m,1/m) pseudorandom generator.

7.4.3 Derandomizing Constant-depth circuits

Definition 7.26. An unbounded fan-in circuit C(x1, . . . ,xn) has input
gates consisting of variables xi, their negations ¬xi, and the constants
0 and 1, as well as computation gates, which can compute the AND
or OR of an unbounded number of other gates (rather than just 2, as
in usual Boolean circuits).3 The size of such a circuit is the number of
computation gates, and the depth is the maximum of length of a path
from an input gate to the output gate.

AC0 is the class of functions f : {0,1}∗→ {0,1} for which there
exist constants c and k and a uniformly constructible sequence
of unbounded fan-in circuits (Cn)n∈N such that for all n, Cn has
size at most nc and depth at most k, and for all x ∈ {0,1}n,
Cn(x) = f(x). Uniform constructibility means that there is an efficient
(e.g., polynomial-time) uniform algorithm M such that for all n,
M(1n) = Cn (where 1n denotes the number n in unary, i.e., a string of
n 1s). BPAC0 defined analogously, except that Cn may have poly(n)
extra inputs, which are interpreted as random bits, and we require
Prr[Cn(x,r) = f(x)] ≥ 2/3.

3 Note that it is unnecessary to allow internal NOT gates, as these can always be pushed
to the inputs via DeMorgan’s Laws at no increase in size or depth.

7.4 Pseudorandom Generators from Average-Case Hardness 237

AC0 is one of the richest circuit classes for which we have
superpolynomial lower bounds:

Theorem 7.27. For all constant k ∈ N and every � ∈ N, the func-
tion Par� : {0,1}�→ {0,1} defined by PAR�(x1, . . . ,x�) =

⊕�
i=1 xi is

(sk(�),1/2 − 1/sk(�))-average-case hard for nonuniform unbounded
fan-in circuits of depth k and size sk(�) = 2Ω(�1/k).

The proof of this result is beyond the scope of this survey; see the
Chapter Notes and References for pointers.

In addition to having an average-case hard function against
AC0, we also need that AC0 can compute arbitrary functions on a
logarithmic number of bits.

Lemma 7.28. Every function g : {0,1}a→ {0,1} can be computed
by a depth 2 circuit of size 2a.

Using these two facts with the Nisan–Wigderson pseudoran-
dom generator construction, we obtain the following pseudorandom
generator for constant-depth circuits.

Theorem 7.29. For every constant k and every m, there exists
a poly(m)-time computable (m,1/m)-pseudorandom generator
Gm : {0,1}logO(k) m→ {0,1}m fooling unbounded fan-in circuits of
depth k (and size m).

Proof. This is proven similarly to Theorems 7.19 and 7.24, except
that we take f = PAR� rather than a hard function in E, and we
observe that the reduction can be implemented in a way that increases
the depth by only an additive constant. Specifically, to obtain a
pseudorandom generator fooling circuits of depth k and size m, we
use the hardness of PAR� against unbounded fan-in circuits of depth
k′ = k + 2 and size m2, where � = t−1

k′ (m2) = O(logk′
m). Then the

seed length of G is O(�2/a) < O(�2) = logO(k) m.

238 Pseudorandom Generators

We now follow the steps of the proof of Theorem 7.19 to go from
an adversary T of depth k violating the pseudorandomness of G to a
circuit A of depth k′ calculating the parity function PAR�.

If T has depth k, then it can be verified that the next-bit predictor
P constructed in the proof of Proposition 7.16 also has depth k. (Recall
that negations and constants can be propagated to the inputs so they
do not contribute to the depth.) Next, in the proof of Theorem 7.24,
we obtain A from P by A(y) = P (f1(y)f2(y) · · ·fi−1(y)) for some
i ∈ {1, . . . ,m} and where each fi depends on at most a bits of y. Now
we observe that A can be computed by a small constant-depth circuit
(if P can). Specifically, applying Lemma 7.28 to each fi, the size of
A is at most (m − 1) · 2a + m = m2 and the depth of A is at most
k′ = k + 2. This contradicts the hardness of PAR�.

Corollary 7.30. BPAC0 ⊂ P̃.

With more work, this can be strengthened to actually put BPAC0

in ÃC
0
, i.e., uniform constant-depth circuits of quasipolynomial size.

(The difficulty is that we use majority voting in the derandomization,
but small constant-depth circuits cannot compute majority. However,
they can compute an “approximate” majority, and this suffices.)

The above pseudorandom generator can also be used to give
a quasipolynomial-time derandomization of the randomized algo-
rithm we saw for approximately counting the number of satisfying
assignments to a DNF formula (Theorem 2.34); see Problem 7.4.

Improving the running time of either of these derandomizations to
polynomial is an intriguing open problem.

Open Problem 7.31. Show that BPAC0 = AC0 or even
BPAC0 ⊂ P.

Open Problem 7.32 (Open Problem 2.36, restated). Give a
deterministic polynomial-time algorithm for approximately counting
the number of satisfying assignments to a DNF formula.

7.5 Worst-Case/Average-Case Reductions and Locally Decodable Codes 239

We remark that it has recently been shown how to give an average-
case AC0 simulation of BPAC0 (i.e., the derandomized algorithm is
correct on most inputs); see Problem 7.5.

Another open problem is to construct similar, unconditional
pseudorandom generators as Theorem 7.29 for circuit classes larger
than AC0. A natural candidate is AC0[2], which is the same as AC0

but augmented with unbounded-fan-in parity gates. There are known
explicit functions f : {0,1}�→ {0,1} (e.g., Majority) for which every
AC0[2] circuit of depth k computing f has size at least sk(�) = 2�Ω(1/k)

,
but unfortunately the average-case hardness is much weaker than
we need. These functions are only (sk(�),1/2 − 1/O(�))-average-case
hard, rather than (sk(�),1/2 − 1/sk(�))-average-case hard, so we can
only obtain a small stretch using Theorem 7.24 and the following
remains open.

Open Problem 7.33. For every constant k and every m, construct a
(mildly) explicit (m,1/4)-pseudorandom generator Gm : {0,1}mo(1) →
{0,1}m fooling AC0[2] circuits of depth k and size m.

7.5 Worst-Case/Average-Case Reductions and
Locally Decodable Codes

In the previous section, we saw how to construct pseudorandom
generators from boolean functions that are very hard on average,
where every nonuniform algorithm running in time t must err with
probability greater than 1/2 − 1/t on a random input. Now we want
to relax the assumption to refer to worst-case hardness, as captured
by the following definition.

Definition 7.34. A function f : {0,1}�→ {0,1} is worst-case hard
for time t if, for all nonuniform probabilistic algorithms A running in
time t, there exists x ∈ {0,1}� such that Pr[A(x) �= f(x)] > 1/3, where
the probability is over the coin tosses of A.

Note that, for deterministic algorithms A, the definition simply says
∃x A(x) �= f(x). In the nonuniform case, restricting to deterministic

240 Pseudorandom Generators

algorithms is without loss of generality because we can always deran-
domize the algorithm using (additional) nonuniformity. Specifically,
following the proof that BPP ⊂ P/poly, it can be shown that if f

is worst-case hard for nonuniform deterministic algorithms running
in time t, then it is worst-case hard for nonuniform probabilistic
algorithms running in time t′ for some t′ = Ω(t/�).

A natural goal is to be able to construct an average-case hard func-
tion from a worst-case hard function. More formally, given a function
f : {0,1}�→ {0,1} that is worst-case hard for time t = t(�), construct a
function f̂ : {0,1}O(�)→ {0,1} such that f̂ is average-case hard for time
t′ = tΩ(1). Moreover, we would like f̂ to be in E if f is in E. (Whether we
can obtain a similar result for NP is a major open problem, and indeed
there are negative results ruling out natural approaches to doing so.)

Our approach to doing this will be via error-correcting codes.
Specifically, we will show that if f̂ is the encoding of f in an appropri-
ate kind of error-correcting code, then worst-case hardness of f implies
average-case hardness of f̂ .

Specifically, we view f as a message of length L = 2�, and apply an
error-correcting code Enc : {0,1}L→ ΣL̂ to obtain f̂ = Enc(f), which
we view as a function f̂ : {0,1}�̂→ Σ, where �̂ = log L̂. Pictorially:

message f : {0,1}�→ {0,1} −→ Enc −→ codeword f̂ : {0,1}�̂→ Σ .

(Ultimately, we would like Σ = {0,1}, but along the way we will
discuss larger alphabets.)

Now we argue the average-case hardness of f̂ as follows. Suppose,
for contradiction, that f̂ is not δ average-case hard. By definition,
there exists an efficient algorithm A with Pr[A(x) = f̂(x)] > 1 − δ.
We may assume that A is deterministic by fixing its coins. Then A

may be viewed as a received word in ΣL̂, and our condition on A

becomes dH(A,f̂) < δ. So if Dec is a δ-decoding algorithm for Enc,
then Dec(A) = f . By assumption A is efficient, so if Dec is efficient,
then f may be efficiently computed everywhere. This would contradict
our worst-case hardness assumption, assuming that Dec(A) gives a
time t(�) algorithm for f . However, the standard notion of decoding
requires reading all 2�̂ values of the received word A and writing all 2�

7.5 Worst-Case/Average-Case Reductions and Locally Decodable Codes 241

values of the message Dec(A), and thus Time(Dec(A))% 2�. But every
function on � bits can be computed in nonuniform time 2�, and even
in the uniform case we are mostly interested in t(�) 2�. To solve this
problem we introduce the notion of local decoding.

Definition 7.35. A local δ-decoding algorithm for a code
Enc : {0,1}L→ ΣL̂ is a probabilistic oracle algorithm Dec with
the following property. Let f : [L]→ {0,1} be any message with
associated codeword f̂ = Enc(f), and let g : [L̂]→ Σ be such that
dH(g, f̂) < δ. Then for all x ∈ [L] we have Pr[Decg(x) = f(x)] ≥ 2/3,
where the probability is taken over the coins flips of Dec.

In other words, given oracle access to g, we want to efficiently
compute any desired bit of f with high probability. So both the input
(namely g) and the output (namely f) are treated implicitly; the
decoding algorithm does not need to read/write either in its entirety.
Pictorially:

Dec f(x)x

g

oracle access

This makes it possible to have sublinear-time (or even
polylogarithmic-time) decoding. Also, we note that the bound of 2/3
in the definition can be amplified in the usual way. Having formalized a
notion of local decoding, we can now make our earlier intuition precise.

Proposition 7.36. Let Enc be an error-correcting code with local
δ-decoding algorithm Dec that runs in nonuniform time at most tDec

(meaning that Dec is an boolean circuit of size at most tDec equipped
with oracle gates), and let f be worst-case hard for nonuniform time
t. Then f̂ = Enc(f) is (t′, δ) average-case hard, where t′ = t/tDec.

242 Pseudorandom Generators

Proof. We do everything as explained before except with DecA in place
of Dec(A), and now the running time is at most Time(Dec) · Time(A).
(We substitute each oracle gate in the circuit for Dec with the circuit
for A.)

We note that the reduction in this proof does not use nonuniformity
in an essential way. We used nonuniformity to fix the coin tosses of A,
making it deterministic. To obtain a version for hardness against uni-
form probabilistic algorithms, the coin tosses of A can be chosen and
fixed randomly instead. With high probability, the fixed coins will not
increase As error by more than a constant factor (by Markov’s Inequal-
ity); we can compensate for this by replacing the (t′, δ) average-case
hardness in the conclusion with, say, (t′, δ/3) average-case hardness.

In light of the above proposition, our task is now to find an error-
correcting code Enc : {0,1}L→ ΣL̂ with a local decoding algorithm.
Specifically, we would like the following parameters.

(1) We want �̂ = O(�), or equivalently L̂ = poly(L). This is
because we measure hardness as a function of input length
(which in turn translates to the relationship between output
length and seed length of pseudorandom generators obtained
via Theorem 7.19). In particular, when t = 2Ω(�), we’d like
to achieve t′ = 2Ω(�̂). Since t′ < t in Proposition 7.36, this is
only possible if �̂ = O(�).

(2) We would like Enc to be computable in time 2O(�̂) = poly(L̂),
which is poly(L) if we satisfy the requirement L̂ = poly(L).
This is because we want f ∈ E to imply f̂ ∈ E.

(3) We would like Σ = {0,1} so that f̂ is a boolean function, and
δ = 1/2 − ε so that f̂ has sufficient average-case hardness for
the pseudorandom generator construction of Theorem 7.24.

(4) Since f̂ will be average-case hard against time t′ = t/tDec, we
would want the running time of Dec to be tDec = poly(�,1/ε)
so that we can take ε = tΩ(1) and still have t′ = tΩ(1)/poly(�).

Of course, achieving δ = 1/2 − ε is not possible with our current
notion of local unique decoding (which is only harder than the
standard notion of unique decoding), and thus in the next section

7.5 Worst-Case/Average-Case Reductions and Locally Decodable Codes 243

we will focus on getting δ to be just a fixed constant. In Section 7.6,
we will introduce a notion of local list decoding, which will enable
decoding from distance δ = 1/2 − ε.

In our constructions, it will be more natural to focus on the task
of decoding codeword symbols rather than message symbols. That is,
we replace the message f with the codeword f̂ in Definition 7.35 to
obtain the following notion:

Definition 7.37(Locally Correctible Codes).4 A local δ-correcting
algorithm for a code C ⊂ ΣL̂ is a probabilistic oracle algorithm Dec with
the following property. Let f̂ ∈ C be any codeword, and let g : [L̂]→ Σ
be such that dH(g, f̂) < δ. Then for all x ∈ [L̂] we have Pr[Decg(x) =
f̂(x)] ≥ 2/3, where the probability is taken over the coin flips of Dec.

This implies the standard definition of locally decodable codes
under the (mild) constraint that the message symbols are explicitly
included in the codeword, as captured by the following definition (see
also Problem 5.4).

Definition 7.38 (Systematic Encodings). An encoding algo-
rithm Enc : {0,1}L→ C for a code C ⊂ ΣL̂ is systematic if there is
a polynomial-time computable function I : [L]→ [L̂] such that for
all f ∈ {0,1}L, f̂ = Enc(f), and all x ∈ [L], we have f̂(I(x)) = f(x),
where we interpret 0 and 1 as elements of Σ in some canonical way.

Informally, this means that the message f can be viewed as the
restriction of the codeword f̂ to the coordinates in the image of I.

Lemma 7.39. If Enc : {0,1}L→ C is systematic and C has a local δ-
correcting algorithm running in time t, then Enc has a local δ-decoding
algorithm (in the standard sense) running in time t + poly(logL).

Proof. If Dec1 is the local corrector for C and I the mapping in the
definition of systematic encoding, then Decg

2(x) = Decg
1(I(x)) is a local

decoder for Enc.

4 In the literature, these are often called self-correctible codes.

244 Pseudorandom Generators

7.5.1 Local Decoding Algorithms

Hadamard Code. Recall the Hadamard code of message length
m, which consists of the truth tables of all Z2-linear functions
c : {0,1}m→ {0,1} (Construction 5.12).

Proposition 7.40. The Hadamard code C ⊂ {0,1}2m
of message

length m has a local (1/4 − ε)-correcting algorithm running in time
poly(m,1/ε).

Proof. We are given oracle access to g : {0,1}m→ {0,1} that is at
distance less than 1/4 − ε from some (unknown) linear function c, and
we want to compute c(x) at an arbitrary point x ∈ {0,1}m. The idea
is random self-reducibility: we can reduce computing c at an arbitrary
point to computing c at uniformly random points, where g is likely
to give the correct answer. Specifically, c(x) = c(x ⊕ r) ⊕ c(r) for
every r, and both x ⊕ r and r are uniformly distributed if we choose
r

R← {0,1}m. The probability that g differs from c at either of these
points is less than 2 · (1/4 − ε) = 1/2 − 2ε. Thus g(x ⊕ r) ⊕ g(r) gives
the correct answer with probability noticeably larger than 1/2. We can
amplify this success probability by repetition. Specifically, we obtain
the following local corrector:

Algorithm 7.41 (Local Corrector for Hadamard Code).
Input: An oracle g : {0,1}m→ {0,1}, x ∈ {0,1}m, and a parame-
ter ε > 0

(1) Choose r1, . . . , rt
R← {0,1}m, for t = O(1/ε2).

(2) Query g(ri) and g(ri ⊕ x) for each i = 1, . . . , t.
(3) Output maj1≤i≤t{g(ri) ⊕ g(ri ⊕ x)}.

If dH(g,c) < 1/4 − ε, then this algorithm will output c(x) with
probability at least 2/3.

This local decoding algorithm is optimal in terms of its decoding
distance (arbitrarily close to 1/4) and running time (logarithmic in

7.5 Worst-Case/Average-Case Reductions and Locally Decodable Codes 245

the blocklength), but the problem is that the Hadamard code has
exponentially small rate.

Reed–Muller Code. Recall that the q-ary Reed–Muller code of
degree d and dimension m consists of all multivariate polynomials
p : Fm

q → Fq of total degree at most d. (Construction 5.16.) This code
has minimum distance δ = 1 − d/q. Reed–Muller Codes are a common
generalization of both Hadamard and Reed–Solomon codes, and thus
we can hope that for an appropriate setting of parameters, we will
be able to get the best of both kinds of codes. That is, we want to
combine the efficient local decoding of the Hadamard code with the
good rate of Reed–Solomon codes.

Theorem 7.42. The q-ary Reed–Muller Code of degree d and
dimension m has a local 1/12-correcting algorithm running in time
poly(m,q) provided d ≤ q/9 and q ≥ 36.

Note the running time of the decoder is roughly the mth root
of the block length L̂ = qm. When m = 1, our decoder can query
the entire string and we simply obtain a global decoding algorithm
for Reed–Solomon Codes (which we already know how to achieve
from Theorem 5.19). But for large enough m, the decoder can only
access a small fraction of the received word. (In fact, one can improve
the running time to poly(m,d, logq), but the weaker result above is
sufficient for our purposes.)

The key idea behind the decoder is to do restrictions to random
lines in Fm. The restriction of a Reed–Muller codeword to such a line
is a Reed–Solomon codeword, and we can afford to run our global
Reed–Solomon decoding algorithm on the line.

Formally, for x,y ∈ Fm, we define the (parameterized) line through
x in direction y as the function �x,y : F→ Fm given by �x,y(t) = x + ty.
Note that for every a ∈ F,b ∈ F \ {0}, the line �x+ay,by has the same
set of points in its image as �x,y; we refer to this set of points as an
unpolymerized line. When y = 0, the parameterized line contains only
the single point x.

246 Pseudorandom Generators

If g : Fm→ F is any function and � : F→ Fm is a line, then we use
g|� to denote the restriction of g to �, which is simply the composition
g ◦ � : F→ F. Note that if p is any polynomial of total degree at most
d, then p|� is a (univariate) polynomial of degree at most d.

So we are given an oracle g of distance less than δ from some
degree d polynomial p : Fm→ F, and we want to compute p(x) for
some x ∈ Fm. We begin by choosing a random line � through x. Every
point of Fm \ {x} lies on exactly one parameterized line through x,
so the points on � (except x) are distributed uniformly at random
over the whole domain, and thus g and p are likely to agree on these
points. Thus we can hope to use the points on this line to reconstruct
the value of p(x). If δ is sufficiently small compared to the degree
(e.g., δ = 1/3(d + 1)), we can simply interpolate the value of p(x) from
d + 1 points on the line. This gives rise to the following algorithm.

Algorithm 7.43 (Local Corrector for Reed–Muller Code I).
Input: An oracle g : Fm→ F, an input x ∈ Fm, and a degree
parameter d

(1) Choose y
R← Fm. Let � = �x,y : F→ Fm be the line through x

in direction y.
(2) Query g to obtain β0 = g|�(α0) = g(�(a0)), . . . ,βd = g|�(αd) =

g(�(ad)), where α0, . . . ,αd ∈ F \ {0} are any fixed points
(3) Interpolate to find the unique univariate polynomial q of

degree at most d s.t. ∀ i,q(αi) = βi

(4) Output q(0)

Claim 7.44 If g has distance less than δ = 1/3(d + 1) from some
polynomial p of degree at most d, then Algorithm 7.43 will output
p(x) with probability greater than 2/3.

Proof of Claim: Observe that for all x ∈ Fm and αi ∈ F \ {0},
�x,y(αi) is uniformly random in Fm over the choice of y

R← Fm. This

7.5 Worst-Case/Average-Case Reductions and Locally Decodable Codes 247

implies that for each i,

Pr
�

[g|�(αi) �= p|�(αi)] < δ =
1

3(d + 1)
.

By a union bound,

Pr
�

[∃i,g|�(αi) �= p|�(αi)] < (d + 1) · δ =
1
3
.

Thus, with probability greater than 2/3, we have ∀ i,q(αi) = p|�(αi)
and hence q(0) = p(x). The running time of the algorithm
is poly(m,q).

We now show how to improve the decoder to handle a larger fraction
of errors, up to distance δ = 1/12. We alter Steps 7.43 and 7.43 in the
above algorithm. In Step 7.43, instead of querying only d + 1 points,
we query over all points in �. In Step 7.43, instead of interpolation,
we use a global decoding algorithm for Reed–Solomon codes to decode
the univariate polynomial p|�. Formally, the algorithm proceeds as
follows.

Algorithm 7.45 (Local Corrector for Reed–Muller Codes II).
Input: An oracle g : Fm→ F, an input x ∈ Fm, and a degree parame-
ter d, where q = |F| ≥ 36 and d ≤ q/9.

(1) Choose y
R← Fm. Let � = �x,y : F→ Fm be the line through x

in direction y.
(2) Query g at all points on � to obtain g|� : F→ F.
(3) Run the 1/3-decoder for the q-ary Reed–Solomon code of

degree d on g|� to obtain the (unique) polynomial q at
distance less than 1/3 from g|� (if one exists).5

(4) Output q(0).

5 A 1/3-decoder for Reed–Solomon codes follows from the (1 − 2
√

d/q) list-decoding algo-
rithm of Theorem 5.19. Since 1/3 ≤ 1 − 2

√
d/q, the list-decoder will produce a list con-

taining all univariate polynomials at distance less than 1/3, and since 1/3 is smaller than
half the minimum distance (1 − d/q), there will be only one good decoding.

248 Pseudorandom Generators

Claim 7.46. If g has distance less than δ = 1/12 from some polynomial
p of degree at most d, and the parameters satisfy q = |F| ≥ 36, d ≤ q/9,
then Algorithm 7.45 will output p(x) with probability greater than 2/3.

Proof of Claim: The expected distance (between g|� and p|�) is small:

E
�
[dH(g|�,p|�)] <

1
q

+ δ =
1
36

+
1
12

=
1
9
,

where the term 1/q is due to the fact that the point x is not random.
Therefore, by Markov’s Inequality,

Pr[dH(g|�,p|�) ≥ 1/3] ≤ 1/3.

Thus, with probability at least 2/3, we have that p|� is the unique
polynomial of degree at most d at distance less than 1/3 from g|� and
thus q must equal p|�.

7.5.2 Low-Degree Extensions

Recall that to obtain locally decodable codes from locally correctible
codes (as constructed above), we need to exhibit systematic encoding:
(Definition 7.38.) Thus, given f : [L]→ {0,1}, we want to encode it as
a Reed–Muller codeword f̂ : [L̂]→ Σ s.t.:

• The encoding time is 2O(�) = poly(L).
• �̂ = O(�), or equivalently L̂ = poly(L).
• The code is systematic in the sense of Definition 7.38.

Note that the usual encoding for Reed–Muller codes, where the mes-
sage gives the coefficients of the polynomial, is not systematic. Instead
the message should correspond to evaluations of the polynomial at
certain points. Once we settle on the set of evaluation points, the task
becomes one of interpolating the values at these points (given by the
message) to a low-degree polynomial defined everywhere.

The simplest approach is to use the boolean hypercube as the set
of evaluation points.

7.5 Worst-Case/Average-Case Reductions and Locally Decodable Codes 249

Lemma 7.47.(multilinear extension) For every f : {0,1}�→ {0,1}
and every finite field F, there exists a (unique) polynomial f̂ : F�→ F
such that f̂ |{0,1}� ≡ f and f̂ has degree at most 1 in each variable (and
hence total degree at most �).

Proof. We prove the existence of the polynomial f̂ . Define

f̂(x1, . . . ,x�) =
∑

α∈{0,1}�
f(α)δα(x)

for

δα(x) =

(∏
i : αi=1

xi

)(∏
i : αi=0

(1 − xi)

)

Note that for x ∈ {0,1}�, δα(x) = 1 only when α = x, therefore
f̂ |{0,1}� ≡ f . We omit the proof of uniqueness. The bound on the
individual degrees is by inspection.

Thinking of f̂ as an encoding of f , let’s inspect the properties of
this encoding.

• Since the total degree of the multilinear extension can be
as large as �, we need q ≥ 9� for the local corrector of
Theorem 7.42 to apply.

• The encoding time is 2O(�̂), as computing a single point of
f̂ requires summing over 2� elements, and we have 2�̂ points
on which to compute f̂ .

• The code is systematic, since f̂ is an extension of f .
• However, the input length is �̂ = � logq = Θ(� log�), which is

slightly larger than our target of �̂ = O(�).

To solve the problem of the input length �̂ in the multilinear
encoding, we reduce the dimension of the polynomial f̂ by changing
the embedding of the domain of f : Instead of interpreting {0,1}� ⊂ F�

as an embedding of the domain of f in F�, we map {0,1}� to Hm for
some subset H ⊂ F, and as such embed it in Fm.

250 Pseudorandom Generators

More precisely, we fix a subset H ⊂ F of size |H| = �√q�. Choose
m = ��/log |H|�, and fix some efficient one-to-one mapping from {0,1}�
into Hm. With this mapping, view f as a function f : Hm→ F.

Analogously to before, we have the following.

Lemma 7.48. (low-degree extension) For every finite field F,
H ⊂ F, m ∈ N, and function f : Hm→ F, there exists a (unique)
f̂ : Fm→ F such that f̂ |Hm ≡ f and f̂ has degree at most |H| − 1 in
each variable (and hence has total degree at most m · (|H| − 1)).

Using |H| = �√q�, the total degree of f̂ is at most d = �
√

q. So we
can apply the local corrector of Theorem 7.42, as long as q ≥ 81�2 (so
that d ≤ q/9). Inspecting the properties of f̂ as an encoding of f , we
have:

• The input length is �̂ = m · logq = ��/log |H|� · logq = O(�),
as desired. (We can use a field of size 2k for k ∈ N, so that L̂

is a power of 2 and we incur no loss in encoding inputs to f̂

as bits.)
• The code is systematic as long as our mapping from {0,1}�

to Hm is efficient.

Note that not every polynomial of total degree at most m · (|H| − 1)
is the low-degree extension of a function f : Hm→ F, so the image of
our encoding function f �→ f̂ is only a subcode of the Reed–Muller code.
This is not a problem, because any subcode of a locally correctible
code is also locally correctible, and we can afford the loss in rate (all
we need is �̂ = O(�)).

7.5.3 Putting It Together

Combining Theorem 7.42 with Lemmas 7.48, and 7.39, we obtain the
following locally decodable code:

Proposition 7.49. For every L ∈ N, there is an explicit code Enc :
{0,1}L→ ΣL̂, with blocklength L̂ = poly(L) and alphabet size |Σ| =
poly(logL), that has a local (1/12)-decoder running in time poly(logL).

7.5 Worst-Case/Average-Case Reductions and Locally Decodable Codes 251

Using Proposition 7.36, we obtain the following conversion from
worst-case hardness to average-case hardness:

Proposition 7.50. If there exists f : {0,1}�→ {0,1} in E that is
worst-case hard against (nonuniform) time t(�), then there exists
f̂ : {0,1}O(�)→ {0,1}O(log �) in E that is (t′(�),1/12) average-case hard
for t′(�) = t(�)/poly(�).

This differs from our original goal in two ways: f̂ is not Boolean,
and we only get hardness 1/12 (instead of 1/2 − ε). The former concern
can be remedied by concatenating the code of Proposition 7.49 with
a Hadamard code, similarly to Problem 5.2. Note that the Hadamard
code is applied on message space Σ, which is of size polylog(L), so it
can be 1/4-decoded by brute-force in time polylog(L) (which is the
amount of time already taken by our decoder).6 Using this, we obtain:

Theorem 7.51. For every L ∈ N, there is an explicit code
Enc : {0,1}L→ {0,1}L̂ with blocklength L̂ = poly(L) that has a
local (1/48)-decoder running in time poly(logL).

Theorem 7.52. If there exists f : {0,1}�→ {0,1} in E that is worst-
case hard against time t(�), then there exists f̂ : {0,1}O(�)→ {0,1} in
E that is (t′(�),1/48) average-case hard, for t′(�) = t(�)/poly(�).

An improved decoding distance can be obtained using Problem 7.7.
We note that the local decoder of Theorem 7.51 not only runs

in time poly(logL), but also makes poly(logL) queries. For some
applications (such as Private Information Retrieval, see Problem 7.6),
it is important to have the number q of queries be as small as possible,
ideally a constant. Using Reed–Muller codes of constant degree, it
is possible to obtain constant-query locally decodable codes, but the

6 Some readers may recognize this concatenation step as the same as applying the
“Goldreich–Levin hardcore predicate” to f̂ . (See Problems 7.12 and 7.13.) However, for
the parameters we are using, we do not need the power of these results, and can afford to
perform brute-force unique decoding instead.

252 Pseudorandom Generators

blocklength will be L̂ = exp(L1/(q−1)). In a recent breakthrough, it
was shown how to obtain constant-query locally decodable codes with
blocklength L̂ = exp(Lo(1)). Obtaining polynomial blocklength remains
open.

Open Problem 7.53. Are there binary codes that are locally
decodable with a constant number of queries (from constant distance
δ > 0) and blocklength polynomial in the message length?

7.5.4 Other Connections

As shown in Problem 7.6, locally decodable codes are closely related
to protocols for private information retrieval. Another connection, and
actually the setting in which these local decoding algorithms were first
discovered, is to program self-correctors. Suppose we have a program for
computing a function, such as the Determinant, which happens to be
a codeword in a locally decodable code (e.g., the determinant is a low-
degree multivariate polynomial, and hence a Reed–Muller codeword).
Then, even if this program has some bugs and gives the wrong answer
on some small fraction of inputs, we can use the local decoding algo-
rithm to obtain the correct answer on all inputs with high probability.

7.6 Local List Decoding and PRGs from
Worst-Case Hardness

7.6.1 Hardness Amplification

In the previous section, we saw how to use locally decodable codes to
convert worst-case hard functions into ones with constant average-case
hardness (Theorem 7.52). Now our goal is to amplify this hardness
(e.g., to 1/2 − ε).

There are some generic techniques for hardness amplification. In
these methods, we evaluate the function on many independent inputs.
For example, consider f ′ that concatenates the evaluations of f̂ on k

independent inputs:

f ′(x1, . . . ,xk) = (f̂(x1), . . . , f̂(xk)).

7.6 Local List Decoding and PRGs from Worst-Case Hardness 253

Intuitively, if f̂ is 1/12 average-case hard, then f ′ should be (1 −
(11/12)k)-average case hard because any efficient algorithm can solve
each instance correctly with probability at most 11/12. Proving this
is nontrivial (because the algorithm trying to compute f ′ need not
behave independently on the k instances), but there are Direct Prod-
uct Theorems showing that the hardness does get amplified essentially
as expected. Similarly, if we take the XOR on k independent inputs, the
XOR Lemma says that the hardness approaches 1/2 exponentially fast.

The main disadvantage of these approaches (for our purposes) is
that the input length of f ′ is k� while we aim for input length of O(�).
To overcome this problem, it is possible to use derandomized products,
where we evaluate f̂ on correlated inputs instead of independent ones.

We will take a different approach, generalizing the notion and
algorithms for locally decodable codes to locally list-decodable codes,
and thereby directly construct f̂ that is (1/2 − ε)-hard. Nevertheless,
the study of hardness amplification is still of great interest, because it
(or variants) can be employed in settings where doing a global encod-
ing of the function is infeasible (e.g., for amplifying the average-case
hardness of functions in complexity classes lower than E, such as
NP, and for amplifying the security of cryptographic primitives). We
remark that results on hardness amplification can be interpreted in
a coding-theoretic language as well, as converting locally decodable
codes with a small decoding distance into locally list-decodable codes
with a large decoding distance. (See Section 8.2.3.)

7.6.2 Definition

We would like to formulate a notion of local list-decoding to enable us
to have binary codes that are locally decodable from distances close
to 1/2. This is somewhat tricky to define — what does it mean to
produce a “list” of decodings when only asked to decode a particular
coordinate? Let g be our received word, and f̂1, f̂2, . . . , f̂s the codewords
that are close to g. One option would be for the decoding algorithm,
on input x, to output a set of values Decg(x) ⊂ Σ that is guaranteed
to contain f̂1(x), f̂2(x), . . . f̂s(x) with high probability. However, this is
not very useful; in the common case that s ≥ |Σ|, the list could always

254 Pseudorandom Generators

be Decg(x) = Σ. Rather than outputting all of the values, we want to
be able to specify to our decoder which f̂i(x) to output. We do this
with a two-phase decoding algorithm (Dec1,Dec2), where both phases
can be randomized.

(1) Dec1, using g as an oracle and not given any other input
other than the parameters defining the code, returns a list
of advice strings a1,a2, . . . ,as, which can be thought of as
“labels” for each of the codewords close to g.

(2) Dec2 (again, using oracle access to g), takes input x and ai,
and outputs f̂i(x).

The picture for Dec2 is much like our old decoder, but it takes an
extra input ai corresponding to one of the outputs of Dec1:

g

oracle access

f_i(x)
a_i

x
Dec_2

More formally:

Definition 7.54. A local δ-list-decoding algorithm for a code Enc is
a pair of probabilistic oracle algorithms (Dec1,Dec2) such that for all
received words g and all codewords f̂ = Enc(f) with dH(f̂ ,g) < δ, the
following holds. With probability at least 2/3 over (a1, . . . ,as)← Decg

1,
there exists an i ∈ [s] such that

∀x,Pr[Decg
2(x,ai) = f(x)] ≥ 2/3.

Note that we don’t explicitly require a bound on the list size s

(to avoid introducing another parameter), but certainly it cannot be
larger than the running time of Dec1.

As we did for locally (unique-)decodable codes, we can define a
local δ-list-correcting algorithm, where Dec2 should recover arbitrary
symbols of the codeword f̂ rather than the message f . In this case,
we don’t require that for all j, Decg

2(·,aj) is a codeword, or that it is

7.6 Local List Decoding and PRGs from Worst-Case Hardness 255

close to g; in other words, some of the ajs may be junk. Analogously
to Lemma 7.39, a local δ-list-correcting algorithm implies local
δ-list-decoding if the code is systematic.

Proposition 7.36 shows how locally decodable codes convert
functions that are hard in the worst case to ones that are hard on
average. The same is true for local list-decoding:

Proposition 7.55. Let Enc be an error-correcting code with local
δ-list-decoding algorithm (Dec1,Dec2) where Dec2 runs in time at
most tDec, and let f be worst-case hard for non-uniform time t. Then
f̂ = Enc(f) is (t′, δ) average-case hard, where t′ = t/tDec.

Proof. Suppose for contradiction that f̂ is not (t′, δ)-hard. Then some
nonuniform algorithm A running in time t′ computes f̂ with error prob-
ability smaller than δ. But if Enc has a local δ list-decoding algorithm,
then (with A playing the role of g) that means there exists ai (one
of the possible outputs of DecA

1), such that DecA
2 (·,ai) computes f(·)

everywhere. Hardwiring ai as advice, DecA
2 (·,ai) is a nonuniform

algorithm running in time at most time(A) · time(Dec2) ≤ t.

Note that, in contrast to Proposition 7.36, here we are using
nonuniformity more crucially, in order to select the right function from
the list of possible decodings. As we will discuss in Section 7.7.1, this
use of nonuniformity is essential for “black-box” constructions, that do
not exploit any structure in the hard function f or the adversary (A in
the above proof). However, there are results on hardness amplification
against uniform algorithms, which use structure in the hard function
f (e.g., that it is complete for a complexity class like E or NP) to
identify it among the list of decodings without any nonuniform advice.

7.6.3 Local List-Decoding Reed–Muller Codes

Theorem 7.56. There is a universal constant c such that the q-ary
Reed–Muller code of degree d and dimension m over can be locally
(1 − ε)-list-corrected in time poly(q,m) for ε = c

√
d/q.

256 Pseudorandom Generators

Note that the distance at which list decoding can be done
approaches 1 as q/d→∞. It matches the bound for list-decoding
Reed–Solomon codes (Theorem 5.19) up to the constant c. Moreover,
as the dimension m increases, the running time of the decoder
(poly(q,m)) becomes much smaller than the block length (qm · logq),
at the price of a reduced rate (

(
m+d

m

)
/qm).

Proof. Suppose we are given an oracle g : Fm→ F that is (1 − ε) close
to some unknown polynomial p : Fm→ F, and that we are given an x ∈
Fm. Our goal is to describe two algorithms, Dec1 and Dec2, where Dec2

is able to compute p(x) using a piece of Dec1’s output (i.e., advice).
The advice that we will give to Dec2 is the value of p on a single

point. Dec1 can easily generate a (reasonably small) list that contains
one such point by choosing a random y ∈ Fm, and outputting all pairs
(y,z), for z ∈ F. More formally:

Algorithm 7.57 (Reed–Muller Local List-Decoder Dec1).
Input: An oracle g : Fm→ F and a degree parameter d

(1) Choose y
R← Fm

(2) Output {(y,z) : z ∈ F}

This first-phase decoder is rather trivial in that it doesn’t make use
of the oracle access to the received word g. It is possible to improve
both the running time and list size of Dec1 by using oracle access to g,
but we won’t need those improvements below.

Now, the task of Dec2 is to calculate p(x), given the value of p

on some point y. Dec2 does this by looking at g restricted to the line
through x and y, and using the list-decoding algorithm for Reed–
Solomon Codes to find the univariate polynomials q1, q2, . . . , qt that are
close to g. If exactly one of these polynomials qi agrees with p on the
test point y, then we can be reasonably confident that qi(x) = p(x).

In more detail, the decoder works as follows:

Algorithm 7.58 (Reed–Muller Local List-Corrector Dec2).
Input: An oracle g : Fm→ F, an input x ∈ Fm, advice (y,z) ∈ Fm × F,

7.6 Local List Decoding and PRGs from Worst-Case Hardness 257

and a degree parameter d

(1) Let � = �x,y−x : F→ Fm be the line through x and y (so that
�(0) = x and �(1) = y).

(2) Run the (1 − ε/2)-list-decoder for Reed–Solomon Codes
(Theorem 5.19) on g|� to get all univariate polys q1, . . . , qt

that agree with g|� in greater than an ε/2 fraction of points.
(3) If there exists a unique i such that qi(1) = z, output qi(0).

Otherwise, fail.

Now that we have fully specified the algorithms, it remains to
analyze them and show that they decode p correctly. Observe that it
suffices to compute p on greater than an 11/12 fraction of the points
x, because then we can apply the unique local correcting algorithm of
Theorem 7.42. Therefore, to finish the proof of the theorem we must
prove the following.

Claim 7.59. Suppose that g : Fm→ F has agreement greater than ε

with a polynomial p : Fm→ F of degree at most d. For at least half
of the points y ∈ Fm the following holds for greater than an 11/12
fraction of lines � going through y:

(1) agr(g|�,p|�) > ε/2.
(2) There does not exist any univariate polynomial q of degree

at most d other than p|� such that agr(g|�, q) > ε/2 and
q(y) = p(y).

Proof of Claim: It suffices to show that Items 7.59 and 7.59 hold
with probability 0.99 over the choice of a random point y

R← Fm and
a random line � through y; then we can apply Markov’s inequality to
finish the job.

Item 7.59 holds by pairwise independence. If the line � is chosen
randomly, then the q points on � are pairwise independent samples
of Fm. The expected agreement between g|� and p|� is simply the

258 Pseudorandom Generators

agreement between g and p, which is greater than ε by hypothesis. So
by the Pairwise-Independent Tail Inequality (Prop. 3.28),

Pr[agr(g|�,p|�) ≤ ε/2] <
1

q · (ε/2)2
,

which can be made smaller than 0.01 for a large enough choice of the
constant c in ε = c

√
d/q.

To prove Item 7.59, we imagine first choosing the line � uniformly
at random from all lines in Fm, and then choosing y uniformly at
random from the points on � (reparameterizing � so that �(1) = y).
Once we choose �, we can let q1, . . . , qt be all polynomials of degree
at most d, other than p|�, that have agreement greater than ε/2 with
g|�. (Note that this list is independent of the parametrization of �,
i.e., if �′(x) = �(ax + b) for a �= 0 then p|�′ and q′i(x) = qi(ax + b)
have agreement equal to agr(p|�, qi).) By the list-decodability of
Reed–Solomon Codes (Proposition 5.15), we have t = O(

√
q/d).

Now, since two distinct polynomials can agree in at most d points,
when we choose a random point y

R← �, the probability that qi and
p agree at y is at most d/q. After reparameterization of � so that
�(1) = y, this gives

Pr
y

[∃i : qi(1) = p(1)] ≤ t · d
q

= O

(√
d

q

)
.

This can also be made smaller than 0.01 for large enough choice
of the constant c (since we may assume q/d > c2, else ε ≥ 1 and the
result holds vacuously).

7.6.4 Putting it Together

To obtain a locally list-decodable (rather than list-correctible) code,
we again use the low-degree extension (Lemma 7.48) to obtain a
systematic encoding. As before, to encode messages of length � = logL,
we apply Lemma 7.48 with |H| = �√q� and m = ��/ log |H|�, for total
degree d ≤ √q · �. To decode from a 1 − ε fraction of errors using
Theorem 7.56, we need c

√
d/q ≤ ε, which follows if q ≥ c2�2/ε4. This

7.6 Local List Decoding and PRGs from Worst-Case Hardness 259

yields the following locally list-decodable codes:

Theorem 7.60. For every L ∈ N and ε > 0, there is an explicit code
Enc : {0,1}L→ ΣL̂, with blocklength L̂ = poly(L,1/ε) and alphabet
size |Σ| = poly(logL,1/ε), that has a local (1 − ε)-list-decoder running
in time poly(logL,1/ε).

Concatenating the code with a Hadamard code, similarly to
Problem 5.2, we obtain:

Theorem 7.61. For every L ∈ N and ε > 0, there is an explicit code
Enc : {0,1}L→ {0,1}L̂ with blocklength L̂ = poly(L,1/ε) that has a
local (1/2 − ε)-list-decoder running in time poly(logL,1/ε).

Using Proposition 7.55, we get the following hardness amplification
result:

Theorem 7.62. For s : N→ N, suppose that there is a function
f : {0,1}�→ {0,1} in E that is worst-case hard against nonuniform
time s(�), where s(�) is computable in time 2O(�), then there exists
f̂ : {0,1}O(�)→ {0,1} in E that is (1/2 − 1/s′(�)) average-case hard
against (non-uniform) time s′(�) for s′(�) = t(�)Ω(1)/poly(�).

Combining this with Theorem 7.19 and Corollary 7.20, we get:

Theorem 7.63. For s : N→ N, suppose that there is a function f ∈ E
such that for every input length � ∈ N, f is worst-case hard for nonuni-
form time s(�), where s(�) is computable in time 2O(�). Then for every
m ∈ N, there is a mildly explicit (m,1/m) pseudorandom generator G :
{0,1}d(m)→ {0,1}m with seed length d(m) = O(s−1(poly(m))2/ logm).

Corollary 7.64. For s : N→ N, suppose that there is a function
f ∈ E = DTIME(2O(�)) such that for every input length � ∈ N, f is

260 Pseudorandom Generators

worst-case hard for nonuniform time s(�). Then:

(1) If s(�) = 2Ω(�), then BPP = P.
(2) If s(�) = 2�Ω(1)

, then BPP ⊂ P̃.
(3) If s(�) = �ω(1), then BPP ⊂ SUBEXP.

We note that the hypotheses in these results are simply asserting
that there are problems in E of high circuit complexity, which is quite
plausible. Indeed, many common NP-complete problems, such as
SAT, are in E and are commonly believed to have circuit complexity
2Ω(�) on inputs of length � (though we seem very far from proving it).
Thus, we have a “win–win” situation, either we can derandomize all
of BPP or SAT has significantly faster (nonuniform) algorithms than
currently known.

Problem 7.1 establishes a converse to Theorem 7.63, showing that
pseudorandom generators imply circuit lower bounds. The equivalence
is fairly tight, except for the fact that Theorem 7.63 has seed length
d(m) = O(s−1(poly(m))2/ logm) instead of d(m) = O(s−1(poly(m))).
It is known how to close this gap via a different construction, which
is more algebraic and constructs PRGs directly from worst-case hard
functions (see the Chapter Notes and References); a (positive) solution
to Open Problem 7.25 would give a more modular and versatile
construction. For Corollary 7.64, however, there is only a partial
converse known. See Section 8.2.2.

Technical Comment. Consider Item 3 of Corollary 7.64, which
assumes that there is a problem in E of superpolynomial circuit
complexity. This sounds similar to assuming that E �⊂ P/poly (which
is equivalent to EXP �⊂ P/poly, by Problem 7.2). However, the latter
assumption is a bit weaker, because it only guarantees that there is a
function f ∈ E and a function s(�) = �ω(1) such that f has complexity
at least s(�) for infinitely many input lengths �. Theorem 7.63 and
Corollary 7.64 assume that f has complexity at least s(�) for all �;
equivalently f is not in i.o.-P/poly, the class of functions that are
computable by poly-sized circuits for infinitely many input lengths. We
need the stronger assumptions because we want to build generators
G : {0,1}d(m)→ {0,1}m that are pseudorandom for all output lengths

7.7 Connections to Other Pseudorandom Objects 261

m, in order to get derandomizations of BPP algorithms that are
correct on all input lengths. However, there are alternate forms of
these results, where the “infinitely often” is moved from the hypothesis
to the conclusion. For example, if E �⊂ P/poly, we can conclude
that BPP ⊂ i.o.-SUBEXP, where i.o.-SUBEXP denotes the class
of languages having deterministic subexponential-time algorithms
that are correct for infinitely many input lengths. Even though these
“infinitely often” issues need to be treated with care for the sake of
precision, it would be quite unexpected if the complexity of problems
in E and BPP oscillated as a function of input length in such a
strange way that they made a real difference.

7.7 Connections to Other Pseudorandom Objects

7.7.1 Black-Box Constructions

Similarly to our discussion after Theorem 7.19, the pseudorandom
generator construction in the previous section is very general. The con-
struction shows how to take any function f : {0,1}�→ {0,1} and use it
as a subroutine (oracle) to compute a generator Gf : {0,1}d→ {0,1}m
whose pseudorandomness can be related to the hardness of f . The
only place that we use the fact that f ∈ E is to deduce that Gf is
computable in E. The reduction proving that Gf is pseudorandom is
also very general. We showed how to take any T that distinguishes
the output of Gf (Ud) from Um and use it as a subroutine (oracle)
to build an efficient nonuniform algorithm Red such that RedT

computes f . The only place that we use the fact that T is itself an
efficient nonuniform algorithm is to deduce that RedT is an efficient
nonuniform algorithm, contradicting the worst-case hardness of f .

Such constructions are called “black box,” because they treat the
hard function f and the distinguisher T as black boxes (i.e., oracles),
without using the code of the programs that compute f and T .
As we will see, black-box constructions have significant additional
implications. Thus, we formalize the notion of a black-box construction
as follows:

Definition 7.65. Let Gf : [D]→ [M] be a deterministic algorithm
that is defined for every oracle f : [L]→ {0,1}, let t,k be positive

262 Pseudorandom Generators

integers such that k ≤ t, and let ε > 0. We say that G is a (t,k,ε)
black-box PRG construction if there is a randomized oracle algorithm
Red, running in time t, such that for every f : [L]→ {0,1} and
T : [M]→ {0,1} such that if

Pr[T (Gf (U[D])) = 1] − Pr[T (U[M]) = 1] > ε,

then there is an advice string z ∈ [K] such that

∀x ∈ [L] Pr[RedT (x,z) = f(x)] ≥ 2/3,

where the probability is taken over the coin tosses of Red.

Note that we have separated the running time t of Red and the
length k of its nonuniform advice into two separate parameters, and
assume k ≤ t since an algorithm cannot read more than k bits in
time t. When we think of Red as a nonuniform algorithm (like a
boolean circuit), then we may as well think of these two parameters as
being equal. (Recall that, up to polylog(s) factors, being computable
by a circuit of size s is equivalent to being computable by a uniform
algorithm running in time s with s bits of nonuniform advice.)
However, separating the two parameters is useful in order to isolate
the role of nonuniformity, and to establish connections with the other
pseudorandom objects we are studying.7

We note that if we apply a black-box pseudorandom generator
construction with a function f that is actually hard to compute, then
the result is indeed a pseudorandom generator:

Proposition 7.66. If G is a (t,k,ε) black-box PRG construction
and f has nonuniform worst-case hardness at least s, then Gf is an
(s/Õ(t),ε) pseudorandom generator.

7 Sometimes it is useful to allow the advice string z to also depend on the coin tosses of
the reduction Red. By error reduction via r = O(�) repetitions, such a reduction can be
converted into one satisfying Definition 7.65 by sampling r = O(�) sequences of coin tosses,
but this blows up the advice length by a factor of r, which may be too expensive.

7.7 Connections to Other Pseudorandom Objects 263

Now, we can rephrase the pseudorandom generator construction of
Theorem 7.63 as follows:

Theorem 7.67. For every constant γ > 0, and every �,m ∈ N,
and every ε > 0, there is a (t,k,ε) black-box PRG construction
Gf : {0,1}d→ {0,1}m that is defined for every oracle f :{0,1}�→ {0,1},
with the following properties:

(1) (Mild) explicitness: Gf is computable in uniform time
poly(m,2�) given an oracle for f .

(2) Seed length: d = O((� + log(1/ε))2/ logm).
(3) Reduction running time: t = poly(m,1/ε).
(4) Reduction advice length: k = m1+γ + O(� + log(m/ε)).

In addition to asserting the black-box nature of Theorem 7.63, the
above is more general in that it allows ε to vary independently of m

(rather than setting ε = 1/m), and gives a tighter bound on the length
of the nonuniform advice than just t = poly(m,1/ε).

Proof Sketch: Given a function f , Gf encodes f in the locally
list-decodable code of Theorem 7.61 (with decoding distance 1/2 − ε′

for ε′ = ε/m) to obtain f̂ : {0,1}�̂→ {0,1} with �̂ = O(� + log(1/ε)),
and then computes the Nisan–Wigderson generator based on f̂

(Construction 7.23) and a (�̂,γ logm) design. The seed length and
mild explicitness follow from the explicitness and parameters of the
design and code (Lemma 7.22 and Theorem 7.61). The running time
and advice length of the reduction follow from inspecting the proofs
of Theorems 7.61 and 7.19. Specifically, the running time of of the
Nisan–Wigderson reduction in the proof of Theorem 7.19 is poly(m)
(given the nonuniform advice) by inspection, and the running time of
the local list-decoding algorithm is poly(�,1/ε′) ≤ poly(m,1/ε). (We
may assume that m > �, otherwise Gf need not have any stretch, and
the conclusion is trivial.) The length of the advice from the locally
list-decodable code consists of a pair (y,z) ∈ Fv × F, where F is a
field of size q = poly(�,1/ε) and v log |F| = �̂ = O(� + log(1/ε)). The

264 Pseudorandom Generators

Nisan–Wigderson reduction begins with the distinguisher-to-predictor
reduction of Proposition 7.16, which uses logm bits of advice to
specify the index i at which the predictor works and m − i − 1 bits
for hardwiring the bits fed to the distinguisher in positions i, . . . ,m. In
addition, for j = 1, . . . , i − 1, the Nisan–Wigderson reduction nonuni-
formly hardwires a truth-table for the function fj(y) which depends on
the at most γ · logm bits of y selected by the intersection of the ith and
jth sets in the design. These truth tables require at most (i − 1) · mγ

bits of advice. In total, the amount of advice used is at most

O(� + log(1/ε)) + m − i − 1 + (i − 1) · mγ

= m1+γ + O(� + log(1/ε)).

One advantage of a black-box construction is that it allows us to
automatically “scale up” the pseudorandom generator construction.
If we apply the construction to a function f that is not necessarily
computable in E, but in some higher complexity class, we get a
pseudorandom generator Gf computable in an analogously higher
complexity class. Similarly, if we want our pseudorandom generator
to fool tests T computable by nonuniform algorithms in some higher
complexity class, it suffices to use a function f that is hard against an
analogously higher class.

For example, we get the following “nondeterministic” analogue of
Theorem 7.63:

Theorem 7.68. For s : N→ N, suppose that there is a function f ∈
NE ∩ co-NE such that for every input length � ∈ N, f is worst-case
hard for nonuniform algorithms running in time s(�) with an NP
oracle (equivalently, boolean circuits with SAT gates), where s(�) is
computable in time 2O(�). Then for every m ∈ N, there is a pseudo-
random generator G : {0,1}d(m)→ {0,1}m with seed length d(m) =
O(s−1(poly(m))2/ logm) such that G is (m,1/m)-pseudorandom
against nonuniform algorithms with an NP oracle, and G is computable
in nondeterministic time 2O(d(m)) (meaning that there is a nondetermin-
istic algorithm that on input x, outputs G(x) on at least one computa-
tion path and outputs either G(x) or “fail” on all computation paths).

7.7 Connections to Other Pseudorandom Objects 265

The significance of such generators is that they can be used for
derandomizing AM, which is a randomized analogue of NP, defined
as follows:

Definition 7.69. A language L is in AM iff there is a probabilistic
polynomial-time verifier V and polynomials m(n),p(n) such that for
all inputs x of length n,

x ∈ L ⇒ Pr
r

R←{0,1}m(n)
[∃y ∈ {0,1}p(n) V (x,r,y) = 1] ≥ 2/3,

x /∈ L ⇒ Pr
r

R←{0,1}m(n)
[∃y ∈ {0,1}p(n) V (x,r,y) = 1] ≤ 1/3.

Another (non-obviously!) equivalent definition of AM is the
class of languages having constant-round interactive proof systems,
where a computationally unbounded prover (“Merlin”) can convince
a probabilistic polynomial-time verifier (“Arthur”) that an input
x is in L through an interactive protocol with of O(1) rounds of
polynomial-length communication.

Graph Nonisomorphism is the most famous example of a language
that is in AM but is not known to be in NP. Nevertheless, using The-
orem 7.68 we can give evidence that Graph Nonisomorphism is in NP.

Corollary 7.70. If there is a function f ∈NE ∩ co-NE that, on
inputs of length �, is worst-case hard for nonuniform algorithms
running in time 2Ω(�) with an NP oracle, then AM = NP.

While the above complexity assumption may seem very strong,
it is actually known to be weaker than the very natural assump-
tion that exponential time E = DTIME(2O(�)) is not contained in
subexponential space ∩ε>0DSPACE(2εn).

As we saw in Section 7.4.3 on derandomizing constant-depth
circuits, black-box constructions can also be “scaled down” to apply
to lower complexity classes, provided that the construction G and/or
reduction Red can be shown to be computable in a lower class
(e.g., AC0).

266 Pseudorandom Generators

7.7.2 Connections to Other Pseudorandom Objects

At first, it may seem that pseudorandom generators are of a different
character than the other pseudorandom objects we have been studying.
We require complexity assumptions to construct pseudorandom gen-
erators, and reason about them using the language of computational
complexity (referring to efficient algorithms, reductions, etc.). The
other objects we have been studying are all information-theoretic in
nature, and our constructions of them have been unconditional.

The notion of black-box constructions will enable us to bridge
this gap. Note that Theorem 7.67 is unconditional, and we will see
that it, like all black-box constructions, has an information-theoretic
interpretation. Indeed, we can fit black-box pseudorandom generator
constructions into the list-decoding framework of Section 5.3 as follows:

Construction 7.71. Let Gf : [D]→ [M] be an algorithm that is
defined for every oracle f : [n]→ {0,1}. Then, setting N = 2n, define
Γ : [N] × [D]→ [M], by

Γ(f,y) = Gf (y),

where we view the truth table of f as an element of [N] ≡ {0,1}n.

It turns out that if we allow the reduction unbounded running time
(but still bound the advice length), then pseudorandom generator
constructions have an exact characterization in our framework:

Proposition 7.72. Let Gf and Γ be as in Construction 7.71. Then
Gf is an (∞,k,ε) black-box PRG construction iff for every T ⊂ [M],
we have

|LISTΓ(T,µ(T) + ε)| ≤K,

where K = 2k.

Proof.

⇒. Suppose Gf is an (∞,k,ε) black-box PRG construction. Then f

is in LISTΓ(T,µ(T) + ε) iff T distinguishes Gf (U[D]) from U[M] with

7.7 Connections to Other Pseudorandom Objects 267

advantage greater than ε. This implies that there exists a z ∈ [K]
such that RedT (·,z) computes f everywhere. Thus, the number of
functions f in LISTΓ(T,µ(T) + ε) is bounded by the number of advice
strings z, which is at most K.

⇐. Suppose that for every T ⊂ [M], we have L = |LISTΓ(T,µ(T) +
ε)| ≤K. Then we can define RedT (x,z) = fz(x), where f1, . . . ,fL are
any fixed enumeration of the elements of LISTΓ(T,µ(T) + ε).

Notice that this characterization of black-box PRG constructions
(with reductions of unbounded running time) is the same as the one
for averaging samplers (Proposition 5.30) and randomness extractors
(Proposition 6.23). In particular, the black-box PRG construction
of Theorem 7.67 is already a sampler and extractor of very good
parameters:

Theorem 7.73. For every constant γ > 0, every n ∈ N, k ∈ [0,n], and
every ε > 0, there is an explicit (k,ε) extractor Ext : {0,1}n × {0,1}d→
{0,1}m with seed length d = O(log2(n/ε)/ logk) and output length
m ≥ k1−γ .

Proof Sketch: Without loss of generality, assume that n is a power
of 2, namely n = 2� = L. Let Gf (y) : {0,1}d→ {0,1}m be the (t,k0,ε0)
black-box PRG construction of Theorem 7.67 which takes a function
f : {0,1}�→ {0,1} and has k0 = m1+γ + O(� + log(m/ε0)), and let
Ext(f,y) = Γ(f,y) = Gf (y). By Propositions 7.72 and 6.23, Ext is a
(k0 + log(1/ε0),2ε0) extractor. Setting ε = 2ε0 and k = k0 + log(1/ε0),
we have a (k,ε) extractor with output length

m = (k − O(� + log(m/ε)))1−γ ≥ k1−γ − O(� + log(m/ε)).

We can increase the output length to k1−γ by increasing the seed
length by O(� + log(m/ε)). The total seed length then is

d = O

(
(� + log(1/ε))2

logm
+ � + log(m/ε)

)
= O

(
log2(n/ε)

logk

)
.

The parameters of Theorem 7.73 are not quite as good as those of
Theorem 6.36 and Corollary 6.39, as the output length is k1−γ rather

268 Pseudorandom Generators

than (1 − γ)k, and the seed length is only O(logn) when k = nΩ(1).
However, these settings of parameters are already sufficient for many
purposes, such as the simulation of BPP with weak random sources.
Moreover, the extractor construction is much more direct than that of
Theorem 6.36. Specifically, it is

Ext(f,y) = (f̂(y|S1), . . . , f̂(y|Sm)),

where f̂ is an encoding of f in a locally list-decodable code and
S1, . . . ,Sm are a design. In fact, since Proposition 7.72 does not depend
on the running time of the list-decoding algorithm, but only the
amount of nonuniformity, we can use any (1/2 − ε/2m,poly(m/ε))
list-decodable code, which will only require an advice of length
O(log(m/ε)) to index into the list of decodings. In particular, we can
use a Reed–Solomon code concatenated with a Hadamard code, as in
Problem 5.2.

We now provide some additional intuition for why black-box
pseudorandom generator constructions are also extractors. A black-
box PRG construction Gf is designed to use a computationally
hard function f (plus a random seed) to produce an output that is
computationally indistinguishable from uniform. When we view it as
an extractor Ext(f,y) = Gf (y), we instead are feeding it a function
f that is chosen randomly from a high min-entropy distribution (plus
a random seed). This can be viewed as saying that f is information-
theoretically hard, and from this stronger hypothesis, we are able
to obtain the stronger conclusion that the output is statistically
indistinguishable from uniform. The information-theoretic hardness
of f can be formalized as follows: if f is sampled from a source F

of min-entropy at least k + log(1/ε), then for every fixed function A

(such as A = RedT), the probability (over f ← F) that there exists
a string z of length k such that A(·,z) computes f everywhere is at
most ε. That is, a function generated with min-entropy larger than
k is unlikely to have a description of length k (relative to any fixed
“interpreter” A).

Similarly to black-box PRG constructions, we can also discuss
converting worst-case hard functions to average-case hard functions in

7.7 Connections to Other Pseudorandom Objects 269

a black-box manner:

Definition 7.74. Let Ampf : [D]→ [q] be a deterministic algorithm
that is defined for every oracle f : [n]→ {0,1}. We say that Amp is a
(t,k,ε) black-box worst-case-to-average-case hardness amplifier if there
is a probabilistic oracle algorithm Red, called the reduction, running
in time t such that for every function g : [D]→ [q] such that

Pr[g(U[D]) = Ampf (U[D])] > 1/q + ε,

there is an advice string z ∈ [K], where K = 2k, such that

∀x ∈ [n] Pr[Redg(x,z) = f(x)] ≥ 2/3,

where the probability is taken over the coin tosses of Red.

Note that this definition is almost identical to that of a locally
(1 − 1/q − ε)-list-decodable code (Definition 7.54), viewing Ampf as
Enc(f), and Redg as Decg

2. The only difference is that in the definition
of locally list-decodable code, we require that there is a first-phase
decoder Decg

1 that efficiently produces a list of candidate advice strings
(a property that is natural from a coding perspective, but is not
needed when amplifying hardness against nonuniform algorithms). If
we remove the constraint on the running time of Red, we simply obtain
the notion of a (1 − 1/q − ε,K) list-decodable code. By analogy, we
can view black-box PRG constructions (with reductions of bounded
running time) as simply being extractors (or averaging samplers) with
a kind of efficient local list-decoding algorithm (given by Red, again
with an advice string that need not be easy to generate).

In addition to their positive uses illustrated above, black-box reduc-
tions and their information-theoretic interpretations are also useful for
understanding the limitations of certain proof techniques. For example,
we see that a black-box PRG construction Gf : {0,1}d→ {0,1}m must
have a reduction that uses k ≥m − d − log(1/ε) − 1 bits of advice.
Otherwise, by Propositions 7.72 and 6.23, we would obtain a (k,2ε)
extractor that outputs m almost-uniform bits when given a source
of min-entropy less than k − d − 1, which is impossible if ε < 1/4.

270 Pseudorandom Generators

Indeed, notions of black-box reduction have been used in other settings
as well, most notably to produce a very fine understanding of the
relations between different cryptographic primitives, meaning which
ones can be constructed from each other via black-box constructions.

7.8 Exercises

Problem 7.1 (PRGs imply hard functions). Suppose that
for every m, there exists a mildly explicit (m,1/m) pseudo-
random generator Gm : {0,1}d(m)→ {0,1}m. Show that E has
a function f : {0,1}�→ {0,1} with nonuniform worst-case hard-
ness t(�) = Ω(d−1(� − 1)). In particular, if d(m) = O(logm), then
t(�) = 2Ω(�) (Hint: look at a prefix of Gs output.)

Problem 7.2 (Equivalence of lower bounds for EXP and
E). Show that E contains a function f : {0,1}�→ {0,1} of cir-
cuit complexity �ω(1) if and only if EXP does. (Hint: consider
f ′(x1 · · ·x�) = f(x1 · · ·x�ε).)
Does the same argument work if we replace �ω(1) with 2�Ω(1)

? How
about 2Ω(�)?

Problem 7.3 (Limitations of Cryptographic Generators).

(1) Prove that a cryptographic pseudorandom generator cannot
have seed length d(m) = O(logm).

(2) Prove that cryptographic pseudorandom generators (even
with seed length d(m) = m − 1) imply NP � P/poly.

(3) Note where your proofs fail if we only require that G is an
(mc,1/mc) pseudorandom generator for a fixed constant c.

Problem 7.4 (Deterministic Approximate Counting). Using
the PRG for constant-depth circuits of Theorem 7.29, give deter-
ministic quasipolynomial-time algorithms for the problems below.

7.8 Exercises 271

(The running time of your algorithms should be 2poly(logn,log(1/ε)),
where n is the size of the circuit/formula given and ε is the accuracy
parameter mentioned.)

(1) Given a constant-depth circuit C and ε > 0, approximate
the fraction of inputs x such that C(x) = 1 to within an
additive error of ε.

(2) Given a DNF formula ϕ and ε > 0, approximate the number
of assignments x such that ϕ(x) = 1 to within a multiplica-
tive fraction of (1 + ε). You may restrict your attention to
ϕ in which all clauses contain the same number of literals.
(Hint: Study the randomized DNF counting algorithm of
Theorem 2.34.)

Note that these are not decision problems, whereas classes such as
BPP and BPAC0 are classes of decision problems. One of the points
of this problem is to show how derandomization can be used for other
types of problems.

Problem 7.5 (Strong Pseudorandom Generators). By analogy
with strong extractors, call a function G : {0,1}d→ {0,1}m a (t,ε)
strong pseudorandom generator iff the function G′(x) = (x,G(x)) is a
(t,ε) pseudorandom generator.

(1) Show that there do not exist strong cryptographic pseudo-
random generators.

(2) Show that the Nisan–Wigderson generator (Theorem 7.24)
is a strong pseudorandom generator.

(3) Suppose that for all constants α > 0, there is a strong
and fully explicit (m,ε(m)) pseudorandom generator
G : {0,1}mα → {0,1}m. Show that for every language
L ∈ BPP, there is a deterministic polynomial-time algo-
rithm A such that for all n, Pr

x
R←{0,1}n [A(x) �= χL(x)] ≤

1/2n + ε(poly(n)). That is, we get a polynomial-time
average-case derandomization even though the seed length
of G is d(m) = mα.

272 Pseudorandom Generators

(4) Show that for every language L ∈ BPAC0, there is an AC0

algorithm A such that Pr
x

R←{0,1}n [A(x) �= χL(x)] ≤ 1/n.

(Warning: be careful about error reduction.)

Problem 7.6 (Private Information Retrieval). The goal of pri-
vate information retrieval is for a user to be able to retrieve an entry of
a remote database in such a way that the server holding the database
learns nothing about which database entry was requested. A trivial
solution is for the server to send the user the entire database, in which
case the user does not need to reveal anything about the entry desired.
We are interested in solutions that involve much less communication.
One way to achieve this is through replication.8 Formally, in a q-server
private information-retrieval (PIR) scheme, an arbitrary database
D ∈ {0,1}n is duplicated at q noncommunicating servers. On input an
index i ∈ [n], the user algorithm U tosses some coins r and outputs
queries (x1, . . . ,xq) = U(i,r), and sends xj to the jth server. The jth
server algorithm Sj returns an answer yj = Sj(xj ,D). The user then
computes its output U(i,r,x1, . . . ,xq), which should equal Di, the ith
bit of the database. For privacy, we require that the distribution of
each query xj (over the choice of the random coin tosses r) is the same
regardless of the index i being queried.

It turns out that q-query locally decodable codes and q-server PIR
are essentially equivalent. This equivalence is proven using the notion
of smooth codes. A code Enc : {0,1}n→ Σn̂ is a q-query smooth code
if there is a probabilistic oracle algorithm Dec such that for every
message x and every i ∈ [n], we have Pr[DecEnc(x)(i) = xi] = 1 and Dec
makes q nonadaptive queries to its oracle, each of which is uniformly
distributed in [n̂]. Note that the oracle in this definition is a valid
codeword, with no corruptions. Below you will show that smooth
codes imply locally decodable codes and PIR schemes; converses are
also known (after making some slight relaxations to the definitions).

8 Another way is through computational security, where we only require that it be compu-
tationally infeasible for the database to learn something about the entry requested.

7.8 Exercises 273

(1) Show that the decoder for a q-query smooth code is also a
local (1/3q)-decoder for Enc.

(2) Show that every q-query smooth code Enc : {0,1}n→ Σn̂

gives rise to a q-server PIR scheme in which the user and
servers communicate at most q · (log n̂ + log |Σ|) bits for
each database entry requested.

(3) Using the Reed–Muller code, show that there is a polylog(n)-
server PIR scheme with communication complexity
polylog(n) for n-bit databases. That is, the user and servers
communicate at most polylog(n) bits for each database
entry requested. (For constant q, the Reed–Muller code with
an optimal systematic encoding as in Problem 5.4 yields a
q-server PIR with communication complexity O(n1/(q−1)).)

Problem 7.7 (Better Local Decoding of Reed–Muller Codes).
Show that for every constant ε > 0, there is a constant γ > 0 such that
there is a local (1/2 − ε)-decoding algorithm for the q-ary Reed–Muller
code of degree d and dimension m, provided that d ≤ γq. (Here we are
referring to unique decoding, not list decoding.) The running time of
the decoder should be poly(m,q).

Problem 7.8 (Hitting-Set Generators). A set Hm ⊂ {0,1}m is a
(t,ε) hitting set if for every nonuniform algorithm T running in time
t that accepts greater than an ε fraction of m-bit strings, T accepts at
least one element of Hm.

(1) Show that if, for every m, we can construct an
(m,1/2) hitting set Hm in time s(m) ≥m, then
RP ⊂ ⋃c DTIME(s(nc)). In particular, if s(m) = poly(m),
then RP = P.

(2) Show that if there is a (t,ε) pseudorandom generator
Gm : {0,1}d→ {0,1}m computable in time s, then there is a
(t,ε) hitting set Hm constructible in time 2d · s.

274 Pseudorandom Generators

(3) Show that if, for every m, we can construct an (m,1/2) hit-
ting set Hm in time s(m) = poly(m), then BPP = P. (Hint:
this can be proven in two ways. One uses Problem 3.1 and
the other uses a variant of Problem 7.1 together with Corol-
lary 7.64. How do the parameters for general s(m) compare?)

(4) Define the notion of a (t,k,ε) black-box construction of
hitting set-generators, and show that, when t =∞, such
constructions are equivalent to constructions of dispersers
(Definition 6.19).

Problem 7.9 (PRGs versus Uniform Algorithms ⇒ Average–
Case Derandomization). For functions t : N→ N and ε : N→ [0,1],
we say that a sequence {Gm : {0,1}d(m)→ {0,1}m} of is a (t(m),ε(m))
pseudorandom generator against uniform algorithms iff the ensem-
bles {G(Ud(m))}m∈N and {Um}m∈N are uniformly computationally
indistinguishable (Definition 7.2).

Suppose that we have a mildly explicit (m,1/m) pseudorandom gen-
erator against uniform algorithms that has seed length d(m). Show that
for every language L in BPP, there exists a deterministic algorithm
A running in time 2d(poly(n)) · poly(n) on inputs of length n such that:

(1) Pr [A(Xn) = L(Xn)] ≥ 1 − 1/n2, where Xn
R← {0,1}n and

L(·) is the characteristic function of L. (The exponent of
2 in n2 is arbitrary, and can be replaced by any constant.)
Hint: coming up with the algorithm A is the “easy” part;
proving that it works well is a bit trickier.

(2) Pr [A(Xn) = L(Xn)] ≥ 1 − 1/n2, for any random variable
Xn distributed on {0,1}n that is samplable in time n2.

Problem 7.10 (PRGs are Necessary for Derandomization).

(1) Call a function G : {0,1}d→ {0,1}m a (t, �,ε) pseudorandom
generator against bounded-nonuniformity algorithms iff for

7.8 Exercises 275

every probabilistic algorithm T that has a program of length
at most � and that runs in time at most t on inputs of
length n, we have

|Pr[T (G(Ud)) = 1] − Pr[T (Um) = 1]| ≤ ε.

Consider the promise problem Π whose YES instances
are truth tables of functions G : {0,1}d→ {0,1}m that are
(m, logm,1/m) pseudorandom generators against bounded-
nonuniformity algorithms, and whose NO instances are
truth tables of functions that are not (m, logm,2/m)
pseudorandom generators against bounded-nonuniformity
algorithms. (Here m and d are parameters determined by
the input instance G.) Show that Π is in prBPP.

(2) Using Problem 2.11, show that if prBPP = prP, then
there is a mildly explicit (m,1/m) pseudorandom generator
against uniform algorithms with seed length O(logm).
(See Problem 7.9 for the definition. It turns out that the
hypothesis prBPP = prP here can be weakened to obtain
an equivalence between PRGs vs. uniform algorithms and
average-case derandomization of BPP.)

Problem 7.11 (Composition). For simplicity in this problem, only
consider constant t in this problem (although the results do have
generalizations to growing t = t(�)).

(1) Show that if f : {0,1}�→ {0,1}� is a one-way permutation,
then for any constant t, f (t) is a one-way permutation, where
f (t)(x) def= f(f(· · ·f︸ ︷︷ ︸

t

(x))).

(2) Show that the above fails for one-way functions. That
is, assuming that there exists a one-way function g, con-
struct a one-way function f which doesn’t remain one
way under composition. (Hint: for |x| = |y| = �/2, set
f(x,y) = 1|g(y)|g(y) unless x ∈ {0�,1�}.)

276 Pseudorandom Generators

(3) Show that if G is a cryptographic pseudorandom generator
with seed length d(m) = mΩ(1), then for any constant t, G(t)

is a cryptographic pseudorandom generator. Note where
your proof fails for fully explicit pseudorandom generators
against time mc for a fixed constant c.

Problem 7.12(Local List Decoding the Hadamard Code). For
a function f : Zm

2 → Z2, A parameterized subspace x + V of Zm
2 of

dimension d is given by a linear map V : Zd
2 → Zm

2 and a shift x ∈ Zm
2 .

(We do not require that the map V be full rank.) We write V for
0 + V . For a function f : Zm

2 → Z2, we define f |x+V : Zd
2 → Zm

2 by
f |x+V (y) = f(x + V (y)).

(1) Let c : Zm
2 → Z2 be a codeword in the Hadamard code

(i.e., a linear function), r : Zm
2 → Z2 a received word, V a

parameterized subspace of Zm
2 of dimension d, and x ∈ Zm

2 .
Show that if dH(r|x+V , c|x+V) < 1/2, then c(x) can be
computed from x, V , c|V , and oracle access to r in time
poly(m,2d) with 2d − 1 queries to r.

(2) Show that for every m ∈ N and ε > 0, the Hadamard code
of dimension m has a (1/2 − ε) local list-decoding algorithm
(Dec1,Dec2) in which both Dec1 and Dec2 run in time
poly(m,1/ε), and the list output by Dec1 has size O(1/ε2).
(Hint: consider a random parameterized subspace V of
dimension 2log(1/ε) + O(1), and how many choices there
are for c|V .)

(3) Show that Dec2 can be made to be deterministic and run in
time O(m).

Problem 7.13 (Hardcore Predicates). A hardcore predicate for
a one-way function f : {0,1}�→ {0,1}� is a poly(�)-time computable
function b : {0,1}�→ {0,1} such that for every constant c, every

7.8 Exercises 277

nonuniform algorithm A running in time �c, we have:

Pr[A(f(U�)) = b(U�)] ≤ 1
2

+
1
�c

,

for all sufficiently large �. Thus, while the one-wayness of f only
guarantees that it is hard to compute all the bits of fs input from its
output, b specifies a particular bit of information about the input that
is very hard to compute (one can’t do noticeably better than random
guessing).

(1) Let Enc : {0,1}�→ {0,1}L̂ be a code such that given
x ∈ {0,1}� and y ∈ [L̂], Enc(x)y can be computed in time
poly(�). Suppose that for every constant c and all sufficiently
large �, Enc has a (1/2 − 1/�c) local list-decoding algorithm
(Dec1,Dec2) in which both Dec1 and Dec2 run in time
poly(�). Prove that if f : {0,1}�→ {0,1}� is a one-way
function, then b(x,y) = Enc(x)y is a hardcore predicate for
the one-way function f ′(x,y) = (f(x),y).

(2) Show that if b : {0,1}�→ {0,1}� is a hardcore predicate for
a one-way permutation f : {0,1}�→ {0,1}�, then for every
m = poly(�), the following function G : {0,1}�→ {0,1}m is
a cryptographic pseudorandom generator:

G(x) = (b(x), b(f(x)), b(f(f(x))), . . . , b(f (m−1)(x))).

(Hint: show that G is “previous-bit unpredictable.”)
(3) Using Problem 7.12, deduce that if f : {0,1}�→ {0,1}� is

a one-way permutation, then for every m = poly(�), the
following is a cryptographic pseudorandom generator:

Gm(x,r) = (〈x,r〉,〈f(x), r〉,〈f(f(x)), r〉, . . . ,〈f (m−1)(x), r〉).

Problem 7.14 (PRGs from 1–1 One-Way Functions). A
random variable X has (t,ε) pseudoentropy at least k if it is (t,ε)
indistinguishable from some random variable of min-entropy at least k.

278 Pseudorandom Generators

(1) Suppose that X has (t,ε) pseudoentropy at least k and that
Ext : {0,1}n × {0,1}d→ {0,1}m is a (k,ε′)-extractor com-
putable in time t′. Show that Ext(X,Ud) is an (t − t′,ε + ε′)
indistinguishable from Um.

(2) Let f : {0,1}�→ {0,1}�′
be a one-to-one one-way function

(not necessarily length-preserving) and b : {0,1}�→ {0,1} a
hardcore predicate for f (see Problem 7.13). Show that for
every constant c and all sufficiently large �, the random vari-
able f(U�)b(U�) has (�c,1/�c) pseudoentropy at least � + 1.

(3) (*) Show how to construct a cryptographic pseudorandom
generator from any one-to-one one-way function. (Any seed
length �(m) < m is fine.)

7.9 Chapter Notes and References

Other surveys on pseudorandom generators and derandomization
include [162, 209, 226, 288].

Descriptions of classical constructions of pseudorandom generators
(e.g., linear congruential generators) and the batteries of statistical
tests that are used to evaluate them can be found in [245, 341]. Linear
congruential generators and variants were shown to be cryptographi-
cally insecure (e.g., not satisfy Definition 7.9) in [56, 80, 144, 252, 374].
Current standards for pseudorandom generation in practice can be
found in [51].

The modern approach to pseudorandomness described in this
section grew out of the complexity-theoretic approach to cryptography
initiated by Diffie and Hellman [117] (who introduced the concept
of one-way functions, among other things). Shamir [360] constructed
a generator achieving a weak form of unpredictability based on the
conjectured one-wayness of the RSA function [336]. (Shamir’s gener-
ator outputs a sequence of long strings, such that none of the string
can be predicted from the others, except with negligible probability,
but individual bits may be easily predictable.) Blum and Micali [72]
proposed the criterion of next-bit unpredictability (Definition 7.15)
and constructed a generator satisfying it based on the conjectured

7.9 Chapter Notes and References 279

hardness of the Discrete Logarithm Problem. Yao [421] gave the
now-standard definition of pseudorandomness (Definition 7.3) based
on the notion of computational indistinguishability introduced in the
earlier work of Goldwasser and Micali [176] (which also introduced
hybrid arguments). Yao also proved the equivalence of pseudoran-
domness and next-bit unpredictability (Proposition 7.16), and showed
how to construct a cryptographic pseudorandom generator from any
one-way permutation. The construction described in Section 7.2 and
Problems 7.12 and 7.13 uses the hardcore predicate from the later work
of Goldreich and Levin [168]. The construction of a pseudorandom
generator from an arbitrary one-way function (Theorem 7.11) is due
to H̊astad, Impagliazzo, Levin, and Luby [197]. The most efficient
(and simplest) construction of pseudorandom generators from general
one-way functions to date is in [198, 401]. Goldreich, Goldwasser,
and Micali [164] defined and constructed pseudorandom functions,
and illustrated their applicability in cryptography. The application of
pseudorandom functions to learning theory is from [405], and their
application to circuit lower bounds is from [323]. For more about
cryptographic pseudorandom generators, pseudorandom functions,
and their applications in cryptography, see the text by Goldreich [157].

Yao [421] demonstrated the applicability of pseudorandom gen-
erators to derandomization, noting in particular that cryptographic
pseudorandom generators imply that BPP ⊂ SUBEXP, and that one
can obtain even BPP ⊂ P̃ under stronger intractability assumptions.
Nisan and Wigderson [302] observed that derandomization only
requires a mildly explicit pseudorandom generator, and showed how
to construct such generators based on the average-case hardness
of E (Theorem 7.24). A variant of Open Problem 7.25 was posed
in [202], who showed that it also would imply stronger results on
hardness amplification; some partial negative results can be found
in [214, 320].

The instantiation of the Nisan–Wigderson pseudorandom generator
that uses the parity function to fool constant-depth circuits (Theo-
rem 7.29) is from the earlier work of Nisan [298]. (The average-case
hardness of parity against constant-depth circuits stated in Theo-
rem 7.27 is due Boppana and H̊astad [196].) The first unconditional

280 Pseudorandom Generators

pseudorandom generator against constant-depth circuits was due to
Ajtai and Wigderson [12] and had seed length �(m) = mε (compared
to polylog(m) in Nisan’s generator). Recently, Braverman [81] proved
that any polylog(m)-wise independent distribution fools AC0, provid-
ing a different way to obtain polylogarithmic seed length and resolving
a conjecture of Linial and Nisan [265]. The notion of strong pseudo-
random generators (a.k.a. seed-extending pseudorandom generators)
and the average-case derandomization of AC0 (Problem 7.5) are from
[242, 355]. Superpolynomial circuit lower bounds for AC0[2] were
given by [322, 368]. Viola [412] constructed pseudorandom generators
with superpolynomial stretch for AC0[2] circuits that are restricted
to have a logarithmic number of parity gates.

Detailed surveys on locally decodable codes and their applications
in theoretical computer science are given by Trevisan [391] and
Yekhanin [424]. The notion grew out of several different lines of work,
and it took a couple of years before a precise definition of locally decod-
able codes was formulated. The work of Goldreich and Levin [168] on
hardcore predicates of one-way permutations implicitly provided a local
list-decoding algorithm for the Hadamard code. (See Problems 7.12
and 7.13.) Working on the problem of “instance hiding” introduced
in [2], Beaver and Feigenbaum [54] constructed a protocol based on
Shamir’s “secret sharing” [359] that effectively amounts to using the
local decoding algorithm for the Reed–Muller code (Algorithm 7.43)
with the multilinear extension (Lemma 7.47). Blum, Luby, and Rubin-
feld [71] and Lipton [266] introduced the concept of self-correctors
for functions, which allow a one to convert a program that correctly
computes a function on most inputs to one that correctly computes
the function on all inputs.9 Both papers gave self-correctors for group
homomorphisms, which, when applied to homomorphisms from Zn

2
to Z2, can be interpreted as a local corrector for the Hadamard code

9 Blum, Luby, and Rubinfeld [71] also defined and constructed self-testers for functions,
which allow one to efficiently determine whether a program does indeed compute a function
correctly on most inputs before attempting to use self-correction. Together a self-tester and
self-corrector yield a “program checker” in the sense of [70]. The study of self-testers gave
rise to the notion of locally testable codes, which are intimately related to probabilistically
checkable proofs [41, 42], and to the notion of property testing [165, 337, 340], which is an
area within sublinear-time algorithms.)

7.9 Chapter Notes and References 281

(Proposition 7.40). Lipton [266] observed that the techniques of Beaver
and Feigenbaum [54] yield a self-corrector for multivariate polynomials,
which, as mentioned above, can be interpreted as a local corrector for
the Reed–Muller code. Lipton pointed out that it is interesting to apply
these self-correctors to presumably intractable functions, such as the
Permanent (known to be #P-complete [404]), and soon it was realized
that they could also be applied to complete problems for other classes
by taking the multilinear extension [42]. Babai, Fortnow, Nisan, and
Wigderson [43] used these results to construct pseudorandom genera-
tors from the worst-case hardness of EXP (or E, due to Problem 7.2),
and thereby obtain subexponential-time or quasipolynomial-time
simulations of BPP under appropriate worst-case assumptions
(Corollary 7.64, Parts 2 and 3). All of these works also used the
terminology of random self-reducibility, which had been present in
the cryptography literature for a while [29], and was known to imply
worst-case/average-case connections. Understanding the relationship
between the worst-case and average-case complexity of NP (rather
than “high” classes like EXP) is an important area of research; see the
survey [74].

Self-correctors for multivariate polynomials that can handle a
constant fraction of errors (as in Theorem 7.42) and fraction of errors
approaching 1/2 (as in Problem 7.7) were given by Gemmell et al. [149]
and Gemmell and Sudan [150], respectively. Babai, Fortnow, Levin, and
Szegedy [41] reformulated these results as providing error-correcting
codes with efficient local decoding (and “local testing”) algorithms.
Katz and Trevisan [239] focused attention on the exact query complex-
ity of locally decodable codes (separately from computation time), and
proved that locally decodable codes cannot simultaneously have the
rate, distance, and query complexity all be constants independent of
the message length. Constructions of 3-query locally decodable codes
with subexponential blocklength were recently given by Yekhanin [423]
and Efremenko [128]. Private Information Retrieval (Problem 7.6)
was introduced by Chor, Goldreich, Kushilevitz, and Sudan [99].
Katz and Trevisan [239] introduced the notion of smooth codes and
showed their close relation to both private information retrieval and
locally decodable codes (Problem 7.6). Recently, Saraf, Kopparty,

282 Pseudorandom Generators

and Yekhanin [249] constructed the first locally decodable codes with
sublinear-time decoding and rate larger 1/2.

Techniques for Hardness Amplification (namely, the Direct Product
Theorem and XOR Lemma) were first described in oral presentations of
Yao’s paper [421]. Since then, these results have been strengthened and
generalized in a number of ways. See the survey [171] and Section 8.2.3.
The first local list-decoder for Reed–Muller codes was given by Arora
and Sudan [35] (stated in the language of program self-correctors). The
one in Theorem 7.56 is due to Sudan, Trevisan, and Vadhan [381], who
also gave a general definition of locally list-decodable codes (inspired
by a list-decoding analogue of program self-correctors defined by Ar
et al. [30]) and explicitly proved Theorems 7.60, 7.61, and 7.62.

The result that BPP = P if E has a function of nonuniform worst-
case hardness s(�) = 2Ω(�) (Corollary 7.64, Part 1) is from the earlier
work of Impagliazzo and Wigderson [215], who used derandomized
versions of the XOR Lemma to obtain sufficient average-case hardness
for use in the Nisan–Wigderson pseudorandom generator. An optimal
construction of pseudorandom generators from worst-case hard func-
tions, with seed length d(m) = O(s−1(poly(m))) (cf., Theorem 7.63),
was given by Shaltiel and Umans [356, 399].

For more background on AM, see the Notes and References of
Section 2. The first evidence that AM = NP was given by Arvind
and Köbler [37], who showed that one can use the Nisan–Wigderson
generator with a function that is (2Ω(�),1/2 − 1/2Ω(�))-hard for non-
deterministic circuits. Klivans and van Melkebeek [244] observed that
the Impagliazzo–Wigderson pseudorandom generator construction
is “black box” and used this to show that AM can be deran-
domized using functions that are worst-case hard for circuits with
an NP oracle (Theorem 7.68). Subsequent work showed that one
only needs worst-case hardness against a nonuniform analogue of
NP ∩ co-NP [289, 356, 357].

Trevisan [389] showed that black-box pseudorandom generator
constructions yield randomness extractors, and thereby obtained the
extractor construction of Theorem 7.73. This surprising connection
between complexity-theoretic pseudorandomness and information-
theoretic pseudorandomness sparked much subsequent work, from

7.9 Chapter Notes and References 283

which the unified theory presented in this survey emerged. The fact
that black-box hardness amplifiers are a form of locally list-decodable
codes was explicitly stated (and used to deduce lower bounds on
advice length) in [397]. The use of black-box constructions to classify
and separate cryptographic primitives was pioneered by Impagliazzo
and Rudich [213]; see also [326, 330].

Problem 7.1 (PRGs imply hard functions) is from [302]. Problem 7.2
is a special case of the technique called “translation” or “padding”
in complexity theory. Problem 7.4 (Deterministic Approximate
Counting) is from [302]. The fastest known deterministic algorithms
for approximately counting the number of satisfying assignments to
a DNF formula are from [280] and [178] (depending on whether the
approximation is relative or additive, and the magnitude of the error).
The fact that hitting set generators imply BPP = P (Problem 7.8)
was first proven by Andreev, Clementi, and Rolim [27]; for a more
direct proof, see [173]. Problem 7.9 (that PRGs vs. uniform algorithms
imply average-case derandomization) is from [216]. Goldreich [163]
showed that PRGs are necessary for derandomization (Problem 7.10).
The result that one-to-one one-way functions imply pseudorandom
generators is due to Goldreich, Krawczyk, and Luby [167]; the proof
in Problem 7.14 is from [197].

For more on Kolmogorov complexity, see [261]. In recent years,
connections have been found between Kolmogorov complexity and
derandomization; see [14]. The tighter equivalence between circuit size
and nonuniform computation time mentioned after Definition 7.1 is due
to Pippenger and Fischer [311]. The 5n − O(n) lower bound on circuit
size is due to Iwama, Lachish, Morizumi, and Raz [218, 254]. The
fact that single-sample indistinguishability against uniform algorithms
does not imply multiple-sample indistinguishability unless we make
additional assumptions such as efficient samplability (in contrast to
Proposition 7.14), is due to Goldreich and Meyer [169]. (See also [172].)

