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Preface

This tutorial book is dedicated to Oded Goldreich by his students and mentorees on
the occasion of his 60th birthday. This is an opportune time to celebrate Oded’s fun-
damental contributions to the foundations of cryptography. As one of the founders
of the field, Oded’s work has influenced the way we think about, define, and con-
struct cryptographic schemes. Oded’s research contributions are so numerous and
wide-ranging that attempting to enumerate even just the most important of them
would span many pages. Nevertheless, we would be amiss not to mention at least
Oded’s classic results on achieving pseudorandom functions, zero knowledge for
NP, secure two-party and multiparty computation, hard-core predicates for all one-
way functions, private information retrieval, lower bounds for black-box simulation,
limitations of the random-oracle methodology, oblivious RAM, and multiple defini-
tional works.

Having said the above, Oded’s contributions to cryptography have gone far be-
yond his numerous novel scientific results. In particular, I would like to elaborate on
his enormous influence on the role and character of the field of theoretical cryptog-
raphy and what he has termed the foundations of cryptography.

At CRYPTO’97, Oded gave an invited talk “On the Foundations of Modern Cryp-
tography” in which he articulated his vision for this subfield of cryptography. In the
talk and accompanying essay, he describes modern cryptography as comprising def-
initional activity (formulating what “secure” means) and constructive activity (con-
structing schemes that fulfill the definitions). Furthermore, he differentiates between
three types of results: feasibility results, introduction of paradigms and techniques
that may be applicable in practice, and presentation of schemes that are suitable for
practical applications. (Of course, as Oded mentions in the essay, the field also in-
cludes other activities such as establishing lower bounds and impossibility results.)
This essay and Oded’s lecture notes and seminal two-volume book Foundations of
Cryptography, have significantly influenced the way that we and others look at and
understand our field. Needless to say, there was active research being carried out on
the foundations of cryptography before Oded published his essay. However, Oded
was the first to articulate the importance of this work and create an identity for this
subfield of cryptography.

vii



viii Preface

The success of this approach as articulated by Oded has been outstanding. He was
immensely influential in establishing a flourishing research community devoted to
studying the foundations of cryptography and the fundamental questions outlined in
his 1997 essay. Oded was one of the founders of the Theory of Cryptography Con-
ference in 2004 (together with Mihir Bellare and Shafi Goldwasser), and chaired its
steering committee from 2006 to 2012. Although many cryptography theory papers
are published at other venues, the TCC conference grew under Oded’s leadership to
be a natural home for such work.

The importance of this approach and the research carried out on the foundations
of cryptography has intrinsic scientific value, related to the theory of computer sci-
ence in general. The questions asked are fundamental in nature and of importance,
irrespective of any specific application. However, in his essay, Oded also discussed
the eventual utility of theoretical cryptography to practical constructions, and this
has been unequivocally demonstrated. One example of this utility is the fact that
all new proposed standards for modes of encryption, signatures, key-exchange pro-
tocols, and so on are accompanied with a proof of security. However, a far more
striking illustration is the transition of purely theoretical notions to tools that are
frequently used by the applied cryptography and security communities. One partic-
ularly interesting example is the paper “Towards a theory of software protection and
simulation by oblivious RAMs” published by Oded at STOC 1987 (and later merged
into a single journal paper with Rafi Ostrovsky). This paper introduced a new theo-
retical notion and construction and is a clear example of what one would call “pure
theory” today. Three decades later, oblivious RAM is a widely studied primitive,
from both a theoretical and practical perspective. Papers on oblivious RAM are pub-
lished at the top security conferences and constructions are implemented. Further-
more, the theoretical model of a secure processor with external memory is exactly
the model that Intel has adopted in its new SGX architecture and is one that also fits
many cloud computing scenarios where storage is held externally. The introduction
of this notion three decades ago, and the proof of feasibility provided back then,
informed the applied cryptography and security communities and formed the basis
they needed when this concept became of practical interest.

Due to the great importance of the “foundations approach” to the field, Oded
did not stop at writing a short essay. Rather, he also distributed widely used lecture
notes, and expanded these into the two-volume treatise Foundations of Cryptog-
raphy (published by Cambridge University Press in 2001 and 2004, respectively).
This work presented a truly comprehensive “bottom-up” approach, starting from
minimal assumptions and working up to construct higher-level primitives and appli-
cations. It is important to note that many of the results appearing in the Foundations
of Cryptography were never fully proven prior to the work (most notably, those in
the chapter on secure computation), and thus this involved a monumental effort. In
fact, new results were uncovered in this process, including an exact formulation of
the sufficient assumptions for obtaining oblivious transfer and noninteractive zero
knowledge.

The two volumes of the Foundations of Cryptography are the most used books on
my bookshelf, and are an absolute necessity in my research. The books also provide
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students and beginning researchers with the ability to enter the world of theoretical
cryptography. I cannot imagine how one would learn the topic of zero knowledge in
depth without Chapter 3 of the Foundations of Cryptography, and likewise all the
other topics covered.

It is therefore most appropriate that, in celebration of Oded’s 60th birthday (and
20 years since the publication of that essay), we present a book in his honor that
focuses on the foundations of cryptography. The chapters in this book consist of
tutorials that are inspired by the “foundations of cryptography” approach:

Chapter 1 – Garbled Circuits as Randomized Encodings of Functions: a Primer
(Benny Applebaum): Yao’s garbled circuit construction is a central crypto-
graphic tool with numerous applications. This chapter reviews garbled circuits
from a foundational point of view under the framework of randomized encod-
ing of functions, including positive and negative results and a sample of basic
applications.

Chapter 2 – The Complexity of Public-Key Cryptography (Boaz Barak): This chap-
ter surveys what is known (and the many things that are not known) about the
computational assumptions that can enable public-key cryptography, and the
qualitative differences between these assumptions and those that are known to
enable private-key cryptography.

Chapter 3 – Pseudorandom Functions: Three Decades Later (Andrej Bogdanov
and Alon Rosen): Pseudorandom functions are an extremely influential abstrac-
tion, with applications ranging from message authentication to barriers in prov-
ing computational complexity lower bounds. This chapter surveys various incar-
nations of pseudorandom functions, giving self-contained proofs of key results
from the literature.

Chapter 4 – The Many Entropies in One-Way Functions (Iftach Haitner and Salil
Vadhan): This chapter introduces two recent computational notions of entropy,
shows that they can be easily found in any one-way function, and uses them to
present simpler and more efficient constructions of pseudorandom generators
and statistically hiding commitments from one-way functions.

Chapter 5 – Homomorphic Encryption (Shai Halevi): Fully homomorphic encryp-
tion is a relatively new discovery and has gained much attention. This chapter
provides a tutorial on the topic, from definitions and properties, to constructions
and applications.

Chapter 6 – How to Simulate It — A Tutorial on the Simulation Proof Technique
(Yehuda Lindell): The simulation paradigm is central to cryptographic def-
initions and proofs. This chapter consists of a systematic tutorial on how
simulation-based proofs work, from semantic security through zero knowledge
and finally secure computation.

Chapter 7 – The Complexity of Differential Privacy (Salil Vadhan): Differential pri-
vacy is a theoretical framework for ensuring the privacy of individual-level data
when performing statistical analysis of privacy-sensitive datasets. The goal of
this chapter is to convey the deep connections between differential privacy and
a variety of other topics in computational complexity, cryptography, and theo-
retical computer science at large.



x Preface

Oded has quoted his mother as saying “there are no privileges without duties”,
and this is a message that Oded has also infused into his students by his personal
example. I feel greatly privileged to have had Oded as my Ph.D. advisor, and I am
sure that the same is true of all the authors of this book (and many others who Oded
has advised and mentored over the years). This privilege indeed comes with duties.
We hope that the tutorials in this book are helpful to those who are interested in
pursuing the foundations of cryptography approach, and as such will constitute a
very small part of the fulfillment of our obligations.

In the name of all the authors of this book, I would like to wish Oded a very
happy 60th birthday. There is great happiness in being able to look back at a life
full of accomplishments, to see the positive influence that you have had on so many
people, and to appreciate the continuing influence your work will have in the future.
Happy birthday!

Israel, Yehuda Lindell
April 2017
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Chapter 1
Garbled Circuits as Randomized Encodings of
Functions: a Primer∗

Benny Applebaum

Abstract Yao’s garbled circuit (GC) construction is a central cryptographic tool
with numerous applications. In this tutorial, we study garbled circuits from a foun-
dational point of view under the framework of randomized encoding (RE) of func-
tions. We review old and new constructions of REs, present some lower bounds, and
describe some applications. We also discuss new directions and open problems in
the foundations of REs.

1.1 Introduction
Garbled circuits were introduced by Yao (in oral presentations of [86]) as a two-
party protocol for secure function evaluation. At the heart of Yao’s protocol stands
a non-interactive garbling technique that became a central tool in the design of
constant-round secure computation protocols [86, 21, 43, 80, 66, 75]. Over the years,
the garbled circuit technique has found a diverse range of other applications to prob-
lems such as computing on encrypted data [84, 35], parallel cryptography [10, 11],
verifiable computation [46, 14], software protection [55, 58, 25], functional encryp-
tion [83, 56], key-dependent message security [19, 2], code obfuscation [5, 38], and
others. Correspondingly, it is currently evident that the garbling technique should
be treated as a stand-alone abstract object.

The first such abstraction was introduced by Ishai and Kushilevitz [66, 67] un-
der the algebraic framework of randomizing polynomials, and was later extended
and abstracted under the terminology of randomized encoding of functions [10, 11].
In this framework we view garbled circuits as an encoding (or encryption) of a
computation. Roughly speaking, we would like to represent a function f (x) by a
randomized function f̂ (x; r) such that the following hold:

School of Electrical Engineering, Tel-Aviv University, e-mail: bennyap@post.tau.ac.il

∗ This paper subsumes the short survey [3].
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2 Benny Applebaum

• (Correctness) For every fixed input x and a uniformly random choice of r, the
output distribution f̂ (x; r) forms a “randomized encoding” of f (x), from which
f (x) can be efficiently decoded. Namely, there exists an efficient decoding al-
gorithm Dec, referred to as a decoder, such that for every x and r, it holds that
Dec( f̂ (x; r)) = f (x). In particular, this means that, if f (x) , f (x′), then the
random variables f̂ (x; r) and f̂ (x′; r′), induced by a uniform choice of r and r′,
should have disjoint supports. (We will later discuss relaxations in which the
supports are “almost disjoint” and decoding succeeds for most r’s.)

• (Privacy) The distribution of this randomized encoding depends only on the
encoded value f (x) and essentially does not reveal further information on x.
Namely, there exists an efficient randomized algorithm Sim, referred to as a
simulator, which, given f (x), samples the distribution f̂ (x; r) induced by a ran-
dom choice of r. Ideally, the simulator’s output should be identically distributed
to the encoding, but we will also consider variants in which the two distributions
are only statistically or computationally close. Note that the privacy requirement
implies that, if f (x) = f (x′), then the random variables f̂ (x; r) and f̂ (x′; r′) are
close to each other, or even identical when the simulator is perfect.

• (Efficiency/simplicity) To be useful, the encoding f̂ should be “simpler” or more
“efficient” than the original function with respect to some measure of complex-
ity.

Observe that privacy can be trivially satisfied by the constant function f̂ (x) = 0
whereas correctness can be trivially satisfied by the identity function f̂ (x) = x.
However, the combination of privacy and correctness forms a natural relaxation of
the usual notion of computing. The last, “efficiency” requirement ensures that this
relaxation is nontrivial. As we will later see, the use of randomness is necessary
for achieving all three goals. For the sake of concreteness consider the following
examples:

Example 1.1.1 (Encoding modular squaring). Let N be a (public) integer and
consider the modular squaring function f (x) = x2 mod N. Then, f can be encoded
by the function f̂ (x; r) = x2 + r · N, where computation is over the integers and
r is a random integer in [0, B] for some large integer B � N. To see that the en-
coding is correct consider the decoder Dec which, given an integer ŷ (supposedly
in the image of f̂ ), outputs ŷ mod N. Clearly, Dec( f̂ (x; r)) = f (x) for every x and
r. Privacy holds since any pair of inputs x and x′ for which f (x) = f (x′) = y are
mapped to a pair of distributions f̂ (x; r) and f̂ (x′; r) which are (N/B)-statistically
close. In particular, given y = f (x), the simulator Sim outputs y+rN for a uniformly

chosen r
R
← [0, B]. It is not hard to show that the resulting distribution Dy is (N/B)-

statistically close to f̂ (x; r). Finally, the encoder f̂ avoids modular reduction, which
in some cases, may be considered an expensive operation.

Let us briefly explain how Yao’s garbled circuit fits into the randomized encoding
framework. (Readers who are not familiar with Yao’s construction may safely skip
the following example; a full and modular description of this construction appears
later in Section 1.3.)
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Example 1.1.2 (Yao’s construction as randomized encoding). Given a Boolean
circuit C : {0, 1}n → {0, 1}m and secret randomness r, Yao’s construction gener-
ates a “garbled circuit” Ĉ (which consists of several ciphertexts per logical gate of
C), together with n pairs of “short” keys (K0

i ,K
1
i ), such that for any (a priori un-

known) input x, the garbled circuit Ĉ together with the n keys Kx = (Kx1
1 , . . . ,K

xn
n )

reveal C(x) but give no additional information about x. Therefore, the mapping
g : (x; r) 7→ (Ĉ,Kx) forms a randomized encoding of the computation C(x). The
decoder Dec takes (Ĉ,Kx) as an input and recovers the value C(x). (This is done by
gradually decrypting, for each gate of C, a ciphertext of Ĉ, starting with the input
layer for which the keys Kx are used for decryption, and ending up in the output
layer from which the actual output C(x) is recovered.) The construction also admits
a simulator which, given y = C(x), samples a distribution Sim(y) which is compu-
tationally indistinguishable from the encoder’s distribution (Ĉ,Kx). The encoding
satisfies several notions of simplicity. In particular, each output of g depends on at
most a single bit of x. Moreover, most of the output entries (the ones that correspond
to the “garbled circuit” part Ĉ) depend only on the randomness r, and so they can
be computed in an “offline phase” before the actual input x is known. As we will
later see, these efficiency properties are extremely useful for several applications.

Note that, in the above examples, the saving in efficiency of the encoder has
some cost: the decoder itself performs expensive operations (i.e., modular reduction
in Example 1.1.1, and, in Example 1.1.2 an evaluation of a garbled version of the
circuit C). This is inherent, as the computation f (x) can be written as Dec( f̂ (x; r))
and so we do not expect to simultaneously reduce the complexity of the encoder and
decoder, since this would allow us to “speed up” the computation of f . Nevertheless,
the ability to decompose the computation into an easy part ( f̂ ) and complicated part
(Dec), while preserving privacy, can be useful in many cases, as demonstrated by
the following example:

Example 1.1.3 (Simple usage scenario). Imagine a scenario of sending a weak
device U into the field to perform some expensive computation f on sensitive data
x. The computation is too complex for U to quickly perform on its own, and since the
input x is sensitive, U cannot just send the entire input out. Randomized encoding
provides a noninteractive solution to this problem: U simply sends out a single
(randomized) message f̂ (x; r). The rest of the world can, at this point, recover f (x)
(by applying the decoder) and nothing else (due to the privacy property). In fact,
one could define RE as a noninteractive solution to the above problem.

Remark 1.1.4 (FHE vs. RE). It is instructive to compare the use of RE in the above
scenario (Example 1.1.3) with a solution based on fully homomorphic encryption
(FHE) [47]. Using FHE, the client can send an encryption FHE(x) to an outside
server, which can generate, in turn, the value FHE( f (x)). However, in order to pub-
lish f (x), another round of interaction is needed, since U has to decrypt the output.
More generally, the power of RE stems from the ability to reveal f (x) to anyone
(while hiding x).
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This chapter The abstract framework of randomized encoding (RE) is quite gen-
eral and can be instantiated in several ways, including computational and information-
theoretic variants and different forms of efficiency/simplicity requirements. In this
tutorial, we use this framework to study garbled circuits from a foundational point of
view. As we will see, the use of a general and abstract framework is beneficial, even
if one is interested in concrete forms of REs (e.g., ones that correspond to “standard
garbled circuits”). Our presentation emphasizes the properties of REs and the way
that basic REs can be combined and manipulated to produce better ones. Naturally,
this leaves several important aspects uncovered. Most notably, this includes many
useful direct information-theoretic randomization techniques. Such techniques are
thoroughly covered in the survey of Ishai [64]. We also focus on asymptotic analysis
and leave out the concrete efficiency of REs.

Organization The rest of this chapter is organized as follows: In Section 1.2, we
formally define REs and present their basic properties. A general template for con-
structing randomized encodings appears in Section 1.3, together with basic feasibil-
ity results. Recent constructions of REs which provide better efficiency or stronger
security are presented in Section 1.4. Some basic applications of REs are sketched in
Section 1.5. Section 1.6 is a summary with suggestions for further reading. A brief
comparison of REs with the “garbling scheme” framework of Bellare et al. [26]
appears in Section 1.7.
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1.2 Definitions and Basic Properties
Notation For a positive integer n ∈ N, let [n] denote the set {1, . . . , n}. A func-
tion ε : N → [0, 1] is negligible if it tends to zero faster than 1/nc for every
constant c > 0. The term “efficient” refers to probabilistic polynomial time. For

a finite set (resp., probability distribution) X, we let x
R
← X denote an element that

is sampled uniformly at random from X (resp., according to the distribution X).
We let Un denote the uniform distribution over n-bit strings. The statistical distance
between a pair of random variables X and Y over a finite range R is defined by
1
2
∑

r∈R |Pr[X = r] − Pr[Y = r]|.
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1.2.1 Syntax and Basic Definition
We begin with a formal definition of randomized encoding of functions. In the fol-
lowing let X,Y,Z, and R be finite sets (typically taken to be sets of fixed-length
strings).

Definition 1.2.1 (Randomized encoding [10, 11]). Let f : X → Y be a function. We
say that a function f̂ : X ×R→ Z is a δ-correct, (t, ε)-private randomized encoding
of f if there exist a pair of randomized algorithms, decoder Dec and simulator Sim,
for which the following hold:

• (δ-correctness) For any input x ∈ X,

Pr
r

R
←R

[Dec( f̂ (x; r)) , f (x)] ≤ δ.

• ((t, ε)-privacy) For any x ∈ X and any circuit2 A of size t∣∣∣∣∣∣Pr[A(Sim( f (x))) = 1] − Pr
r

R
←R

[A( f̂ (x; r)) = 1]

∣∣∣∣∣∣ ≤ ε.
We refer to the second input of f̂ as its random input, and a use semicolon (;) to
separate deterministic inputs from random inputs. We will sometimes write f̂ (x) to

denote the random variable f̂ (x; r) induced by sampling r
R
← R. We refer to log |R|

and log |Z| as the randomness complexity and the communication complexity of f̂ ,
respectively. By default, we measure the computational complexity of f̂ by its circuit
size.

Infinite functions and collections Definition 1.2.1 naturally extends to infinite
functions f : {0, 1}∗ → {0, 1}∗, and, more generally, to collections of functions.
Let F be a collection of functions with an associated representation (by default,
a boolean or arithmetic circuit). We say that a class of randomized functions F̂
is a δ(n)-correct, (t(n), ε(n))-private RE of F if there exists an efficient algorithm
(compiler) which gets as an input a function f : X → Y from F and outputs (in time
polynomial in the representation length | f |) three circuits ( f̂ ∈ F̂ ,Dec,Sim) which
form a (t(n), ε(n)-RE of f where n denotes the input length of f , i.e., n = log |X|.

Remark 1.2.2. We use n both as an input length parameter and as a cryptographic
“security parameter” quantifying computational privacy. When describing some of
our constructions, it will be convenient to use a separate parameter k for the latter,
where computational privacy will be guaranteed as long as k = nε for some constant
ε > 0.

2 For simplicity, throughout the chapter we model adversaries as non-uniform circuits. However,
all the results presented here also hold in a uniform model where adversaries are modeled as prob-
abilistic polynomial-time Turing machines. A uniform treatment of REs can be found in [11, 15].
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Variants Several variants of randomized encodings have been considered in the
literature. Correctness is said to be perfect when δ = 0 and statistical if δ(n) is
negligible (i.e., δ(n) = n−ω(1)). We say that the encoding is ε-private if it satisfies
(t, ε)-privacy for every t, namely, the simulator output Sim( f (x)) is ε-close in statis-
tical distance to the encoding f̂ (x,Um). Under this convention, perfect privacy cor-
responds to 0-privacy and statistical privacy corresponds to ε(n)-privacy for some
negligible ε. An encoding is computationally private if it is (t, 1/t)-private for every
polynomial t(n). Throughout this chapter, we mainly focus on computational en-
codings which are both computationally private and perfectly correct. However, we
will also mention basic feasibility results regarding perfect encodings which achieve
perfect correctness and perfect privacy.

1.2.2 Efficiency and Simplicity
So far, the notion of RE can be trivially satisfied by taking f̂ = f and letting the sim-
ulator and decoder be the identity functions.3 To make the definition nontrivial, we
should impose some efficiency constraint. The most obvious efficiency measure is
sequential time; i.e., we would like to encode functions computable by large circuits
(or by Turing machines with large time complexity) via relatively small circuits (or
fast Turing machines). In addition to sequential time, several other notions of effi-
ciency/simplicity have been considered in the literature. Here we review only a few
of them.

Online/offline complexity We would like to measure separately the complexity
of the outputs of f̂ which depend solely on r (offline part) from the ones which de-
pend on both x and r (online part).4 Without loss of generality, we assume that f̂ can
be written as f̂ (x; r) = ( f̂off(r), f̂on(x; r)), where f̂off(r) does not depend on x at all.
We can therefore split the communication complexity (resp., computational com-
plexity) of f̂ into the online communication complexity (resp., online computational
complexity), which corresponds to the online part f̂on(x; r), and the offline commu-
nication complexity (resp., offline computational complexity), which corresponds to
the offline part f̂off(r).

Efficient online encodings Let F̂ be an encoding of the collection F . We say
that F̂ is online efficient if, for every function f ∈ F , the online computational
complexity of the encoding f̂ is independent of the computational complexity (i.e.,
circuit size) of the encoded function f (but grows with the bit length of the input of
f ). We may further require online universality, which means that the computation of

3 The omission of efficiency requirements from Definition 1.2.1 is not accidental. We believe that,
at a definitional level, it is best to leave such requirements unspecified and adopt appropriate effi-
ciency requirements in an application-dependent context. Moreover, the ability to treat inefficient
encodings as “legal REs” turns out to be useful. Indeed, as we will later see, some constructions
start with a trivial RE and gradually convert it into a more efficient one.
4 The online/offline terminology hints towards applications in which f is known ahead of time in
an “offline phase”, whereas x becomes available only later in an “online phase”.
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the online part f̂on corresponds to some universal computation which is independent
of the encoded function f . In such a case, we may think of the encoding of F
as being composed of two mappings: One that maps the function f ∈ F and the
randomness r to f̂off(r), and one that maps the input x and the randomness r to
f̂on(x; r). (Indeed, this view is taken in [26].) In the context of garbled circuits, f̂off(r)
is typically referred to as the garbled circuit part, and f̂on(x; r) is typically referred
to as the garbled input. It is sometimes useful to think of f̂off(r) as a ciphertext and
f̂on(x; r) as a key Kx that “opens” the ciphertext to the value f (x).

Remark 1.2.3. The distinction between the online part of the encoding and its of-
fline part naturally gives rise to a stronger form of adaptive privacy in which the ad-
versary may choose the input x based on the offline part of the encoding. This form
of security is discussed later, in Section 1.4.5. For now, we use the online/offline ter-
minology only as an efficiency requirement without imposing any additional require-
ment on privacy; That is, all we require is standard privacy as per Definition 1.2.1.

Affinity and decomposability Some of the applications of REs further require
some form of algebraic simplicity. Assume that the function f is an arithmetic func-
tion whose input x = (x1, . . . , xn) is a vector of elements of some ring R. We say
that an RE f̂ : Rn × {0, 1}m → Rs of f is an affine randomized encoding (ARE)
if, for every fixing of the randomness r, the online part of the encoding f̂on(x; r)
becomes an affine function over the ring R, i.e., f̂on(x; r) = Mr · x + vr, where
Mr (resp., vr) is a matrix (resp., vector) that depends on the randomness r. We say
that f̂ is a decomposable randomized encoding (DRE) if each output of the online
part of f̂ depends on at most a single input xi. Namely, f̂on(x; r) decomposes to
( f̂1(x1; r), . . . , f̂n(xn; r)), where f̂i may output several ring elements. An RE which
is both decomposable and affine is called a DARE. Observe that, in the binary case
where R = Z2, decomposability implies affinity and so any DRE is also a DARE,
although this is not the case for general rings.

Algebraic degree and output locality Affinity and decomposability essentially
require simple dependency on x. One can strengthen these notions by also placing
restrictions on the way f̂ depends on the randomness r. Specifically, one can require
that the algebraic degree of each output of f̂ (x; r), viewed as a polynomial in r
and x, will be small (e.g., constant). Similarly, one may require that each output of
f̂ (x; r) will depend on a constant number of inputs (including the r’s), namely that
f̂ should have constant output locality. Over the binary ring Z2, constant locality
implies constant degree (since over the binary ring, polynomials may be assumed to
be multilinear).

The necessity of randomness For any of the above notions of simplicity, random-
ness is necessary in order to obtain a “simple” encoding for a “nonsimple” boolean
function. To see this, assume that f : {0, 1}n → {0, 1} has a deterministic encoding
f̂ : {0, 1}n → {0, 1}s. The privacy of the encoding promises that there exists a pair of
strings y0, y1 ∈ {0, 1}s such that, for every x ∈ {0, 1}n, we have f̂ (x) = y f (x). Also, by
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correctness, y0 and y1 disagree in some position, say the first. Hence, we can com-
pute f (x) by computing the first bit of f̂ (x) or its negation. We conclude that if f̂ is
simple then so is f , assuming that “simplicity” is closed under projection (which is
the case for affinity, decomposability, locality, and degree).5

1.2.3 Useful Properties
REs satisfy several natural properties which hold regardless of their efficiency. First,
just like in the case of string encodings, if we take an encoding f̂ of f , and re-encode
it by ˆ̂f , then the resulting encoding also encodes the original function f . Second, an
encoding of a tuple ( f1(x), f2(x)) can be obtained by encoding each element of the
pair separately and concatenating the result. Finally, given an encoding f̂ (y; r) of
f (y), we can encode a function of the form f (g(x)) by encoding the outer function
and substituting y with g(x), i.e., f̂ (g(x); r). We summarize these properties via the
following lemmas [10]. For simplicity, we restrict our attention to perfectly correct
encodings and refer to perfectly correct (t, ε)-private encodings as (t, ε)-encodings.

Lemma 1.2.4 (Composition). Suppose that g(x; rg) is a (t1, ε1)-encoding of f (x)
with decoder Decg and simulator Simg, and that h((x, rg); rh) is a (t2, ε2)-encoding
of the function g(x, rg), viewed as a single-argument function, with decoder Dech

and simulator Simh. Then, the function f̂ (x; (rg, rh)) = h((x, rg); rh) together with
the decoder Dec(ŷ) = Decg(Dech(ŷ)) and the simulator Sim(y) = Simh(Simg(y))
forms a (min(t1 − s, t2), ε1 + ε2)-encoding of f (x) where s upper-bounds the circuit
complexity of h and its simulator Simh.

Proof: Perfect correctness follows by noting that Prrg,rh [Dec( f̂ (x; rg, rh)) , f (x)]
is upper-bounded by

Pr
rg,rh

[Dec(h(x, rg; rh)) , g(x, rg)] + Pr
rg

[Dec(ĝ(x; rg)) , f (x)] = 0.

To prove privacy, consider a t-size adversary A which, for some x, distinguishes
the distributions Sim( f (x)) from f̂ (x) with advantage ε, where ε > ε1 + ε2 and
t < min(t1 − s, t2). We show that we can either violate the privacy of the encoding
g or the privacy of the encoding h. Indeed, by considering the “hybrid” distribution
Simh(g(x)), we can write

5 This argument relies heavily on the fact that f is a boolean function. Indeed, the claim does
not hold in the case of non-boolean functions. Suppose, for example, that f : {0, 1}n → {0, 1}n

is a permutation. Then it can be trivially encoded by the identity function. Moreover, if f can
be computed and inverted in polynomial time, then the encoding allows efficient decoding and
simulation.
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ε1 + ε2 <

∣∣∣∣∣∣Pr[A(Simh(Simg( f (x)))) = 1] − Pr
rg,rh

[A(h((x, rg); rh)) = 1]

∣∣∣∣∣∣ (1.1)

=

∣∣∣∣∣∣Pr[A(Simh(Simg( f (x)))) = 1] − Pr
rg

[A(Simh(g(x; rg))) = 1]

∣∣∣∣∣∣ (1.2)

+

∣∣∣∣∣∣Pr
rg

[A(Simh(g(x; rg))) = 1] − Pr
rg,rh

[A(h((x, rg); rh)) = 1]

∣∣∣∣∣∣ . (1.3)

It follows that either (1.2) is larger than ε1 or (1.3) is larger than ε2. In the first case,
we get, for some fixing of the coins of Simh, an adversary A(Simh(·)) of complexity
t + s < t1 which violates the privacy of the encoding g. In the second case, there
exists an input (x, rg) for which A violates the privacy of h. �

Lemma 1.2.5 (Concatenation). Suppose that f̂i(x; ri) is a (t, ε)-encoding of the
function fi : {0, 1}n → {0, 1}`i with decoder Deci and simulator Simi for every
i ∈ [c]. Then the function f̂ (x; (r1, . . . , rc)) = ( f̂i(x; ri))c

i=1 together with the decoder
Dec(ŷ) = (Deci(ŷi))c

i=1 and simulator Sim(y) = (Simi(yi))c
i=1 forms a (t − cs, cε)-

encoding of f (x) = ( f1(x), . . . , fc(x)) where s is an upper-bound on the complexity
of the encodings f̂i.

Proof: Perfect correctness follows from

Pr
r

[Dec( f̂ (x; r)) , f (x)] ≤
c∑

i=1

Pr
r

[Dec( f̂i(x; ri)) , fi(x)] = 0.

Privacy is proved via a standard hybrid argument. Specifically, suppose towards
a contradiction, that A is a (t − cs)-size adversary that distinguishes f̂ (x; r) from
Sim( f (x); ρ) with advantage cε. Then, by an averaging argument, for some j ∈
{1, . . . , c}, the adversary A distinguishes with advantage at least ε between the tuple

( f̂1(x; r1), . . . , f̂ j−1(x; r j−1),Sim j( f j(x)), . . . ,Simc( fc(x)))

and the tuple

( f̂1(x; r1), . . . , f̂ j(x; r j),Sim j+1( f j(x)), . . . ,Simc( fc(x))).

By an averaging argument, A distinguishes with advantage at least ε between
(w,Sim j( f j(x)), z) and (w, f̂ j(x; r j), z) for some fixing w = (w1, . . . ,w j−1) and z =

(z j+1 . . . zc). Let B be an adversary that, given a challenge ŷ j, calls A on the input
(w, ŷ j, z) and outputs the result. The adversary B can be implemented by a t-size cir-
cuit and it distinguishes f̂ j(x; r j) from Sim j( f j(x)) with advantage ε, in contradiction
to our hypothesis. �

Lemma 1.2.6 (Substitution). Suppose that the function f̂ (x; r) is a (t, ε)-encoding
of f (x) with decoder Dec and simulator Sim. Let h(z) be a function of the form
f (g(z)) where z ∈ {0, 1}k and g : {0, 1}k → {0, 1}n. Then, the function ĥ(z; r) =

f̂ (g(z); r) is a (t, ε)-encoding of h with the same simulator and the same decoder.
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Proof: Follows immediately from the definition. For correctness we have that, for
all z,

Pr
r

[Dec(ĥ(z; r)) , h(z)] = Pr
r

[Dec( f̂ (g(z); r)) , f (g(z))] = 0,

and for privacy we have that, for all z, the distribution Sim(h(z)) = Sim( f (g(z)))
cannot be distinguished from the distribution f̂ (g(z)) = ĥ(z) with advantage better
than ε by any t-size adversary. �

Remark 1.2.7 (Composition, concatenation, and substitution with constructive
simulators/decoders). Observe that, in all the above cases, the simulator and the
decoder of the new encoding can be derived in a straightforward way based on the
original simulators and decoders.

Remark 1.2.8 (The efficiency of simulation). In the composition lemma, the loss
in security depends, in part, on the complexity of the simulator. Typically, the latter
is roughly the same as the complexity of the encoding itself. Indeed, a natural way
to define a simulator Sim(y) is to sample an encoding f̂ (xy) where xy is some fixed
canonical preimage of y under f . The complexity of such a simulator is the same as
the complexity of the encoding plus the cost of finding xy given y. In fact, it is not
hard to see that, if f̂ is a (t, ε)-private encoding with some simulator Sim′, then the
canonical simulator defined above is (t, 2ε)-private. Of course, in some cases, the
canonical simulator may not be efficiently computable, since it may be hard to find
a canonical input xy for some y’s (e.g., when f is a one-way permutation).

1.3 Feasibility Results
In this section we present basic feasibility results regarding the existence of DARE
for several rich function classes. We present these constructions via the unified
framework of [15].

1.3.1 Perfect DARE for Finite Functions
As a warmup, we consider several examples of DARE for finite functions. (The
examples apply to any finite ring.)

Example 1.3.1 (Addition). The addition function f (x1, x2) = x1 + x2 over some
finite ring R is perfectly encoded by the DARE

f̂ (x1, x2; r) = (x1 + r, x2 − r).

Indeed, decoding is performed by summing up the two components of the en-
coding, and simulation is done by sampling a random pair whose sum equals to
y = f (x1, x2).

Example 1.3.2 (Multiplication). The product function f (x1, x2) = x1 · x2 over a
ring R is perfectly encoded by the ARE

g(x1, x2; r1, r2) = (x1 + r1, x2 + r2, r2x1 + r1x2 + r1r2).
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Indeed, given an encoding (c1, c2, c3), we can recover f (x) by computing c1 · c2 − c3.
Also, perfect privacy holds, since the triple (c1, c2, c3) is uniform subject to the cor-
rectness constraint. Hence, the simulator Sim(y; c1, c2) := (c1, c2, c1c2 − y) perfectly
simulates g. Observe that the above encoding is affine but not decomposable (the
last entry depends on both x1 and x2). We can derive a DARE by viewing the last
entry g3(x, r) = (r2x1) + (r1x2 + r1r2) as a deterministic function in x and r and
re-encoding it via the DARE for addition (Example 1.3.1):

ĝ3(x, r; s) = (r2x1 + s, r1x2 + r1r2 − s).

By the concatenation lemma, the function ĝ(x, r; s) = (g1(x, r), g2(x, r), ĝ3(x; r)) per-
fectly encodes g(x, r), and therefore, by the composition lemma, ĝ(x; r, s) perfectly
encodes f (x).

Using similar ideas, it can be shown that any polynomial f over a ring R can be
encoded by a perfect DARE (whose complexity may be large). In the next section,
we show how to achieve complexity which is polynomial in the formula size of f .
For this, it will be useful to record the following concrete DARE for the function
x1x2 + x3 (MUL-ADD).

Fact 1.3.3 (DARE for MUL-ADD [15]) The function f (x1, x2, x3) = x1x2+x3 over
a finite ring R is perfectly encoded by the DARE f̂ (x1, x2, x3; r1, r2, r3, r4) defined by(

x1

[
1
r2

]
+

[
−r1

−r1r2 + r3

]
, x2

[
1
r1

]
+

[
−r2
r4

]
, x3 − r3 − r4

)
,

where r1, r2, r3, r4 are random and independent ring elements.

1.3.2 Perfect DARE for Formulas
Our goal in this section is to construct perfect DARE for arithmetic circuits with
logarithmic depth (i.e., formulas). An arithmetic circuit over a ring R is defined
similarly to a standard boolean circuit, except that each wire carries an element of R
and each gate can perform an addition or multiplication operation over R. We prove
the following theorem:

Theorem 1.3.4. There exists a perfect DARE for the class of arithmetic circuits with
logarithmic depth over an arbitrary ring.6

We mention that a stronger version of the theorem (cf. [67, 40, 10]) provides perfect
DAREs for arithmetic branching programs over an arbitrary ring. The latter class is
believed to be computationally richer than the class of logarithmic-depth arithmetic
circuits, and therefore, as a feasibility result, the branching program-based encoding

6 Recall that, by default, a statement like this always means that the encoding is efficiently con-
structible as defined in Section 1.2.
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subsumes the one from Theorem 1.3.4.7 The existence of efficient perfect or statisti-
cal DARE for general polynomial-size circuits, or even for circuits with, say, log2 n
depth, is wide open.
Proof: [Proof of Theorem 1.3.4] Let C be an arithmetic circuit over a ring R.
Instead of individually considering each wire and gate of C (as in Yao’s classical
garbled circuit construction), we build the encoder by processing one layer at a
time. For simplicity, we assume that C is already given in a layered form; That
is, C(x) = B1 ◦ B2 ◦ · · · ◦ Bh(x), where each Bi is a depth-1 circuit. We further
assume that each gate has a bounded fan-out, say of 2. (For circuits of logarithmic
depth, such a restriction can be forced with overhead polynomial in the size while
keeping the depth logarithmic.) We denote by yi (values of) variables corresponding
to the input wires of layer Bi; That is, yi = Bi+1 ◦ · · · ◦ Bh(x), where y0 = C(x)
and yh = x. We denote by Ci the function mapping yi to the output of C; that is,
Ci(yi) = B1 ◦ . . . ◦ Bi(yi), where C0(y0) is the identity function on the outputs.

We build the encoding Enc in an iterative fashion, processing the layers of C
from top (outputs) to bottom (inputs). We start with a trivial encoding of the identity
function C0. In iteration i, i = 1, 2, . . . , h, we transform a DARE for Ci−1(yi−1) into
a DARE for Ci(yi) by first substituting Bi(yi) into yi−1, and then re-encoding the
resulting function to bring it into a decomposable affine form. The affinization step
is performed by adding new random inputs and has the effect of increasing the size
of the online part.

Formally, the DARE compiler is described in Figure 1.1. As explained in Fig-
ure 1.1, Lemmas 1.2.4, 1.2.5, and 1.2.6 guarantee that, in the i-th iteration, the
compiler generates a decomposable affine encoding Enci(yi) of Ci(yi), and so, at
the final iteration, we derive a DARE for Ch = C. Observe that the computational
complexity of Enci (and, in particular, the length of its online part) is larger by a
constant factor than the complexity of Enci−1. More precisely, the online part grows
by a factor of at most twice the fan-out of Bi. Hence, the encoding can be generated
in polynomial time as long as the encoded circuit has logarithmic depth. Circuits
for the simulator and decoder can be generated with similar complexity due to the
constructive nature of the substitution, composition, and concatenation lemmas (see
Remark 1.2.7). This completes the proof of the theorem. �

Example 1.3.5. Let us apply the DARE compiler (Figure 1.1) to the formula ab+cd
depicted in Figure 1.2. The initial trivial encoding is simply y0. Then, substitution
yields y1

1 +y1
2, which after affinization becomes (y1

1 +r0, y1
2−r0). Another substitution

results in the encoding (x1x2 + r0, x3x4 − r0). After an additional affinization, we get
the final encoding f̂ (x1, x2, x3, x4; (r0, r1, r2, r3, r4, r′1, r

′
2, r
′
3, r
′
4)) defined by

x1

[
1
r2

]
+

[
−r1

−r1r2 + r3

]
, x2

[
1
r1

]
+

[
−r2
r4

]
, x3

[
1
r′2

]
+

[
−r′1

−r′1r′2 + r′3

]
, x4

[
1
r′1

]
+

[
−r′2
r′4

]
,

[
r0 − r3 − r4
−r0 − r′3 − r′4

]
.

7 Arithmetic branching programs can emulate arithmetic circuits of logarithmic depth with only
polynomial overhead, whereas the converse is believed to be false (this is equivalent to separating
log-space computation from NC1).
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1. Let Enc0(y0) = y0 be the identity function on the variables y0 (one variable for each output
of C).

2. For i = 1, 2, . . . , h, obtain an encoding Enci(yi) of Ci(yi) from an encoding Enci−1(yi−1) of
Ci−1(yi−1) using the following two steps:

a. Substitution. Let F(yi) = Enci−1(Bi(yi)).
The substitution lemma (1.2.6) guarantees that, if Enci−1 encodes Ci−1, then F en-
codes Ci. Assuming that Enci−1 is a DARE, each output of F can be written as

Q∗ = a ∗ (yi
` ∗ yi

r) + b or as Q+ = a ∗ (yi
` + yi

r) + b,

where a and b depend on the randomness and ` and r are some indices of gates in the
i-th layer. This means that F is not decomposable anymore, since each of the resulting
outputs depends on a pair of input variables of Ci. Moreover, if the i-th layer contains
a multiplication gate, then F is also not affine (since Q∗ contains a product of two
input variables of Ci).

b. Affinization. Turn F into a decomposable affine encoder Enci of the same function by
applying to each output that depends on two inputs yi

j a perfect DARE. Here we rely
on the fact that the above expressions (Q+ and Q∗) are finite and thus have a constant-
size DARE. Concretely, the term Q∗ can be handled by applying the basic gadget
of Fact 1.3.3 to Q∗ = z ∗ yi

r + b and substituting ayi
` into z. The resulting encoding

of Q∗ can be written in the form Q̂∗ = (a′`y
i
` + b′`, a

′
ry

i
r + b′r,w), where a′i , b

′
i ,w are

vectors in R2 that depend only on random inputs. Similarly, we can handle Q+ by
rewriting it as Q+ = z1 + z2, where z1 = a ∗ yi

` and z2 = a ∗ yi
r + b, and then

applying the encoding for addition (Example 1.3.1), leading to a DARE of the form
(a∗yi

`+b′, a∗yi
r +b′′), where a, b, b′′ ∈ R. Applying this transformation to every term

Q in the output of F and concatenating different affine functions of the same input,
we get, by the concatenation and composition lemmas (1.2.5, 1.2.4), decomposable
affine encoding Enci of Ci.

3. Output the arithmetic circuit computing Enc(x) = Ench(x).

Fig. 1.1: DARE compiler for arithmetic circuits of logarithmic depth. For simplicity,
we treat encoders as probabilistic circuits and omit their random inputs from the
notation

+ y0

× y1
1

x1 y2
1

x2 y2
2

× y1
2

x3 y2
3

x4 y2
4

Fig. 1.2: An arithmetic formula computing the function x1x2 + x3x4
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1.3.3 Generalization: “Simple” Encodings for Formulas
The proof of Theorem 1.3.4 provides a general template for constructing “simple”
encodings. Formally, consider a class Simple of single-output (possibly random-
ized) functions defined over some ring R. Call an encoding f̂ simple if each of its
outputs is computed by a function in Simple.

Theorem 1.3.6 (Simple encodings for formulas (meta-theorem)). Suppose that
the class Simple satisfies the following conditions:

• Simple contains the identity function f (x) = x.
• There exists a simple DARE ĝ for every function g obtained by taking some

function f (x; r) ∈ Simple and substituting a deterministic input xi by the ex-
pression y � z, where y and z are deterministic inputs and � ∈ {+, ∗} is a ring
operation. Moreover, the circuit complexity of ĝ is at most c times larger than
the complexity of f for some universal constant c.

Then, any depth-d arithmetic circuit C : Rn → R` has a simple perfect encoding of
complexity at most `cd.

Theorem 1.3.4 can be derived from Theorem 1.3.6. Indeed, the notion of DARE
corresponds to the case where Simple is the class of randomized functions with
a single deterministic input x and (possibly many) random inputs r of the form
f (x; r) = x ∗ g(r) + h(r), where g and h are arbitrary.

The proof of Theorem 1.3.6 follows the outline of Theorem 1.3.4 except that the
affinization gadget is replaced with a simple encoding of f (x � y) (for appropriate
f and �). The details are left for the reader. We further mention that one can state a
more general result by considering circuits over an arbitrary basis G = {g}, assuming
that f (g(x1, . . .)) admits a simple encoding for every f ∈ Simple and every g ∈ G.
In some cases, this version leads to better concrete efficiency then the current “gate-
by-gate” approach.

1.3.4 Computational DARE for Boolean Circuits
Falling short of providing perfect DARE for general circuits, we aim for computa-
tionally private DARE. Let us reconsider the previous encoding (Figure 1.1) under
the terminology of keys (online part) and ciphertexts (offline part). In each iteration,
the affinization step increases the length of the keys by a constant factor, and as a
result the size of the keys becomes exponential in the depth. We fix this problem by
using a key-shrinking gadget.

Definition 1.3.7 (Key-shrinking gadget). Consider the affine function with 4k-long
keys over the ring R

f (y, c, d) = yc + d, y ∈ R, c, d ∈ R4k.

A key-shrinking gadget is a computational encoding f̂ for f with shorter keys of
length k of the form

f̂ (y, c, d; r) = (ya + b,W) y ∈ R, a, b ∈ Rk,
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where a, b, and W may depend on c, d and on the internal randomness of f̂ but not
on y.

Remark 1.3.8. The concrete shrinkage factor (4k to k) is somewhat arbitrary. In-
deed, it is possible to turn a key-shrinking gadget with minimal shrinkage (k + 1 to
k) into a key-shrinking gadget with arbitrary polynomial shrinkage (kc to k for any
constant c > 0) by re-encoding the gadget polynomially many times and applying
the composition lemma (1.2.4).

Given such a gadget, we can fix the key-blowup problem of the previous encod-
ing. First, rearrange the affine encoding obtained from the affinization step terms
into blocks (grouping together outputs that depend on the same variable), and then
apply the key-shrinking gadget to each output block. As a result, the size of the
keys is reduced at the cost of generating additional outputs that do not depend on
the inputs and thus can be accumulated in the offline part (as a ciphertext). See Fig-
ure 1.3 for a formal description. Again, correctness and privacy follow easily (and
modularly) from the substitution, concatenation, and composition properties of ran-
domized encodings (see Section 1.2.3).

1. Let Enc0(y0) = y0 be the identity function on the variables y0 (one variable for each output
of C).

2. For i = 1, 2, . . . , h, obtain an encoding Enci(yi) of Ci(yi) from an encoding Enci−1(yi−1) of
Ci−1(yi−1) using the following three steps:

a. Substitution. Let F(yi) = Enci−1(Bi(yi)).
b. Affinization. Turn F into a decomposable affine encoder Gi of the same function by

applying to each output that depends on two inputs yi
j a perfect DARE. (See affiniza-

tion step in Figure 1.1.)
c. Key shrinkage. To avoid the exponential blowup of keys, the compiler applies the

key-shrinking gadget. Partition Gi to (Gi
1, . . . ,G

i
`), where Gi

j = c jyi
j + d j is an affine

function in the variable yi
j and ` is the number of gates in the i-th level. For every Gi

j
whose length is larger than k, the key-shrinking gadget is applied to bring it to the
form (W, a jyi

j + b j), where a j ∈ Rk, b j ∈ Rk, and a j, b j,W depend only on random
inputs. The W entries are aggregated in the offline part of the encoding. Let Enci(yi)
be the decomposable affine encoding resulting from this step.

3. Output the arithmetic circuit computing Enc(x) = Ench(x).

Fig. 1.3: Encoding arithmetic circuits via key-shrinking gadget. Think of k as a
security parameter which is set it to some polynomial in the input length n. We
assume, without loss of generality, that the circuit has fan-out of two

Lemma 1.3.9. Assume that the key-shrinking gadget is (t, ε)-private and can be
computed and simulated by a circuit of size s. Then, the compiler from Figure 1.3
constructs a perfectly correct (t− |C|s, |C|ε)-private DARE for the circuit C with on-
line complexity kn and offline complexity of at most s|C|, where n is the input length
of C.
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Proof: For brevity, we refer to a perfectly correct (t, ε)-private encoding with on-
line complexity of k and offline complexity of m as a (t, ε, k,m)-encoding. Keeping
the notation from Theorem 1.3.4, we prove that, in the i-th iteration, the compiler
generates a (ti, εi, k`i,mi)-DARE Enci(yi) of Ci(yi), where ti = t − s|Ci|, εi = ε|Ci|,
mi = s|Ci|, and `i denotes the input length of Ci (which is the number of gates in the
i-th layer of the circuit C).

The proof is by induction on i. Observe that the claim is trivial for i = 0. Let
us assume that the claim holds for the i − 1 iteration. As in the proof of The-
orem 1.3.4, Lemmas 1.2.4, 1.2.5, and 1.2.6 guarantee that the function Gi is a
(ti−1, εi−1, 4k`i,mi−1)-DARE of Ci(yi). Indeed, recall that affinization increases the
online complexity by a factor of two (and does not affect the offline complexity).
Since the fan-out is assumed to be two, this leads to a total factor of 4 in the online
complexity. The key-shrinking gadget provides a (t, ε, k, s) affine encoding for Gi

j
(for every j ∈ [`i]). Therefore, by Lemma 1.2.5, the concatenation of these encod-
ings Enci(yi) is a (t − `is, `iε, k`i, s`i)-encoding of Gi. Finally, by the composition
lemma (1.2.4), Enci(yi) is a (ti − `is, εi + `iε, k`i,mi−1 + s`i)-DARE of Ci(yi), as
required. �

As in Theorem 1.3.4, the compiler implicitly defines a simulator and decoder of
complexity poly(|C|, s) using the constructive version of the substitution, composi-
tion, and concatenation lemmas mentioned in Remark 1.2.7.

Shrinking the keys in the binary case Lemma 1.3.9 reduces the construction of
DARE compilers to an implementation of the key-shrinking gadget. In the binary
case, this can be done quite easily with the help of a standard symmetric encryption
scheme. First, observe that, in the binary setting, an affine function ya + b in y
operates as a “selection” function which outputs b if y = 0, and a+b if y = 1. Hence,
in order to implement the key-shrinking gadget, we need to encode the selection
function

Sel(y,M0,M1) := My, where y ∈ {0, 1},M0,M1 ∈ {0, 1}n

with n-long vectors (M0,M1) by a selection function with shorter vectors (K0,K1)
(and, possibly, an offline part). Let us start with a slightly easier task and try to
encode a variant of the selection function which leaks the “selection bit” y, i.e.,

Sel′(y,M0,M1) := (y,My).

A simple way to implement such an encoding is to employ symmetric encryption,
where M0 is encrypted under the random key K0 and M1 under the random key K1.
Formally, we prove the following claim:

Claim 1.3.10. Let (E,D) be a perfectly correct one-time semantically secure sym-
metric encryption with key length k and message length n. Then, the function

g′(y,M0,M1; (K0,K1)) = (Sel′(y,K0,K1),EK0 (M0),EK1 (M1))

is a computational DARE for Sel′(y,M0,M1).



1 Garbled Circuits as Randomized Encodings of Functions: a Primer 17

Proof: [Sketch] Given the encoding (y,Ky,C0,C1), we can decode My by applying
the decryption algorithm to Cy. The simulator takes (y,My) as input, samples a pair
of random keys K0 and K1, and outputs (y,Ky,C0,C1), where Cy = EKy (My) and
C1−y = EKy (0

n). It is not hard to show that the simulator’s output is computationally
indistinguishable from the distribution of the real encoding based on the semantic
security of the encryption. �

We move on to encode the selection function Sel. For this we have to hide the
value of y. One way to achieve this is to remove y from the output of the previous
encoding and to randomly permute the order of the ciphertexts C0 and C1. The
resulting function privately encodes Sel, however, to guarantee correctness we have
to assume that the encryption is verifiable (i.e., decryption with an incorrect key can
be identified). This variant of the encoding typically leads to a statistically small
decoding error (as in the garbled circuit variant of [76]). A perfectly correct solution
can be achieved by releasing a “pointer” to the correct ciphertext. (This version
corresponds to the garbled circuit variant in [21, 80, 11].) More abstractly, observe
that the input to Sel(y,M0,M1) can be randomized to

y′ = y + r, M′0 = (1 − r) · M0 + r · M1, and M′1 = r · M0 + (1 − r) · M1,

where the random bit r is treated as a scalar over Z2, and M0 and M1 as vectors
over Zn

2. This means that Sel(y,M0,M1) can be encoded by Sel′(y′,M′0,M
′
1) (since

y′ can be released). We can now re-encode Sel′(y′,M′0,M
′
1) via Claim 1.3.10, and

derive an encoding g(y,M0,M1; (r,K0,K1)) for the Sel function whose polynomial
representation is

(y + r, (1 − (y + r))K0 + (y + r)K1,EK0 ((1 − r)M0 + rM1),EK1 (rM0 + (1 − r)M1)).

It is not hard to see that g satisfies the syntactic requirements of Definition 1.3.7.
We therefore obtain a key-shrinking gadget based on a semantically secure encryp-
tion scheme. Since the latter can be based on any one-way function, we derive the
following corollary (Yao’s theorem):

Theorem 1.3.11. Assuming the existence of one-way functions, there exists an online-
efficient DARE for the class of polynomial-size boolean circuits.

The above encoding provides a modular and, arguably, conceptually simpler
derivation of Yao’s original result for boolean circuits.

1.3.5 Computational DARE for Arithmetic Circuits
We would like to obtain online-efficient DARE for arithmetic circuits. Since arith-
metic computations arise in many real-life scenarios, this question has a natural mo-
tivation in the context of most of the applications of garbled circuits (to be discussed
in Section 1.5). Clearly, one can always encode an arithmetic function f : Rn → R`

by implementing an equivalent boolean circuit f ′ (replacing each R-operation by
a corresponding boolean subcircuit) and applying a boolean encoding to the result.
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This approach suffers from an overhead which depends on the boolean complex-
ity of ring operations (which may be too high), and requires access to the bits of
the inputs, which may not be accessible in some scenarios.8 Instead, we would like
to obtain an arithmetic encoding which treats the elements as atomic values and
manipulates them only via ring operations just like the arithmetic encoding of The-
orem 1.3.4 for the case of logarithmic-depth arithmetic circuits (i.e., formulas).

Observe that the encoding presented in Figure 1.3 reduces the problem of con-
structing arithmetic ARE to the construction of an arithmetic key-shrinking gadget,
since all other components “arithmetize”. Over a large ring, the key-shrinking gad-
get essentially implements a symmetric encryption scheme with special homomor-
phic properties that applies both to the keys and to data. Indeed, we can view the
offline part of the key-shrinking gadget as an encryption of the long keys c, d ∈ Rn

under the short keys a, b ∈ Rk with the property that the linear combination of the
keys ay+b allows one to decrypt the linear combination of the plaintexts cy+d (and
hides any other information). Such a gadget was (approximately) implemented over
bounded-size integers by [15], leading to the following theorem:

Theorem 1.3.12 (Informal). Assuming the hardness of the Learning with Errors
problem, there exists an efficient compiler that, given an arithmetic circuit f : Zn →

Z` over the integers and a positive integer U bounding the value of circuit wires,
outputs (in time polynomial in the size of f and in the binary representation of U)
an arithmetic circuit f̂ (over the integers) which forms an online-efficient DARE
of f .

We mention that [15] also provide an alternative (less efficient) construction of arith-
metic garbled circuits over the integers based on one-way functions.

Mod-p arithmetic encodings The task of encoding circuits over Zp can be re-
duced to encoding circuits over the integers (e.g., by applying the encoding in Ex-
ample 1.1.1). The reduction is efficient but “nonarithmetic” since it treats the ele-
ments of Zp as integers (as opposed to abstract ring elements of Zp). It would be
interesting to obtain a fully arithmetic encoder which treats the ring Zp in a fully
black-box way.9 We ask:

Is there an efficient compiler that takes an arithmetic circuit f : Rn → R` which treats
the ring in an abstract way and generates an arithmetic circuit f̂ over R such that, for any
concrete (efficiently implementable) ring R, the function f̂ forms an online-efficient ARE
of f ?

This question is open even for the special case of prime-order fields Zp. It was
recently shown in [8] that, if the decoder is also required to be fully arithmetic (as

8 E.g., when the input ring elements are encrypted under some cryptographic scheme that supports
some limited form of ring operations.
9 Formally, one should define a set of legal operations (gates) which are available for the encoder.
A natural choice is to allow field operations (addition, subtraction, multiplication, and possibly
division and zero-checking), access to the constants {0, 1}, and some form of randomization gate,
say allowing to sample random field elements and a random {0, 1} elements.
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achieved by Theorem 1.3.4 for formulas), then the online complexity must grow
with the output length of f and so it is impossible to achieve online efficiency. This
limitation applies even to the simpler case of prime-order fields Zp. Extending this
impossibility result to single-output functions remains an interesting open problem.

1.4 Advanced Constructions
Having established the feasibility of online-efficient DARE, we move on to study
their complexity. In Section 1.4.1, we minimize the parallel-time complexity of the
encoding, and in Section 1.4.2, we minimize the online communication complexity.
The computational complexity of REs is amortized in Section 1.4.3 by reusing the
offline part of REs over many invocations. Then, in Section 1.4.4, we study the
possibility of reducing the total complexity even in a single invocation. We end with
a discussion on adaptively secure REs (Section 1.4.5).

1.4.1 Minimizing the Parallel Complexity
In this section, we show that any efficiently computable function admits an encoding
with constant locality; i.e., each of its outputs depends on a constant number of
inputs (counting both deterministic and random inputs). Such an encoding can be
computed by a constant-depth circuit with bounded fan-in gates (also known as an
NC0 circuit), and so it captures a strong form of constant-parallel-time computation.

We begin with the following theorem from [10]:

Theorem 1.4.1 (NC0 RE for branching programs). There exists a perfect degree-
3 DARE in which each output depends on four inputs for the class of arithmetic
branching programs over an arbitrary ring.

The theorem is based on a direct randomization technique for branching programs
from [67, 40]. Below, we sketch a proof for a weaker version of the theorem that
applies to arithmetic circuits of logarithmic depth (NC1 circuits).
Proof: [Proof of Theorem 1.4.1 restricted to NC1 functions] We rely on the meta-
theorem for encoding logarithmic-depth circuits (Theorem 1.3.6). Let Simple de-
note the class of randomized functions of the form {abc + d, b + c + d} where a can
be a deterministic or a random input, and b, c, d are either random inputs (possibly
with a minus sign) or ring constants. Recall that an encoding f̂ is simple if, for every
output i, the function that computes the i-th output of f̂ is a function in Simple. By
Theorem 1.3.6, it suffices to present a perfect simple DARE of finite complexity for
the function Q+ = (x + y)bc + d and for the function Q∗ = (x ∗ y)bc + d where
x and y are deterministic inputs. (Note that only a is allowed to be a deterministic
input, and so we do not have to consider the case where one of the other variables is
substituted.)

Indeed, for the case of addition, the function Q+ can be written as X + Y where
X = xbc + d and Y = ybc. By applying the encoding for addition (Example 1.3.1),
we derive the encoding (xbc + d + r, ybc − r). The first item can be viewed as X + Y
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where X = xbc and Y = d + r, and so, by re-encoding it again, we get the encoding
(xbc + r′, d + r − r′, ybc − r), which is simple.

We move on to the case of multiplication. For simplicity, assume that the ring is
commutative. (The more general case can also be treated with slightly more work.)
The function Q∗ can then be written as XY + d where X = xbc and Y = ybc. By
applying the MUL-ADD encoding (Fact 1.3.3), we derive an encoding which is
simple except for one output of the form r0xb + r1r2 + r3. The latter can be brought
to simple form via double use of the addition encoding (Example 1.3.1). �

In [11] it was shown how to extend the above theorem to the case of polynomial-
size circuits. Formally,

Theorem 1.4.2 (NC0-RE for circuits). Assuming the existence of one-way func-
tions computable by circuits of logarithmic depth (NC1), the class of polynomial-
size boolean circuits admits an online-efficient DARE of degree 3 and locality 4.

Proof: [Proof idea] First observe that it suffices to encode a polynomial-size
boolean circuit f by an NC1-computable encoding g. Indeed, given such an encod-
ing, we can apply Theorem 1.4.1 to re-encode the encoding g by an NC0 encoding
ĝ and derive (by the composition lemma) an NC0 encoding for f .

The second observation is that the DARE from Theorem 1.3.11 (Yao’s theorem)
can be computed by an NC1 circuit, assuming that the key-shrinking gadget is com-
putable in NC1. Hence, it suffices to implement the key-shrinking gadget in NC1.
Such an implementation is given in [11] based on the existence of NC1-computable
pseudorandom generators (PRGs) with minimal stretch (i.e., ones that stretch a k-bit
seed into a k + 1 pseudorandom string). It was shown by [59] that such PRGs follow
from the existence of NC1-computable one-way functions.10 �

The existence of one-way functions in NC1 follows from most standard crypto-
graphic assumptions including ones that are related to hardness of factoring, discrete
logarithm, and lattice problems. Hence, the underlying assumption is very conser-
vative. Still, the question of proving Theorem 1.4.2 based on a weaker assumption
(e.g., the existence of arbitrary one-way functions) remains an interesting open ques-
tion.

We also mention that the concrete degree and locality bounds (3 and 4) are known
to be (at least) almost optimal, since most functions do not admit an encoding of de-
gree 1 or locality 2. It is also known that perfectly private encodings require degree
3 and locality 4 ([66], see also [6, Chapter 3]). The existence of statistical (or com-
putational) encodings of locality 3 and degree 2 remains open.

Finally, we mention that stronger notions of constant-parallel-time encodings
were studied in [12, 13].

10 Indeed, the original statement in [11], which precedes [59], relied on the existence of minimal-
stretch pseudorandom generators (PRGs) in NC1. See discussion in [6, Chapter 5].



1 Garbled Circuits as Randomized Encodings of Functions: a Primer 21

1.4.2 Reducing the Online Complexity
As we saw in Theorem 1.3.11, every function f can be encoded by an online-
efficient DARE f̂ (x; r) = ( f̂off(r), f̂on(x; r)). In particular, the online communication
(and computational complexity) is O(|x| · k), where k is the security parameter. Let
us define the online rate of DARE to be the ratio

| f̂on(x; r)|
|x|

.

Using this terminology, the online rate achieved by Theorem 1.3.11 is proportional
to the security parameter. In [16], it was shown that this can be significantly im-
proved.

Theorem 1.4.3 (Online-succinct RE). Under the decisional Diffie–Hellman as-
sumption (DDH), the RSA assumption, or the Learning-with-Errors assumption
(LWE), the class of polynomial-size circuits admits an RE with online rate 1 + o(1)
and with O(n1+ε) online computation, for any ε > 0.

Theorem 1.4.3 shows that, instead of communicating a cryptographic key per input
bit (as in Theorem 1.3.11), it suffices to communicate n bits together with a single
cryptographic key (i.e., n + k bits instead of nk bits). A similar result holds for
arithmetic mod-p formulas under the LWE assumption. (See [16].)
Proof: [Proof idea] We briefly sketch the proof of Theorem 1.4.3. The starting point
is a standard decomposable affine RE, such as the one from Theorem 1.3.11. Since
this DARE is defined over the binary field, its online part can be viewed as a se-
quence of selection operations: For each i, we use the i-th bit of x to select a single
“key” Kxi

i out of two k-bit vectors (K0
i ,K

1
i ) that depend only on the randomness of

the encoding. By the composition theorem, it suffices to encode this online proce-
dure by an encoding such that most of its bits depend on the keys (K0

i ,K
1
i )i∈[n] while

few of its bits (say n + k) depend on the input x. Put differently, we would like to
have a compact way to reveal the selected keys.

Let us consider the following “riddle”, which is a slightly simpler version of
this problem. In the offline phase, Alice has n vectors M1, . . . ,Mn ∈ {0, 1}k. She is
allowed to send Bob a long encrypted version of these vectors. Later, in the online
phase, she receives a bit vector x ∈ {0, 1}n. Her goal is to let Bob learn only the
vectors which are indexed by x, i.e., {Mi}i:xi=1, while sending only a single message
of length O(n) bits (or even n + k bits).11

Before solving the riddle, let us further reduce it to an algebraic version in which
Alice wants to reveal a 0–1 linear combination of the vectors which are indexed by
x. Observe that, if we can solve the new riddle with respect to nk-bit vectors T =

(T1, . . . ,Tn), then we can solve the original riddle with k-bit vectors (M1, . . . ,Mn).
This is done by placing the Mi’s in the diagonal of T ; i.e., Ti is partitioned to k-size

11 The main difference between the riddle and our actual encoding problem is that, in the latter
case, the vector x itself should remain hidden; this gap can be bridged by permuting the pairs and
randomizing the vector x; see [16] for details.
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blocks with Mi in the i-th block and zero elsewhere. In this case, T x simply “packs”
the vectors {Mi}i:xi=1.

It turns out that the linear version of the riddle can be efficiently solved via the use
of a symmetric-key encryption scheme with some (additive) homomorphic proper-
ties. Specifically, let (E,D) be a symmetric encryption scheme with both key homo-
morphism and message homomorphism as follows: A pair of ciphertexts Ek(x) and
Ek′ (x′) can be mapped (without any knowledge of the secret keys) to a new cipher-
text of the form Ek+k′ (x + x′). Given such a primitive, the answer to the riddle is
easy: Alice encrypts each vector under a fresh key Ki and publishes the ciphertexts
Ci. At the online phase, Alice sends the sum of keys Kx =

∑
Kixi together with

the indicator vector x. Now Bob can easily construct C = EKx (Mx) by combining
the ciphertexts indexed by x, and since Kx is known, Bob can decrypt the result.
Intuitively, Bob learns nothing about a column M j which is not indexed by x, as
the online key Kx is independent of the j-th key. Indeed, the DDH- and LWE-based
solutions provide (approximate) implementations of this primitive. (A somewhat
different approach is used in the RSA-based construction.) �

A few comments regarding Theorem 1.4.3 are in order.

Reducing the online computational complexity The online computational over-
head of the encoding from Theorem 1.4.3 still has multiplicative dependence on the
security parameter. It is possible to achieve linear computational complexity (e.g.,
O(n + poly(k))) based on very strong cryptographic assumptions (such as general-
purpose obfuscation). Achieving a linear computational overhead based on weaker
assumptions is an interesting open question.

Impossibility of DARE with constant rate The encoding constructed in Theo-
rem 1.4.3 is not a DARE. Specifically, while the theorem yields affine encodings
(e.g., under DDH or LWE), it does not provide decomposable encodings. It turns
out that this is inherent: constant-rate DAREs are impossible to achieve even for
very simple functions [16].

Rate 1 is optimal Theorem 1.4.3 provides an asymptotic online rate of 1. It is clear
that this is optimal for functions with a long output (such as the identity function).
However, the case of boolean functions is slightly more subtle. It is not hard to
show that the online rate must be at least 1, if the online part is independent of the
encoded function f . (As in the case of affine REs or in the model of [26].) Indeed, for
every i ∈ [n], consider the function fi(x) = xi, and assume that all these functions
admit encodings f̂i(x; r) whose online parts are all identical to g(x; r). Using the
appropriate decoders and the offline parts (which are independent of x), one can
recover the value xi from g(x; r) for every i. The length of g(x; r) must therefore be
at least n.

It is not trivial to extend the lower bound to the more general case where the on-
line computation f̂on(x; r) may fully depend on the code of f . This is especially true
in the uniform model, where f has a succinct description (say as a Turing machine).
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Interestingly, it was observed in [16] that an encoding with online rate smaller than
1 would allow us to compress f (x) in the following sense. Given x we can compute
f̂on(x; r) for some fixed r and derive a short string x̂ of length smaller than |x| from
which the value of f (x) can be recovered. Moreover, the online efficiency of the
encoding implies that x̂ can be computed much faster than the time complexity of f .
Following [60, 41], it was conjectured in [16] that some efficiently computable func-
tions cannot be compressed, and so online rate smaller than 1 cannot be achieved.
Later in [7], it was shown that the existence of incompressible functions can be
based on relatively standard complexity-theoretic assumptions. A combination of
these results yields the following theorem:

Theorem 1.4.4 ([16, 7]). The class of polynomial-time computable functions does
not admit an online-efficient randomized encoding with online rate smaller than 1,
unless every function which is computable by a deterministic Turing machine in time
2O(n) can be computed by subexponential-size nondeterministic circuits.12

1.4.3 Reusable RE
Having minimized the online communication complexity of the encoding, we move
on to a more ambitious goal: Improving the total computational complexity of f̂ .
Recall that Theorem 1.3.11 yields an encoding whose offline complexity is propor-
tional to the circuit size of f . A natural way to reduce this expensive offline cost is to
amortize it over many independent inputs. For this, we need a reusable randomized
encoding.

Definition 1.4.5 (ρ-Reusable randomized encoding). Let f : {0, 1}n → {0, 1}` be
a function. We say that f̂ = ( f̂off, f̂on) is a perfectly correct (t, ε)-private ρ-reusable
randomized encoding of f if, for any i ≤ ρ, the function

f̂ i(x1, . . . , xi; r) := ( f̂off(r), f̂on(x1; r), . . . , f̂on(xi; r))

is a perfectly correct, (t, ε)-private encoding of the i-wise direct-product function

f i(x1, . . . , xi) = ( f (x1), . . . , f (xi)).

Remark 1.4.6. Observe that the definition is monotone: a ρ-reusable RE is always
(ρ − 1)-reusable, and a 1-reusable RE is simply an RE. Also note that a decoder of
f̂ i can always be defined by applying the basic decoder of f̂ to the offline part of the
encoding and to each coordinate of f̂ i separately. Hence, reusability is essentially
a strengthening of the privacy requirement. Finally, note that the above definition is
static; i.e., the i-th input xi is chosen independently of the encodings of the previous
inputs. We will discuss stronger (adaptive) versions of security later in Section 1.4.5.

12 Similar assumptions are widely used in the complexity-theoretic literature. Such assumptions
are considered to be strong, and yet plausible—their failure will force us to change our current
view of the interplay between time, non-uniformity, and nondeterminism.
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As before, the definition naturally extends to infinite functions f : {0, 1}∗ →
{0, 1}∗, and, more generally, to collections of functions via the use of an efficient
compiler. Given a description of a function f with input length of n, the compiler
should output (the descriptions of) an encoder f̂ , a decoder, and a (t(n), ε(n))-private
ρ(n)-reusable simulator. The latter should be uniform over the number of encoded
instances. Specifically, we assume that the simulator is given as a Turing machine
that takes as an input a sequence of f -outputs and outputs the corresponding simu-
lated encodings. By default, ρ(n) and t(n) should be larger than any polynomial and
ε(n) should be smaller than any polynomial.

Reusable REs with low online complexity Reusable REs are nontrivial if their
online complexity is smaller than the complexity of f . None of the encodings that we
have seen so far satisfy this requirement, even for the case of 2-reusability. Recently,
Goldwasser et al. [54] (building on the work of Gorbunov et al. [57]) showed that
it is possible to construct nontrivial reusable REs whose online complexity depends
only on the depth of the encoded function.13

Theorem 1.4.7 (Reusable REs). Assuming the intractability of Learning with Er-
rors, there exists a reusable RE for efficiently computable functions whose online
complexity depends only on the input length, output length, and circuit depth of the
encoded function f .

It follows that the amortized complexity of encoding f grows only with its circuit
depth and input/output length.

1.4.3.1 Proof Idea of Theorem 1.4.7

The proof of Theorem 1.4.7 consists of two high-level steps. First, we prove the the-
orem for functions of a certain type, denoted as “conditional disclosure of secrets”
(CDS) functions, and then we reduce the general case to the first, via the use of fully
homomorphic encryption.

CDS functions We begin with the definition of CDS functions. For a predicate
P : {0, 1}n → {0, 1}, let gP denote the non-boolean function which maps an n-bit
input τ (“tag”) and a k-bit string s (“secret”) to the value (τ, c), where

c =

s if P(τ) = 1
⊥ otherwise.

That is, gP always reveals the value of the tag, but reveals the secret s only if the tag
satisfies the predicate. In this sense, gP conditionally discloses the secret.14

13 In fact, [57] and [54] construct so-called predicate encryption, and functional encryption which
can be viewed as a multi-user variant of randomized encoding.
14 The term “conditional disclosure of secretes” originates from the work of [50] who considered
an information-theoretic variant of this primitive. In a reusable setting, the resulting primitive is
closely related to the notion of attribute-based encryption, cf. [68, 45].
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Rekeyable encryption Our reusable REs for CDS are based on a special type
of public-key encryption scheme with the following rekeying mechanism: For
every pair of public keys (A, B) and a target public key C, there exists a spe-
cial re-encryption key TA,B→C that allows one to transform a pair of ciphertexts
(EA(s),EB(s)) into a ciphertext EC(s). Intuitively, the re-encryption key TA,B→C

should be “useless” given only one of the two encryptions (EA(s),EB(s)); For exam-
ple, given EA(s) and TA,B→C , it should be impossible to generate EC(s). In fact, this
ciphertext should be pseudorandom, and so even if the secret key that corresponds to
C is known, s should be hidden. It is shown in [57] that such a rekeyable encryption
scheme can be based on the Learning with Errors assumption, where the length of
the ciphertext grows linearly with the number of iterated re-encryptions.15

From rekeyable encryption to reusable RE for CDS [57] In order to encode
the CDS function we would like to encrypt s in a way that is decryptable only if
the (public) tag τ satisfies the predicate P. This should be done with a reusable
offline part (whose complexity may grow with the complexity of P) while keeping
the online part (which depends on s and τ) short, i.e., independent of the circuit
size of P. The basic idea is as follows. For each wire i of the circuit that computes
P, we will have a pair of public keys (pki,0, pki,1), labeled by zero and one. In the
online part, we release the tag τ together with n ciphertexts, one for each input wire,
where the i-th ciphertext is Epki,τi

(s), i.e., an encryption of s under the key of the i-th
wire which is labeled by τi. The offline part of the encoding consists of the secret
key sk of the output wire which is labeled by 1, together with several re-encryption
keys. Specifically, for each internal gate g, we include all four re-encryption keys
that correspond to the semantic of the gate. Namely, if the keys of the left incoming
wire are (A0, A1), the keys of the right incoming wire are (B0, B1), and the keys of
the outgoing wire are (C0,C1), then we include the transformation key TAa,Bb→Cg(a,b) ,
for every pair of bits a, b ∈ {0, 1}.

Given such an encoding, the decoder can propagate the ciphertexts from the in-
puts to the outputs, and compute for each wire i the ciphertext Epki,σi

(s), where σi

is the value that the public tag τ induces on the i-th wire. If the predicate is satis-
fied, the decoder learns an encryption of s under the 1-key of the output wire, and
since the corresponding private key appears as part of the encoding, s is revealed.
The security properties of the underlying encryption guarantee that s remains hid-
den when P(τ) is not satisfied. Moreover, the offline part is reusable and the online
part grows linearly with the depth of the circuit that computes P, and is independent
of the circuit size.

From CDS to general functions [54] We move on to handle a general (non-CDS)
function f . For this step, we employ a fully homomorphic encryption (FHE) which,
by [34], can also be based on the intractability of Learning with Errors. In such
an encryption, there exists a special Eval algorithm that maps a public key pk, a
ciphertext FHEpk(x), and a circuit g to a new ciphertext FHEpk(g(x)).

15 In the original terminology of [57], this is called two-to-one recoding (TOR).
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The encoding of f is based on the following basic idea. Encrypt the input x using
FHE and include the ciphertext ct in the online part. In addition, provide (ideally
in the offline part) some sort of conditional decryption mechanism that decrypts an
FHE ciphertext ct′ only if ct′ is “legal” in the sense that it is the result of homomor-
phically applying f to ct = FHEpk(x). Such an encoding would allow the decoder to
transform FHEpk(x) to FHEpk( f (x)) and then decrypt the value f (x), without learn-
ing any other information on x.

To implement this approach, we should find a way to push most of the complexity
of the conditional decryption mechanism to the offline phase. This is somewhat
tricky since the condition depends on the online ciphertext ct. We solve the problem
in two steps. First, consider the following naive (and inefficient) encoding:

(pk, ct = FHEpk(x), D̂(sk, ct′; r)), (1.4)

where D̂ is a DARE of the decryption algorithm D, and ct′ = Eval(pk, f , ct). It is
not hard to verify that this is indeed an encoding of f (x). However, the encoding is
not even online efficient. Indeed, ct′ is computed in the online phase (based on ct)
at a computational cost which depends on the circuit size of f .

In order to improve the efficiency, we take a closer look at D̂(sk, ct′; r)). Since
D̂ is a DARE, we can decompose it to D̂0(sk; r) and to D̂i(ct′i ; r) for i ∈ [`], where
` is the bit length of ct′. Using the “keys” terminology, for each bit of ct′, there
exists a pair of keys (Ki,0,Ki,1) where Ki,b = D̂i(b; r), and the encoding D̂ reveals,
for each i, the key that corresponds to ct′i . Namely, Ki,b is exposed only if the i-th bit
of Eval f (ct) equals to b. This means that we can re-encode (1.4) by

(pk, ct = FHEpk(x), D̂0(sk; r), [gi,b((pk, ct),Ki,b)]i∈[`],b∈{0,1}),

where gi,b((pk, ct), s) is the CDS function that releases the secret s only if the pair
(pk, ct) satisfies the predicate “the i-th bit of Eval(pk, f , ct) equals to b”. Now, we
can re-encode gi,b by a re-usable CDS encoding ĝi,b, and, by the composition and
concatenation lemmas, get a reusable encoding for f . In the online part of the result-
ing encoding we sample a public/private key pair for the FHE (pk, sk) and compute
ct = FHEpk(x), D̂0(sk; r) together with the online parts of ĝi,b. Overall, the online
complexity is independent of the circuit size of f . (The dependence on the circuit
depth is inherited from that of the CDS encoding.) This completes the proof of The-
orem 1.4.7. �

1.4.4 Reducing the Computational Complexity of REs
Theorem 1.4.7 implies that the amortized complexity of encoding f grows only with
its parallel complexity (i.e., circuit depth) and input/output length. This result does
not leave much room for improvements. Still, one can ask whether it is possible
to obtain an encoding whose complexity is independent of the complexity of the
encoded function f in a non-amortized setting, i.e., even for a single use of f̂ . This
question makes sense only if the encoded function f has a succinct representation
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whose length is independent of its time complexity. Indeed, let us move to a uniform
setting and assume that f can be computed by a Turing machine (whose description
length is independent of its time complexity). We will show that, under sufficiently
strong cryptographic assumptions, one can obtain an encoding whose complexity
is completely independent of the time complexity of f and depends only on the
input/output length of f . We refer to such an encoding as a fast RE. The construction
will employ a powerful cryptographic tool: the general-purpose program obfuscator.

Obfuscators General-purpose program obfuscation allows us to transform an ar-
bitrary computer program into an “unintelligible” form while preserving its func-
tionality. Syntactically, an obfuscator for a function family F = { fK} is a randomized
algorithm that maps a function fK ∈ C (represented by an identifier K) into a “pro-
gram” [ f ] ∈ {0, 1}∗. The obfuscated program should preserve the same functionality
as fK while hiding all other information about fK . The first property is formalized
via the existence of an efficient universal evaluation algorithm Eval which, given
an input x and an obfuscated program [ f ], outputs fK(x). The second property has
several different formulations. We will rely on indistinguishability obfuscation (iO),
which asserts that, given a pair of functionally equivalent functions f and f ′, it is
hard to distinguish between their obfuscated versions [ f ] and [ f ′].

Obfuscators versus REs As a cryptographic primitive, obfuscators are stronger
than REs. Intuitively, an obfuscator provides the adversary the ability to compute the
function by herself, while REs provide only access to encodings that were computed
by the encoder (which is out of the adversary’s control). Indeed, given an iO for a
function class F , we can easily get an RE for the same class by obfuscating the
constant function g = f (x) (x is hardwired) and letting the simulator Sim(y) be an
obfuscated version of the constant function h = y. We can therefore trivially get
fast REs based on “fast” obfuscators whose complexity is independent of the time
complexity of the obfuscated function (and depends only on its description length).
The following theorem provides a stronger result: Fast REs (for Turing machines)
can be based on standard obfuscators whose complexity is proportional to the circuit
complexity of the obfuscated function.

Theorem 1.4.8 (Fast RE from circuit obfuscators [28, 37, 72]). Assuming the
existence of iO for circuits and the existence of one-way functions, the class of
polynomial-time computable functions P admits an RE with computational com-
plexity of poly(n, `), where n and ` denote the input and output length of the encoded
function.

Fast REs were first constructed by Goldwasser et al. [53] based on a stronger as-
sumption. Bitansky et al. [28] and Canetti et al. [37] concurrently relaxed the as-
sumption to iO, but their results yield REs whose complexity grows with the space
complexity of f . The dependence on the space complexity was later removed by
Koppula et al. [72]. We mention that Theorem 1.4.8 was further used to obtain fast
obfuscators. (For more on the relation between REs and obfuscators see [74].) The
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proof of Theorem 1.4.8 is beyond the scope of this chapter. The interested reader is
referred to the original papers.

Optimality of Theorem 1.4.8 Theorem 1.4.8 provides REs whose complexity
depends on the input length and on the output length of the encoded function. We
already saw in Theorem 1.4.4 that one cannot go below the input length. The follow-
ing theorem (from [16]) shows that one cannot go below the output length either:

Theorem 1.4.9 (Communication of RE is larger than the output length). As-
suming that one-way functions exist, for every constant c there exists a function
f : {0, 1}n → {0, 1}n

c
such that every (nω(1), 1/3)-private RE of f has communica-

tion complexity of at least nc bits. Furthermore, there are at least nc bits in the output
of the simulator Sim(y) that depend on the input y (as opposed to the randomness).

Note that some complexity-theoretic assumption is necessary for Theorem 1.4.9. In
particular, if, say P = NP, then one can obtain an encoding with total complexity
n. Indeed, this can be done by letting f̂ (x; r) = x′, where x′ is a random sibling of
x under f , and taking the decoder to be Dec(x′) = f (x′), and the simulator to be
Sim(y) = x′, where x′ is a random preimage of y. If P = NP, then this encoding can
be implemented efficiently.16

Proof: Fix some constant c, and let f : {0, 1}n → {0, 1}` be a pseudorandom
generator with output length ` = nc. (The existence of such a pseudorandom gen-
erator follows from the existence of one-way functions [61].) It suffices to prove
the “furthermore” part, as the online complexity of the simulator lower-bounds the
communication complexity of the encoding. Let f̂ (x; r) be an RE of f with decoder
Dec and simulator Sim such that the number of bits of Sim(y) that depend on y is
smaller than `. Then, we distinguish the output of f from a truly random string via
the following test: Given a string y ∈ {0, 1}`, we accept if and only if the outcome of
Dec(Sim(y)) is equal to y.

First we claim that, when y is random, the test accepts with probability at most 1
2 .

Indeed, fix some value r for the randomness of the simulator and some value d for
the randomness of the decoder. Then the image of Sim(y; r) = (zr,Simon(y; r)) can
take at most 2`−1 values, and therefore the decoder Dec(·; s) recovers y successfully
for at most half of all y’s in {0, 1}`.

On the other hand, if y is in the image of f , the test accepts with probability at
least 2/3 − neg(n). Indeed, let x be a preimage of y, then by definition Dec( f̂ (x; r))
outputs y = f (x) with probability 1. Since f̂ (x; r) is (t, 1/3)-indistinguishable from
Sim( f (x)), it follows that Dec(Sim(y)) = y with probability at least 2/3 − neg(n).
�

Remark 1.4.10 (Inefficient simulation). Theorem 1.4.9 exploits the efficiency of
the simulator to “compress” an “incompressible” source. This argument does not
hold if we allow inefficient simulation. The resulting notion corresponds to the

16 In fact, if one-way functions do not exist, then it can be shown that the aforementioned encoding
achieves a relaxed version of privacy (against uniform adversaries).



1 Garbled Circuits as Randomized Encodings of Functions: a Primer 29

following indistinguishability-based definition of privacy. The encodings f̂ (x) and
f̂ (x′) should be indistinguishable for any pair of inputs x and x′ which are mapped
by f to the same output, i.e., f (x) = f (x′). Indeed, based on iO, one can get fast REs
with inefficient simulation whose complexity grows only with the input length of the
encoded function (see [28, 37, 72]).

1.4.5 On Adaptive Security
The standard security definition of REs can be captured by the following game: (1)

The challenger secretly tosses a random coin b
R
← {0, 1}; (2) the adversary chooses

an input x, submits it to the challenger, and gets as a result the string ŷ which, based
on the secret bit b, is either sampled from the encoding f̂ (x; r) or from the simulator
Sim( f (x)). At the end, the adversary outputs his guess b′ for the bit b. The security of
REs says that t-bounded adversaries cannot win the game (guess b) with probability
better than 1

2 + ε/2.
In some scenarios (e.g., the online/offline setting or the reusable setting) it is nat-

ural to consider an adaptive version of this game in which the adversary chooses
its input x based on the previous part of the encodings. Let us focus on the sim-
pler online/offline setting. Syntactically, this requires an online/offline simulator
Sim(y; r) = (Simoff(r); Simon(x; r)) whose offline part does not depend on its input
f (x), and has the same length as the offline part of the encoding. Adaptive security
can be defined as follows:

Definition 1.4.11 (Adaptively secure RE [25]). Let f be a function and f̂ (x; r) =

( f̂off(r), f̂on(x; r)) be a perfectly correct RE with decoder Dec and online/offline sim-
ulator Sim(y; r) = (Simoff(r),Simon(y; r)). We say that f̂ is (t, ε) adaptively private
if every t-bounded adversary A wins the following game with probability at most
1
2 + ε:

1. The challenger secretly tosses a random coin b
R
← {0, 1}, chooses randomness

r, and outputs

ŷoff =

 f̂off(r) if b = 1,
Simoff(r) if b = 0.

2. Based on ŷoff, the adversary A chooses an input x, submits it to the challenger,
and gets as a result the string

ŷon =

 f̂on(x; r) if b = 1,
Simon( f (x); r) if b = 0.

3. At the end, the adversary outputs his guess b′ and wins if b′ = b.

It turns out that the online complexity of adaptively secure REs must grow with
the output length of the encoded function and thus cannot be online efficient. Indeed,
this follows directly from Theorem 1.4.9.
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Corollary 1.4.12 (Adaptive security requires long online communication [16]).
Assuming one-way functions exist, for every constant c there exists a function f :
{0, 1}n → {0, 1}n

c
such that every RE of f has online communication complexity of

at least nc bits.

Proof: By Theorem 1.4.9, there exists a function f for which the online part of the
simulator must be longer than nc. Privacy ensures that the online communication
complexity of f̂ satisfies the same bound. �

Remark 1.4.13 (Adaptive security with inefficient simulation). The output length
limitation does not seem to apply to inefficient simulators (just like in Remark 1.4.10),
and so, in this case, one may hope to achieve online efficiency. In fact, such a con-
struction of adaptive REs with inefficient simulation easily yields efficiently simulat-
able adaptive REs: To encode f : {0, 1}n → {0, 1}s encode the related function

g(x, b, y) =

 f (x) if b = 0
y otherwise

,

via an adaptive encoding ĝ(x, y, b; r) with inefficient simulation. Now, the function
ĝ(x, y, b; r) with b fixed to zero and y fixed to, say, the all zero string, forms an adap-
tive encoding for f with the (efficient) simulator Sim(y; r) := ĝoff(r), ĝon(x, y, b; r))
with b = 1 and x = 0n. Note that the input length of g equals the sum of the input
and output lengths of f . Hence, the above transformation incurs an overhead which
is (at least) as large as the output length, as expected due to Corollary 1.4.12.

Constructions Any standard RE can be viewed as an adaptive one by including
all the encoding in the online part. Yao’s construction (Theorem 1.3.11) therefore
provides an adaptive RE based on one-way functions whose online part depends
on the circuit of the encoded function f . An encoding whose online part depends
only on the size of the circuit was constructed by Bellare et al. [25]. This is done by
taking Yao’s encoding f̂ = ( f̂off, f̂on), encrypting its offline part via a one-time pad,
and releasing the key in the online part of the encoding. This yields an encoding
whose online complexity is proportional to the circuit size of f based on one-way
functions.

Using a (programmable) random oracle, it is possible to “compress” the key of
the one-time pad and get an online-efficient adaptive encoding. Alternatively, such
an encoding can be obtained via “complexity leveraging”. Indeed, any (t, ε) adap-
tive attack against an encoding f̂ with offline communication complexity of s im-
mediately translates into a (t, ε · 2−s) static attack against f̂ by guessing the offline
part and calling the adaptive adversary. Hence, a sufficiently strong static encoding
(e.g., Yao’s construction instantiated with subexponential secure encryption) yields
an adaptively secure RE.

In the standard model, Theorem 1.4.8 provides an adaptively-secure encoding
with an optimal total complexity (proportional to the input and output length) based
on the existence of general-purpose indistinguishability obfuscation. Based on gen-
eral one-way functions, Hemenway et al. [62] constructed an adaptive encoding
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whose online complexity is proportional to the width of the encoded circuit (or ex-
ponential in its depth). Achieving an online complexity which depends only on the
input and output lengths of f (based on one-way functions) remains an interesting
open problem.

1.5 Applications
The ability to encode complex functions by simple ones is extremely useful. In the
next subsections we will demonstrate several interesting ways in which this tool
can be employed. We consider the archetypal cryptographic setting where Alice
and Bob wish to accomplish some computational goal (e.g., a functionality f ) in
the presence of an adversary. We will see that REs can be beneficial when they are
applied to each component of this system: to the functionality, to the honest parties,
and even to the adversary.

1.5.1 Encoding the Functionality
Delegating computations Suppose that Bob is a computationally weak device
(client) who wishes to compute a complex function f on an input x. Bob is too
weak to compute f on his own, and so he delegates the computation to a computa-
tionally strong server Alice. Since Bob does not trust Alice, he wishes to guarantee
the following: (1) secrecy: Alice should learn nothing on the input x; and (2) veri-
fiability: Bob should be able to verify the correctness of the output (i.e., a cheating
Alice should be caught w.h.p.). Similar problems have been extensively studied in
various settings, originating from the early works on interactive proofs, program
checking, and instance-hiding schemes.

Let us start with secrecy and consider a variant where both parties should learn
the output f (x) but x should remain private. As we saw in the introduction (Exam-
ple 1.1.3), a randomized encoding f̂ immediately solves this problem via the fol-
lowing single-round protocol: Bob selects private randomness r, computes f̂ (x; r),
and sends the result to Alice, who applies the recovery algorithm and outputs the
result. The privacy of the RE guarantees that Alice learns nothing beyond f (x). We
refer to this protocol as the basic RE protocol. Jumping ahead, we note that the pro-
tocol has a nontrivial correctness guarantee: even if the server Alice deviates from
the protocol and violates correctness, she cannot force an erroneous output which
violates privacy; that is, it is possible to simulate erroneous outputs solely based on
the correct outputs.

It is not hard to modify the basic protocol and obtain full secrecy: instead of
encoding f , encode an encrypted version of f . Namely, define a function g(x, s) =

f (x) ⊕ s, where s plays the role of a one-time pad (OTP), and apply the previous
protocol as follows: Bob uniformly chooses the pad s and the randomness r, and
sends the encoding ĝ(x, s; r) of g to Alice, who recovers the result y = g(x, s) =

f (x) ⊕ s, and sends it back to Bob. Finally, Bob removes the pad s and terminates
with f (x). (See [11] for more details.)
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Achieving verifiability is slightly more tricky. The idea, due to [14], is to combine
an RE with a private-key signature scheme (also known as message authentication
code or MAC) and ask the server to sign the output of the computation under the
client’s private key. Here the privacy property of the RE will be used to hide the se-
cret key. Specifically, given an input x, Bob asks Alice to compute y = f (x) (via the
previous protocol) and, in addition, to generate a signature on f (x) under a private
key k which is chosen randomly by the client. The latter request is computed via the
basic RE protocol that hides the private key from Alice. More precisely, Bob, who
holds both x and k, invokes an RE protocol in which both parties learn the func-
tion g(x, k) = MACk( f (x)). Bob then accepts the answer y if and only if the result
of the protocol is a valid signature on y under the key k. (The latter computation is
typically cheap.) The soundness of the protocol follows by showing that a cheating
Alice, which fools Bob to accept an erroneous y∗ , f (x), can be used to either break
the privacy of the RE or to forge a valid signature on a new message. For this argu-
ment to hold, we crucially rely on the ability to simulate erroneous outputs based on
the correct outputs.

The main advantage of this approach over alternative solutions is the ability to
achieve good soundness with low computational overhead; For example, a sound-
ness error of 2−τ increases the communication by an additive overhead of τ, whereas
the overhead in competing approaches is multiplicative in τ. (See [14] for a more
detailed comparison.) Instantiating these approaches with known constructions of
REs leads to protocols with highly efficient clients; For example, Theorems 1.4.1
and 1.4.2 yield an NC0 client for either log-space functions or poly-time functions
depending on the level of security needed (information-theoretic or computational).
In the computational setting, we can use online-efficient REs (Theorem 1.3.11) to
get a client whose online computational complexity does not grow with the com-
plexity of f , at the expense of investing a lot of computational resources in a prepro-
cessing phase before seeing the actual input x.17 Moreover, we can achieve optimal
online communication via the use of online-succinct REs (Theorem 1.4.3), amortize
the cost of the offline phase by employing reusable REs (Theorem 1.4.7), or even
avoid the offline cost at all via the use of fast REs (Theorem 1.4.8).

We also mention that REs can achieve other related properties such as cor-
rectability [14]: i.e., Bob is able to correct Alice’s errors as long as Alice is some-
what correct with respect to a predefined distribution over the inputs. In the latter
case, REs yield NC0 correctors for log-space computations, strengthening the re-
sults of [52].

Secure computation [66] Let us move on to a more general setting where the
roles of Alice and Bob are symmetric and neither of them is computationally weak.
The main observation is that, instead of securely computing f , it suffices to securely
compute the randomized encoding f̂ (x; r). Indeed, if Alice and Bob learn a sample
from f̂ (x; r) then they can locally recover the value of f (x) and nothing else. In other

17 The standard privacy of REs guarantees security only if the input x is chosen independently
of the offline part. Adaptively secure REs can be used to deal with the case where the input is
(adversarially) chosen based on the offline part.
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words, the task of securely computing f reduces to the task of securely computing a
simpler randomized functionality f̂ (x; r). As protocol designers, we get a powerful
tool which allows us to construct a complex interactive object (protocol) by arguing
about a simpler noninteractive object (RE).

This paradigm, which was introduced in [66] (and motivated the original defi-
nition of REs), yields several new results in the domain of secure computation. As
an example, if the algebraic degree of f̂ is constant, then it can be computed in
a constant number of rounds [27, 39]. By instantiating this approach with known
perfect-RE constructions (Theorem 1.4.1), we derive constant-round protocols for
boolean or arithmetic log-space functions with information-theoretic security. In the
computational setting, constant-degree REs (Theorem 1.4.2) yield a new constant-
round protocol for poly-time functions, providing an alternative construction to the
classical protocol of [21].18

The above paradigm was implicitly used by Yao to prove the feasibility of gen-
eral secure computation based on oblivious transfer (OT) [85]. Indeed, consider a
two-party functionality f (x, y), where x is given to Alice and y is given to Bob. A
DARE f̂ for f can be written as f̂ (x, y; r) = ( f̂1(x1, y; r), . . . , f̂n(xn, y; r)), and there-
fore it can be privately computed (with semi-honest security) by using n calls to an
OT functionality. For each i ∈ [n], Bob prepares a pair of “keys”: Ki,0 = f̂i(0, y; r)
and Ki,1 = f̂i(0, y; r), and lets Alice choose the key Ki,xi that corresponds to her
input by using the OT. After collecting all the n keys, Alice can recover the out-
put by applying the decoder. The existence of DARE for any efficiently computable
function f (Theorem 1.3.11) therefore gives a direct noninteractive reduction from
securely computing f to OT. Other classical completeness results (e.g., for the mul-
tiparty case [51] and for the malicious case [69]) can also be proved using the above
paradigm.

1.5.2 Encoding the Primitive: Parallel Cryptography
Suppose now that we already have an implementation of some cryptographic proto-
col. A key observation made in [10] is that we can “simplify” some of the computa-
tions in the protocol by replacing them with their encodings. Consider, for example,
the case of public-key encryption: Alice publishes a public/private key pair (pk, sk);
Bob uses the public key pk and a sequence of random coins s to “garble” a message
m into a ciphertext c = E(pk,m, s); Finally, Alice recovers m by applying the de-
cryption algorithm to the ciphertext D(sk, c). Suppose that Bob sends an encoding
of his ciphertext Ê(pk,m, s; r) instead of sending c. This does not violate semantic
security as all the information available to an adversary in the modified protocol can
be emulated by an adversary who attacks the original protocol (thanks to the sim-
ulator of the RE). On the other hand, Alice can still decrypt the message: first she
recovers the original ciphertext (via the recovery algorithm) and then she applies
the original decryption algorithm. As a result, we “pushed” the complexity of the
sender (encryption algorithm) to the receiver (decryption algorithm).

18 The RE-based solution requires a slightly stronger assumption—one-way function computable
in log-space rather in poly-time—but can also lead to efficiency improvements, cf. [41].
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By employing REs with some additional properties, it is possible to prove similar
results for many other cryptographic protocols (e.g., one-way functions, pseudoran-
dom generators, collision-resistance hash functions, signatures, commitments, and
zero-knowledge proofs) and even information-theoretic primitives (e.g., ε-biased
generators and randomness extractors). In the case of stand-alone primitives (e.g.,
one-way functions and pseudorandom generators) there is no receiver and so the
gain in efficiency comes for “free”.

Being security preserving, REs give rise to the following paradigm. In order to
construct some cryptographic primitive P in some low-complexity class WEAK,
first encode functions from a higher-complexity class ST RONG by functions from
WEAK; then, show that P has an implementation f in ST RONG, and finally re-
place f by its encoding f̂ ∈ WEAK and obtain a low-complexity implementation
of P . This approach was used in [10, 11, 13] to obtain cryptographic primitives
in NC0 and even in weaker complexity classes. The fact that REs preserve crypto-
graphic hardness has also been used to reduce the complexity of cryptographic re-
ductions [10, 11] and to reduce the complexity of complete problems for subclasses
of statistical zero-knowledge [42].

1.5.3 Encoding the Adversary: Key-Dependent Security
Key-dependent message (KDM) secure encryption schemes [36, 29] provide se-
crecy even when the attacker sees encryptions of messages related to the secret
key sk. Namely, we say that an encryption is KDM secure with respect to a func-
tion class F if semantic security holds even when the adversary can ask for an
encryption of the message f (sk) where f is an arbitrary function in F . Several con-
structions are known to achieve KDM security for simple linear (or affine) function
families [31, 9, 32]. To improve this situation, we would like to have an amplifica-
tion procedure which starts with an F̂-KDM secure encryption scheme and boosts
it into an F-KDM secure scheme, where the function class F should be richer than
F̂ . It was shown in [33, 19] that a strong form of amplification is possible, provided
that the underlying encryption scheme satisfies some special additional properties.
Below we show how to use REs in order to achieve a generic KDM amplification
theorem [2].

Let f (x) be a function and let us view the encoding f̂ (x; r) as a collection of func-
tions F̂ =

{
f̂r(x)

}
r
, where each member of the collection corresponds to some possi-

ble fixing of the randomness r, i.e., f̂r(x) = f̂ (x; r). Now suppose that our scheme is
KDM secure with respect to the family F̂ , and we would like to immunize it against
the (more complicated) function f . This can be easily achieved by modifying the
encryption scheme as follows: To encrypt a message m we first translate it into the
f̂ -encoding by applying the RE simulator Sim(m), and then encrypt the result under
the original encryption scheme. Decryption is done by applying the original decryp-
tion algorithm, and then applying the decoding algorithm Dec to translate the result
back to its original form. Observe that an encryption of f (sk) in the new scheme is
the same as an encryption of S ( f (sk)) = f̂ (sk; r) under the original scheme. Hence,
a KDM query for f in the new scheme is emulated by an old KDM query for a
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randomly chosen function f̂r. It follows that the KDM security of the new scheme
with respect to f reduces to the KDM security of the original scheme with respect
to F̂ .

This idea easily generalizes to the case where, instead of a single function f , we
have a class of functions F which are all encoded by functions in F̂ . Moreover, the
simple structure of the reduction (i.e., a single KDM query of the new scheme trans-
lates to a single KDM query of the original scheme) allows one to obtain a strong
amplification theorem which is insensitive to the exact setting of KDM security, in-
cluding the symmetric-key/public-key setting, the cases of chosen-plaintext/chosen-
ciphertext attacks, and the case of multiple keys. Using known constructions of REs
(Theorem 1.3.11), we can amplify KDM security with respect to linear functions (or
even bit projections) into functions computable by circuits of arbitrary fixed poly-
nomial size (e.g., n2).

Interestingly, here we essentially encoded the adversary and used the simula-
tor in the construction rather than in the proof. A similar approach (“encoding the
adversary”) was used by [20] to obtain strong impossibility results for concurrent
non-malleable secure computation.

1.6 Summary and Suggestions for Further Reading
Randomized encodings form a powerful tool with a wide range of applications.
Since Yao’s original construction in the early 1980s, the complexity of REs has been
significantly improved, especially in the last decade. Many of these improvements
are based on encryption schemes which suggest various forms of homomorphism.
(This includes Theorems 1.3.12, 1.4.3, 1.4.7, and 1.4.8 as well as works which are
not covered here, cf. [49, 4, 30].) It is interesting to find out whether this use of
homomorphism is necessary. In particular, we ask:

Is it possible to achieve highly efficient REs (such as the ones constructed in Section 1.4)
based on weaker assumptions, e.g., one-way functions?

An even more basic question is to understand the power of information-theoretic
REs:

Are there efficiently computable perfectly secure DAREs for polynomial-size circuits?

The question is interesting also for other notions of simplicity such as constant al-
gebraic degree or constant output locality. Coming up with a positive result, or de-
veloping tools for proving nontrivial lower bounds, is an important problem in the
context of information-theoretic cryptography.

Another interesting direction for future research is to explore stronger forms of
security for REs. This direction is being extensively pursued by the study of primi-
tives such as functional encryption (and its variants) and even program obfuscators.
Indeed, these primitives can be viewed as REs which offer richer functionalities and
stronger security guarantees (cf. [83, 56]).



36 Benny Applebaum

Suggestions for Further Reading
We end by briefly mentioning some of the aspects of REs that were omitted from
this chapter.

Encoding RAM computation A relatively recent line of work, initiated by Lu and
Ostrovsky [78], studies the possibility of encoding stateful computations modeled
as RAM programs. Roughly speaking, such a computation is defined by a (large)
memory D, a (typically small) program P, and an input x. The computation PD(x)
generates an output y and updates the memory D (typically only at a small number
of locations). The goal is to obtain a stateful RE that initializes the memory D̂ based
on D, and then, given a program/input pair (P, x), generates an encoding (P̂, x̂) that
together with D̂ forms an encoding of the original computation. The complexity
of (P̂, x̂) is allowed to depend on the time complexity of P and the input length x
but should have only a minor (say poly-logarithmic) dependence on the size of the
memory. The security definition allows one to sequentially execute many programs,
and so the initialization cost of the memory is amortized. Following [78], several
constructions of garbled RAM have been presented, including ones which are based
solely on one-way functions [48, 44].

Concrete efficiency and practical implementations Starting with the work of
Malkhi et al. [79], computational DAREs (garbled circuits) were implemented on
various platforms, and their concrete efficiency was extensively studied. These con-
structions are typically formalized under the garbling-schemes framework of Bel-
lare, Hoang, and Rogaway [26], and offer a wide range of concrete tradeoffs between
computational complexity, communication complexity, and intractability assump-
tions (cf. [80, 77, 71, 81, 63, 73, 24, 70, 87]). A partial summary of these results can
be found in [82].

Communication complexity treatment Feige, Kilian, and Naor [43] and Ishai
and Kushilevitz [65] studied REs in a communication complexity framework. In
this model, the input x ∈ {0, 1}n is partitioned between several parties (typically two
or n) who also have access to shared randomness r. Each party should send a single
message Mi(xi; r), based on her input xi and on the randomness r, to a referee, who
should be able to recover the value of f (x) and nothing else. All parties are compu-
tationally unbounded, and the goal is to minimize the communication. In the two-
party setting, such a private simultaneous message (PSM) protocol naturally defines
a two-decomposable RE f̂ (x; r) = (M1(x1; r),M2(x2; r)), and in the multiparty set-
ting it corresponds to a DARE f̂ (x; r) = (M1(x1; r), . . . ,Mn(xn; r)). The best known
protocols (for an arbitrary function) appear in [23]. This model and its variants (e.g.,
for conditional disclosure of secrets) are further studied in [68, 45, 18, 22].

Complexity-theoretic treatment From a complexity-theoretic perspective, the
notion of “simple” computation may be associated with probabilistic polynomial-
time computation. Hence, the question of encoding a complex function by a “sim-
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pler” one naturally corresponds to polynomial-time computable encodings. We can
now ask which functions can be statistically encoded by efficiently computable en-
codings, and define a corresponding complexity class SRE. To avoid trivialities, we
allow the decoder to be inefficient. Going back to Example 1.1.3, this corresponds
to the setting where a weak (polynomial-time) client who holds an input x wishes
to release the value f (x) to a computationally unbounded server without leaking the
value of x. It is not hard to show that the resulting complexity class SRE contains
BPP and is contained in the class of languages that admit statistical zero-knowledge
protocols (SZK) [6]. The exact relation between these three classes is further studied
in [1] and [17].

1.7 Appendix: Randomized Encodings Versus Garbling
Schemes [26]

In this section we briefly compare the RE framework with the notion of garbling
schemes introduced by Bellare, Hoang, and Rogaway (BHR) in [26].

Roughly speaking, garbling schemes can be viewed as a concrete variant of RE
which is required to satisfy some additional syntactic properties. In particular, the
encoding f̂ (x; r) is partitioned into three parts (F, d, X), where X is the online part,
and (F, d) essentially corresponds to the offline part of the encoding. (The d part
is viewed as a “decoding key”, and it allows one to consider a designated decod-
ing variant as opposed to public decoding). The BHR framework decomposes the
encoder into two algorithms (Gb,En), and decomposes the decoder into two algo-
rithms (De,Ev) as follows:

Syntax The probabilistic garbling algorithm Gb is given a security parameter 1k

and a description of a function f (under some fixed representation scheme) and

returns a triple of strings (F, e, d)
R
← Gb(1k, f ). Think of F as an offline encoding,

and e and d as encoding and decoding keys, respectively. The strings e, d and the
length of F are allowed to depend on the syntactic properties of f (i.e., its input
length, output length, and description length), but, otherwise, should be independent
of f . The (deterministic) input encoding algorithm, En(·, ·), takes an encoding key
e and an input x ∈ {0, 1}n and outputs a garbled input X = En(e, x). The decoding
proceeds in two steps: first the algorithm Ev(F, X) maps F and a garbled input X to
a “garbled output” Y = Ev(F, X), and second the decoding algorithm De(d,Y) maps
a decoding key d and a garbled output Y to a final output y = De(d,Y). Correctness
asserts that De(d,Ev(F,En(e, x))) = ev( f , x), where ev is a universal evaluation
algorithm that maps a description f of a function, and an input x to the value of the
corresponding function on the input x. Overall, BHR define a garbling scheme as
the five-tuple (Gb,En,De,Ev, ev).

Security Garbling schemes can satisfy different variants of security. The most
central one is a parameterized version of privacy which, in addition to standard
privacy (as defined for REs), may support some notion of “function hiding” for the
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encoded function f (the exact level of hiding depends on a leakage parameter). Other
notions of security include obliviousness and authenticity. Obliviousness means that
decoding can be performed only given a secret key d (i.e., (F, X) do not reveal y =

f (x)). Authenticity essentially means that, given (F, X), it is hard to generate Y ′,
which leads to an undetected decoding error (i.e., De(d,Y ′) < { f (x),⊥}).

Comparison Syntactically, garbling schemes and REs are quite different. These
differences reflect two conflicting goals. The garbling scheme framework offers a
concrete and highly detailed treatment of garbled circuits which can be almost
given to a programmer as an API. As a result, efficiency requirements (e.g., on-
line efficiency) are hard-wired into the syntax itself. Moreover, in order to keep the
framework wide enough (while keeping it concrete), the syntax has to take into ac-
count several different usage scenarios (e.g., the possibility of designated decoding)
which, inevitably, make the definition more complicated (e.g., the decomposition of
the decoder into an evaluator and decoder). In contrast, the RE framework strives
for minimalism. It deals only with basic correctness and privacy, and deliberately
leaves efficiency issues to be determined in an application-dependent context.19 As
a result, the RE framework offers a high-level view which misses some practical
aspects but highlights the general properties of REs which are independent of effi-
ciency concerns (cf. Section 1.2.3).
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Chapter 2
The Complexity of Public-Key Cryptography

Boaz Barak

Abstract We survey the computational foundations for public-key cryptography.
We discuss the computational assumptions that have been used as bases for public-
key encryption schemes, and the types of evidence we have for the veracity of these
assumptions.

2.1 Introduction
Let us go back to 1977. The first (or fourth, depending on your count) “Star Wars”
movie was released, ABBA recorded “Dancing Queen” and in August, Martin Gard-
ner described in his Scientific American column the RSA cryptosystem [110], whose
security relies on the difficulty of integer factoring. This came on the heels of Diffie,
Hellman, and Merkle’s 1976 invention of public-key cryptography and the discrete-
logarithm based Diffie–Hellman key exchange protocol [41].

Now consider an alternative history. Suppose that, in December of that year, a
mathematician named Dieter Chor discovered an efficient algorithm to compute dis-
crete logarithms and factor integers. One could imagine that, in this case, scientific
consensus would be that there is something inherently impossible about the notion
of public-key cryptography, which anyway sounded “too good to be true”. In the
ensuing years, people would occasionally offer various alternative constructions for
public-key encryption, but, having been burned before, the scientific and technolog-
ical communities would be wary of adapting them, and treat such constructions as
being insecure until proven otherwise.

This alternative history is of course very different from our own, where public-
key cryptography is a widely studied and implemented notion. But are the under-
lying scientific facts so different? We currently have no strong evidence that the
integer factoring and discrete logarithm problems are actually hard. Indeed, Peter
Shor [115] has presented an algorithm for this problem that runs in polynomial time

Boaz Barak
Harvard John A. Paulson School of Engineering and Applied Sciences, e-mail: b@boazbarak.org

45© Springer International Publishing AG 2017 
Y. Lindell (ed.), Tutorials on the Foundations of Cryptography, 
Information Security and Cryptography, DOI 10.1007/978-3-319-57048-8_2 

mailto:b@boazbarak.org


46 Boaz Barak

on a so-called “quantum computer”. While some researchers (including Oded Gol-
dreich [52, 54]) have expressed deep skepticism about the possibility of physically
implementing this model, the NSA is sufficiently concerned about this possibility to
warn that government and industry should transition away from these cryptosystems
in the “not too far future” [1]. In any case we have no real justification to assume
the nonexistence of a classical (i.e., not quantum) algorithm for these problems, es-
pecially given their strong and not yet fully understood mathematical structure and
the existence of highly non-trivial subexponential algorithms [84, 35].

In this tutorial I want to explore the impact on the theory of cryptography of
such a hypothetical (or perhaps not so hypothetical) scenario of a breakthrough on
the discrete logarithm and factoring problems, and use this as a launching pad for
a broader exploration of the role of hardness assumptions in our field. I will dis-
cuss not just the mathematical but also the social and philosophical aspects of this
question. Such considerations play an important role in any science, but especially
so when we deal with the question of which unproven assumptions we should be-
lieve in. This is not a standard tutorial or a survey, in the sense that it is more about
questions than answers, and many of my takes on these questions are rather sub-
jective. Nevertheless, I do think it is appropriate that students or anyone else who
is interested in research on the foundations of cryptography consider these types of
questions, and form their own opinions on the right way to approach them.

Acknowledgements This survey is written in honor of Oded Goldreich’s 60th birthday. I was first
exposed to the beauty of the foundations of cryptography through Oded, and while we may not
always agree on specific issues, his teachings, writing, and our discussions have greatly influenced
my own views on this topic. Oded wrote many essays worth reading on issues related to this survey,
such as subjectivity and taste in science [48], computational assumptions in cryptography [51,
49], as well as the distinction between pure and applied (or “intellectual” versus “instrumental”)
science [50, 53]. I also thank Benny Applebaum, Nir Bitansky, and Shai Halevi for extremely
insightful comments on earlier versions of this survey that greatly improved its presentation.

2.1.1 What Is Special About Public-Key Cryptography?
Perhaps the first instance of an unjustified subjective judgment in this chapter is
my singling out of the integer factoring and discrete logarithm problems, as well as
other “public key type” assumptions, as particularly deserving of suspicion. After
all, given that we haven’t managed to prove P , NP, essentially all cryptographic
primitives rest on unproven assumptions, whether it is the difficulty of factoring, dis-
crete log, or breaking the AES cipher. Indeed, partially for this reason, much of the
work on theoretical cryptography does not deal directly with particular hard prob-
lems but rather builds a web of reductions between different primitives. Reduction-
based security has been a resounding success precisely because it allows to reduce
the security of a great many cryptographic constructions to a relatively small number
of simple-to-state and widely studied assumptions. It helped change cryptography
from an alchemy-like activity which relied on “security by obscurity” to a science
with well-defined security properties that are obtained under precisely stated con-
jectures, and is often considered the strongest component in secure applications.
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Given the above, one can think of the canonical activity of a theoretical cryp-
tographer as constructing a new (typically more sophisticated or satisfying stricter
security notions) cryptographic primitive from an old primitive (that would typi-
cally be simpler, or easier to construct).1 The “bottommost layer” of such primitives
would have several candidate constructions based on various hardness assumptions,
and new developments in cryptanalytic algorithms would simply mean that we have
one fewer candidate.

The intuition above is more or less accurate for private-key cryptography. Over
the last three decades, cryptographers have built a powerful web of reductions show-
ing constructions of a great many objects from the basic primitive of one-way func-
tions.2 And indeed, as discussed in Section 2.2 below, we do have a number of can-
didate constructions for one way functions, including not just constructions based on
factoring and discrete logarithms, but also constructions based on simple combina-
torial problems such as planted clique [78], random SAT [2], Goldreich’s expander-
based candidate [57], as well as the many candidate block ciphers, stream ciphers,
and hash functions such as [39, 98, 20, 21] that are widely used in practice and for
many of which no significant attacks are known despite much cryptanalytic effort.

However, for public-key cryptography, the situation is quite different. There are
essentially only two major strains of public-key systems.3 The first family consists
of the “algebraic” or “group-theoretic” constructions based on integer factoring and
the discrete logarithm problems, including the Diffie–Hellman [41] (and its elliptic
curve variants [94, 81]), RSA [110], Rabin [106], Goldwasser–Micali [64] schemes
and more. The second family consists of the “geometric” or “coding/lattice”-
based systems of the type first proposed by McEliece [88] (as well as the broken
Merkle–Hellman knapsack scheme [91]). These were invigorated by Ajtai’s paper
on lattices [5], which was followed by the works of Ajtai–Dwork [6], Goldreich–
Goldwasser–Halevi [58], and Hoffstein et al. [68] giving public-key systems based
on lattices, and by the later work of Regev [109] who introduced the Learning With
Errors (LWE) assumption and showed its equivalence to certain hardness assump-
tions related to lattices.4

The known classical and quantum algorithms call into question the security of
schemes based on the algebraic/group-theoretic family. After all, as theoreticians,

1 For example, by my rough count, out of the nearly 800 pages of Goldreich’s two-volume canon-
ical text [55, 56], fewer than 30 deal with concrete assumptions.
2 These include some seemingly public-key notions such as digital signatures which were con-
structed from one-way functions using the wonderful and surprising notion of pseudorandom func-
tions put forward by Goldreich, Goldwasser, and Micali [59], as well as universal one-way hash
functions [97, 111].
3 I think this is a fair statement in terms of all systems that have actually been implemented and
widely used (indeed by the latter metric, one might say there is only one major strain). However,
as we will discuss in Section 2.5 below, there have been some alternative suggestions, including
by this author.
4 Admittedly, the distinction into “geometric” versus “algebraic” problems is somewhat subjective
and arbitrary. In particular, lattices or linear codes are also Abelian groups. However, the type of
problems on which the cryptographic primitives are based are more geometric or “noisy” in nature,
as opposed to the algebraic questions that involve exact group structure.
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we are interested in schemes for which efficient attacks are not merely unknown
but are nonexistent. There is very little evidence that this first family satisfies this
condition. That still leaves us with the second family of lattice/coding-based sys-
tems. Luckily, given recent advances, there is almost no primitive achieved by the
group-theoretic family that cannot be based on lattices, and in fact many of the more
exciting recent primitives, such as fully homomorphic encryption [47] and indistin-
guishability obfuscation [45], are only known based on lattice/coding assumptions.

If, given these classical and quantum algorithms, we do not want to trust the se-
curity of these “algebraic”/“group theoretic” cryptosystems, we are left in the rather
uncomfortable situation where all the edifices of public-key cryptography have only
one foundation that is fairly well studied, namely the difficulty of lattice/coding
problems. Moreover, one could wonder whether talking about a ”web of abstrac-
tions” is somewhat misleading if, at the bottommost layer, every primitive has es-
sentially only a single implementation. This makes it particularly important to find
out whether pubic key cryptography can be based on radically different assump-
tions. More generally, we would like to investigate the “assumption landscape” of
cryptography, both in terms of concrete assumptions and in terms of relations be-
tween different objects. Such questions have of course interested researchers since
the birth of modern cryptography, and we will review in this tutorial some of the
discoveries that were made, and the many open questions that still remain.

Remark 2.1.1. One way to phrase the question we are asking is to understand what
type of structure is needed for public-key cryptography. One-way functions can be
thought of as a completely unstructured object, both in the sense that they can be
implemented from any hard-on-the-average search or “planted” problem [73], as
well as that they directly follow from functions that have pseudorandom properties.
In contrast, at least at the moment, we do not know how to obtain public-key en-
cryption without assuming the difficulty of structured problems, and (as discussed
in Remark 2.3.1) we do not know how to base public-key encryption on private-key
schemes. The extent to which this is inherent is the topic of this survey; see also my
survey [12] for more discussion on the role of structure in computational difficulty.

2.1.2 Organization
In the rest of this tutorial we discuss the assumption landscape for both private and
public-key cryptography (see Sections 2.2 and 2.3, respectively). Our emphasis is
not on the most efficient schemes, nor on the ones that provide the most sophisticated
security properties. Rather we merely attempt to cover a sample of candidate con-
structions that represents a variety of computational hardness assumptions. More-
over, we do not aim to provide full mathematical descriptions of those schemes—
there are many excellent surveys and texts on these topics— but rather focus on their
qualitative features.

Many of the judgment calls made here, such as whether two hardness assump-
tions (that are not known to be equivalent) are “similar” to one another, are in-
herently subjective. Section 2.6 is perhaps the most subjective part of this chapter,
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where we attempt to discuss what it is about a computational problem that makes it
hard.

2.2 Private-Key Cryptography
Before talking about public-key cryptography, let us discuss private-key cryptogra-
phy, where we have a much cleaner theoretical and practical picture of the landscape
of assumptions. The fundamental theoretical object of private-key cryptography is a
one-way function:

Definition 2.2.1 (One-way function). A function F : {0, 1}∗ → {0, 1}∗ is a one-way
function if there is a polynomial-time algorithm mapping r ∈ {0, 1}∗ to F(r) and for
every probabilistic polynomial-time algorithm A, constant c, and sufficiently large
n,

Pr
w=F(r);r←R{0,1}n

[F(A(w)) = w] < n−c .

We denote by OWF the conjecture that one-way functions exist.

While a priori the definition of one-way functions does not involve any secret key,
in a large body of works it was shown (mainly through the connection to psuedo-
randomness enabled by the Goldreich–Levin theorem [62]) that OWF is equivalent
to the existence of many cryptographic primitives including:

• Pseudorandom generators [67]
• Pseudorandom functions and message authentication codes [59]
• Digital signatures [111]5

• Commitment schemes [96].
• Zero knowledge proofs for every language in NP [63].6

(See Goldreich’s text [55, 56] for many of these reductions as well as others.)
Thus, OWF can be thought of as the central conjecture of private-key cryptogra-

phy. But what is the evidence for the truth of this conjecture?

2.2.1 Candidate Constructions for One-Way Functions
”From time immemorial, humanity has gotten frequent, often cruel, reminders that many
things are easier to do than to reverse”, Leonid Levin.

The main evidence for the OWF conjecture is that we have a great number of
candidate constructions for one-way functions that are potentially secure. Indeed, it
seems that “you can’t throw a rock without hitting a one-way function” in the sense

5 While from the perspective of applied cryptography, digital signatures are part of public-key
cryptography, from our point of view of computational assumptions, they belong in the private-key
world. We note that the current constructions of digital signatures from symmetric primitives are
rather inefficient, and there are some negative results showing this may be inherent [16].
6 Actually, zero-knowledge proofs for languages outside of P imply a slightly weaker form of
“non-uniform” one-way functions, see [100].
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that, once you cobble together a large number of simple computational operations
then, unless the operations satisfy some special property such as linearity, you will
typically get a function that is hard to invert (indeed, people have proposed some
formalizations of this intuition, see Sections 2.2.1.4 and 2.2.1.5). Here are some
example candidate constructions for one-way functions:

2.2.1.1 Block Ciphers, Stream Ciphers and Hash Functions

Many practical constructions of symmetric key primitives such as block ciphers,
stream ciphers, and hash functions are believed to satisfy the security definitions of
pseudorandom permutations, pseudorandom generators, and collision-resistant hash
functions, respectively. All these notions imply the existence of one-way functions,
and hence these primitives all yield candidate one-way functions. These construc-
tions (including DES, AES, SHA-x, etc.) are typically described in terms of a fixed
finite input and key size, but they often can be naturally generalized (e.g., see [93]).
Note that practitioners often require very strong security from these primitives, and
any attack faster than the trivial 2n (where n is the key size, block size, etc.) is
considered a weakness. Indeed, for many constructions that are considered weak or
“broken”, the known attacks still require exponential time (albeit with an exponent
much smaller than n).7

2.2.1.2 Average Case Combinatorial Problems: Planted SAT, Planted Clique,
Learning Parity with Noise

A planted distribution for an NP problem can be defined as follows:

Definition 2.2.2 (NP relations and planted problems). A relation R ⊆ {0, 1}∗ ×
{0, 1}∗ is an NP relation if there is a polynomial p(·) such that |y| ≤ p(|x|) for every
(x, y) ∈ R and there is a polynomial-time algorithm M that on input (x, y) outputs 1
iff (x, y) ∈ R.

A probabilistic polynomial-time algorithm G is a sampler for R if, for every n,
G(1n) outputs with probability 1 a pair (x, y) such that (x, y) ∈ R.

We say that an algorithm A solves the planted problem corresponding to (G,R)
if, for every n, with probability at least 0.9, (x, A(x)) ∈ R where (x, y) is sampled
from G(1n).

We say that the planted problem corresponding to (G,R) is hard if there is no
probabilistic polynomial-time algorithm that solves it.

The following simple lemma shows that hard planted problems imply the OWF
conjecture:

7 The claim that it is easy to get one-way functions might seem contradictory to the fact that
there have been successful cryptanalytic attacks even against cryptographic primitives that were
constructed and widely studied by experts. However, practical constructions aim to achieve the
best possible efficiency versus security tradeoff, which does require significant expertise. If one is
fine with losing, say, a factor 100 in the efficiency (e.g., build a 1000-round block cipher instead of
a 10-round one), then the task of constructing such primitives becomes significantly easier.
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Lemma 2.2.3. Suppose that there exists a hard planted problem (G,R). Then there
exists a one-way function.

Proof: We will show that a hard planted problem implies a weak one-way function,
which we define here as a function F such that for every probabilistic polynomial-
time A and sufficiently large m,

Pr
x=F(r);r←R{0,1}m

[F(A(x)) = x] < 0.9 . (2.1)

That is, we only require that an adversary fails to invert the function with proba-
bility larger than 90%, as opposed to nonnegligible probability as required in Def-
inition 2.2.1. It is known that the existence of weak one-way functions implies the
existence of strong ones (e.g., see [73], [55, Sec 2.3]). Let G be a generator for a
hard planted problem and let R be the corresponding relation. By padding, we can
assume without loss of generality that the number of coins that G uses on input
1n is nc for some integer c ≥ 1. For every r ∈ {0, 1}∗, we define F(r) = x where
(x, y) = G(1n; r1 . . . rnc ) where n = b|r|1/cc, and G(1n; r) denotes the output of G on
input 1n and coins r.

We now show that F is a weak one-way function. Indeed, suppose towards a
contradiction that there exists a probabilistic polynomial-time algorithm A violating
(2.1) for some sufficiently large m, and let n = bm1/cc. This means that

Pr
(x,y)=G(1n;r1,...,n);r←R{0,1}m

[G(1n; A(x)) = x] ≥ 0.9 ,

which in particular implies that, if we let A′(x) = G(1n; A(x)), then with probability
at least 0.9, A′(x) will output a pair (x′, y′) with x′ = x and (x′, y′) ∈ R (since
the latter condition happens with probability 1 for outputs of G). Hence we get a
polynomial-time algorithm to solve the planted problem with probability at least
0.9 on length n inputs. �

Using this connection, there are several natural planted problems that give rise to
candidate one way functions:

The planted clique problem: It is well known that, in a random Erdős–Rényi
graph Gn,1/2 (where every pair gets connected by an edge with probability 1/2), the
maximum clique size will be (2−o(1)) log n [66, 27]. However, the greedy algorithm
will find a clique of only 1 · log n size, and Karp asked in 1976 [79] whether there
is an efficient algorithm to find a clique of size (1 + ε) log n. This remains open till
this day. In the 1990s, Jerrum [76] and Kucera [82] considered the easier variant of
whether one can find a clique of size k � log n that has been planted in a random
graph by selecting a random k-size set and connecting all the vertices in it. The
larger k is, the easier the problem, and at the moment no polynomial-time algorithm
is known for this question for any k = o(

√
n). By the above discussion, if this

problem is hard for any k > 2 log n, then there exists a one-way function. Juels and
Peinado [78] showed that, for k = (1+ε) log n, the planted distribution is statistically
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close to the uniform distribution. As a result there is a hard planted distribution (and
hence a one-way function) as long as the answer to Karp’s question is negative.

Planted constraint satisfaction problems: A (binary alphabet) constraint satis-
faction problem is a collection of functions C = {C1, . . . ,Cm} mapping {0, 1}n to
{0, 1} such that every function Ci depends on at most a constant number of the input
bits. The value of C w.r.t. an assignment x ∈ {0, 1}n is defined as 1

m
∑m

i=1 Ci(x). The
value of C is its maximum value over all assignments x ∈ {0, 1}n.

There are several models for random constraint satisfaction problems. One sim-
ple model is the following: for every predicate P : {0, 1}k → {0, 1} and numbers
n,m, we can select C1, . . . ,Cm by choosing every Ci randomly and independently to
equal P(y1, . . . , yk) where y1, . . . , yk are random and independent literals (i.e., equal
to either x j or to 1 − x j for some random j). Using standard measure concentration
results, the following can be shown:

Lemma 2.2.4. For predicate P : {0, 1}k → {0, 1} and every ε > 0 there exists some
constant α (depending on k, ε) such that, if m > αn and C = (C1, . . . ,Cm) is selected
at random from the above model, then with probability at least 1 − ε, the value of C
is in [µ − ε, µ + ε] where µ = Ex←R{0,1}k [P(x)].

There are several planted models where, given x ∈ {0, 1}n, we sample at random
an instance C such that the value of C w.r.t. x is significantly larger than µ. Here is
one model suggested in [15]:

Definition 2.2.5. Let P, n,m be as above, let x ∈ {0, 1}n, and D be some distribu-
tion over {0, 1}k. The (D, δ, x) planted model for generating a constraint satisfaction
problem is obtained by repeating the following for i = 1, . . . ,m: with probability δ
sample a random constraint Ci as above; otherwise sample a string d from D, and
sample y1, . . . , yk to be random literals as above conditioned on the event that these
literals applied to x yield d, and let Ci be the constraint P(y1, . . . , yk).

Analogously to Lemma 2.2.4, if C is sampled from the (D, δ, x) model, then
with high probability the value of C w.r.t. x will be at least (1 − δ)µD − ε where
µD = Ex←RD[P(x)]. If µD > µ, then we can define the planted problem as trying to
find an assignment with value at least, say, µD/2 + µ/2. [15] conjectured that this
planted problem is hard as long as D is a pairwise independent distribution. This
conjecture immediately gives rise to many candidate one-way functions based on
predicates such as k-XOR, k-SAT, and more.

It was shown by Friedgut [44] that every random constraint satisfaction problem
satisfies a threshold condition in the sense that, for every ε, as n grows, there is a
value m(n) such that the probability that a random instance of (1−ε)m(n) constraints
has value 1 is close to 1, while the probability that a random instance of (1 + ε)m(n)
has value 1 is close to 0. It is widely believed that the value m(n) has the value α∗n
for some constant α∗ depending on the problem (and are concrete guesses for this
constant for many predicates) but this has not yet been proven in full generality and
in particular the case of 3S AT is still open. It is also believed that, for k sufficiently
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large (possibly even k = 3 is enough), it is hard to find a satisfying (i.e., value
1) assignment for a random k-SAT constraint satisfaction problem where m(n) is
very close (but below) the threshold. Using a similar reasoning to [78] (but much
more sophisticated techniques), Achlioptas and Coja-Oghlan [2] showed that this
conjecture implies the hardness of a certain planted variant and hence yields another
candidate for one-way functions.

2.2.1.3 Unsupervised Learning and Distributional One-Way Functions

Unsupervised learning applications yield another candidate for one-way functions.
Here one can describe a model M as a probabilistic algorithm that, given some pa-
rameters θ ∈ {0, 1}n, samples from some distribution M(θ). The models studied in
machine learning are all typically efficiently computable in the forward direction.
The challenge is to solve the inference problem of recovering θ (or some approxi-
mation to it) given s independent samples x1, . . . , xs from M(θ).8

Consider s that is large enough so that the parameters are statistically identifi-
able.9 For simplicity, let us define this as the condition that, for every θ, with high
probability over the choice of x = (x1, . . . , xs) from M(θ), it holds that

Pθ′ (x) � 2−nPθ(x) (2.2)

for every θ′ , θ, where for every set of parameters ϑ and x = (x1, . . . , xs),

Pϑ(x) =

s∏
i=1

Pr[M(ϑ) = xi] .

Now, suppose that we had an algorithm A that, given x = (x1, . . . , xs), could
sample uniformly from the distribution on uniform parameters θ′ and random coins
r1, . . . , rs conditioned on M(θ′; ri) = xi for all i ∈ {1, . . . , s}. Then (2.2) implies that,
if the elements in x itself were sampled from M(θ) then with probability 1−o(1) the
first output θ′ of A will equal θ. Thus, if there is a number of samples s where the
unsupervised learning problem for M is statistically identifiable but computationally
hard, then the process θ, r1, . . . , rs 7→ M(θ; r1), . . . ,M(θ; rs) is hard to invert in this
distributional sense. But Impagliazzo and Luby [73] showed that the existence of
not just weak one-way functions but even distributional one-way functions implies
the existence of standard one-way functions, and hence any computationally hard
unsupervised learning problem yields such a candidate.

The Learning Parity with Noise (LPN) problem is one example of a conjectured
hard unsupervised learning problem that has been suggested as a basis for cryp-
tography [60, 24]. Here the parameters of the model are a string x ∈ {0, 1}n and a

8 This is a very general problem that has been considered in other fields as well, often under the
name “parameter estimation problem” or “inverse problem”, e.g., see [116].
9 In many applications of machine learning, the parameters come from a continuous space, in
which case they are typically only identifiable up to a small error. For simplicity, we ignore this
issue here, as it is not very significant in our applications.



54 Boaz Barak

sample consists of a random a ∈ {0, 1}n and a bit b = 〈a, x〉 + η (mod 2), where η is
chosen to equal 0 with probability 1 − δ and 1 with probability δ for some constant
δ > 0. Using concentration of measure one can show that this model is statistically
identifiable as long as the number of samples s is at least some constant times n, but
the best known “efficient” algorithm requires exp(Θ(n/ log n)) samples and running
time [25] ([86] improved the number of samples at the expense of some loss in error
and running time). Thus, if this algorithm cannot be improved to work in an optimal
number of samples and polynomial time, then one-way functions exist.10

2.2.1.4 Goldreich’s One-Way Function Candidate

Goldreich has proposed a very elegant concrete candidate for a one-way func-
tion [57] which has caught several researchers’ interest. Define an (n,m, d) graph
to be a bipartite graph with n left vertices, m right vertices, and right degree d. Gol-
dreich’s function GolH,P : {0, 1}n → {0, 1}m is parameterized by an (n,m, d) graph H
and a predicate P : {0, 1}d → {0, 1}. For every x ∈ {0, 1}m and j ∈ [m], the jth output
bit of Goldreich’s function is defined as GolH,P(x) j = P(x←−

ΓH ( j)
), where we denote by

←−
ΓH( j) the set of left-neighbors of the vertex j in H, and xS denotes the restriction
of x to the coordinates in S .

Goldreich conjectured that this function is one way as long as P is sufficiently
“structureless” and H is a sufficiently good expander. Several follow-up works
showed evidence for this conjecture by showing that it is not refuted by certain nat-
ural families of algorithms [34, 75]. Other works showed that one needs to take care
in the choice of the predicate P and ensure that it is balanced, as well as not having
other properties that might make the problem easier [26]. Later works also suggested
that Goldreich’s function might even be a pseudorandom generator [10, 8, 99]. See
Applebaum’s survey [9] for more about the known constructions, attacks, and ap-
plications of Goldreich’s function and its variants.

2.2.1.5 Random Circuits

Perhaps the most direct formalization of the intuition that if you cobble together
enough operations, then you get a one-way function comes from a conjecture of
Gowers [65] (see also [70]). He conjectured that for every n, there is some polyno-
mial m = m(n) such that, if we choose a sequence σ = (σ1, . . . , σm) of m random
local permutations over {0, 1}n, then the function σ1 ◦ · · ·σm would be a pseudo-
random function. We say that σ : {0, 1}n → {0, 1}n is a local permutation if it is
obtained by applying a permutation on {0, 1}3 on three of the input bits. That is,
there exist i, j, k ∈ [n] and a permutation π : {0, 1}3 → {0, 1}3 such that σ(x)` = x` if

10 Clearly, the lower the noise parameter δ, the easier this problem, but the best known algorithm
requires δ to be at most a logarithmic factor away from the trivial bound of /1n. As δ becomes
smaller, and in particular smaller than 1/

√
n, the problem seems to acquire some structure and

becomes more similar to the learning with errors problem discussed in Section 2.4.2 below. Indeed,
as we mention there, in this regime Alekhnovich [7] showed that the learning parity with noise
problem can yield a public-key encryption scheme.
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` < {i, j, k} and σ(x)i, j,k = π(xi, x j, xk). The choice of the sequence σ consists of the
seed for the pseudorandom function. Since pseudorandom functions imply one-way
functions, this yields another candidate.

2.2.1.6 Private-Key Cryptography from Public-Key Assumptions

While it is an obvious fact, it is worth mentioning that all the assumptions implying
public-key cryptography also imply private-key cryptography as well. Thus one can
obtain one-way functions based on the difficulty of integer factoring, discrete loga-
rithm, learning with errors, and all of the other assumptions that have been suggested
as bases for public-key encryption and digital signatures.

2.3 Public-Key Cryptography: an Overview
We have seen that there is a wide variety of candidate private-key encryption
schemes. From a superficial search of the literature, it might seem that there are
a great many public-key systems as well. However, the currently well-studied candi-
dates fall into only two families: schemes based on the difficulty of algebraic prob-
lems on certain concrete Abelian groups, and schemes based on the difficulty of
geometric problems on linear codes or integer lattices; see Figure 2.1.

Family Sample cryptosystems Structural properties
“Algebraic” family:
Abelian groups

Diffie–Hellman (ElGamal, el-
liptic curve cryptography), RSA

Polynomial-time quantum algorithm,
subexponential classical algorithms (for
all but elliptic curves), can break in
NP ∩ coNP

“Geometric” family:
coding / lattices

Knapsack (Merkle–Hellman),
McEliece, Goldreich–
Goldwasser–Halevi, Ajtai–
Dwork, NTRU, Regev

Can break in NP ∩ coNP or SZK. Non-
trivial classical and quantum algorithms
for special cases (knapsack, principal ideal
lattices)

Fig. 2.1: The two “mainstream” families of public-key cryptosystems

Do these two families contain all the secure public schemes that exist? Or per-
haps (if you think large-scale quantum computing could become a reality, or that the
existing classical algorithms for the group-based family could be significantly im-
proved) are lattices/codes the only source for secure public-key cryptography? The
short answer is that we simply do not know, but in this chapter I want to explore the
long answer.

We will discuss some of the alternative public-key systems that have been pro-
posed in the literature (see Section 2.5 and Figure 2.4) and ask what is the evidence
for their security, and also to what extent are they truly different from the first two
families. We will also ask whether this game of coming up with candidates and try-
ing to break them is the best we can do or is there a more principled way to argue
about the security of cryptographic schemes.
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As mentioned, our discussion will be inherently subjective. I do not know of an
objective way to argue that two cryptographic schemes belong to the “same fam-
ily” or are “dissimilar”. Some readers might dispute the assertion that there is any
crisis or potential crisis in the foundations of public-key cryptography, and some
might even argue that there is no true difference between our evidence for the se-
curity of private and public-key cryptography. Nevertheless, I hope that even these
readers will find some “food for thought” in this survey which is meant to provoke
discussion more than to propose any final conclusions.

Remark 2.3.1. One could ask if there really is an inherent difference between
public-key and private-key cryptography or maybe this is simply a reflection of our
ignorance. That is, is it possible to build a public-key cryptosystem out of an arbi-
trary one-way function and hence base it on the same assumptions as private-key
encryption? The answer is that we do not know, but in a seminal work, Impagliazzo
and Rudich [74] showed that this cannot be done via the standard form of black-
box security reductions. Specifically, they showed that, even given a random oracle,
which is an idealized one-way function, one cannot construct a key-exchange proto-
col with a black-box proof that is secure against all adversaries running in polyno-
mial time (or even ω(n6) time, where n is the time expended by the honest parties).
Barak and Mahmoody [17] improved this to ω(n2) time, thus matching Merkle’s
1974 protocol discussed in Section 2.5.1 below.

2.4 The Two “Mainstream” Public-Key Constructions
I now discuss the two main families of public-key constructions—ones that have
their roots in the very first systems proposed by Diffie and Hellman [41], Rivest,
Shamir and Adleman [110], Rabin [106], Merkle and Hellman [91], and McEliece [88]
in the late 1970s.

2.4.1 The “Algebraic” Family: Abelian-Group Based
Constructions

Some of the first proposals for public-key encryption were based on the discrete log-
arithm and the factoring problems, and these remain the most widely deployed and
well-studied constructions. These were suggested in the open literature by Diffie and
Hellman [41], Rivest, Shamir, and Adleman [110] and Rabin [106], and in retrospect
we learned that these scheme were discovered a few years before in the intelligence
community by Ellis, Cocks, and Williamson [42]. Later works by Miller [94] and
Koblitz [81] obtained analogous schemes based on the discrete logarithm in elliptic
curve groups.

These schemes have a rich algebraic structure that is essential to their use in
the public-key setting, but also enable some nontrivial algorithmic results. These
include the following:
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• The factoring and discrete logarithm problems both fall in the class TFNP,
which are NP search problems where every input is guaranteed to have a so-
lution. Problems in this class cannot be NP-hard via a Cook reduction unless
NP = coNP [89].11 There are also some other complexity containments known
for these problems [61, 30].

• The integer factoring problem and discrete logarithm problem over Z∗p have
subexponential algorithms running in time roughly exp(Õ(n1/3)), where n is the
bit complexity [84].

• Very recently, quasipolynomial-time algorithms were shown for the discrete
logarithm over finite fields of small characteristic [77].

• There is no general sub-exponential discrete logarithm algorithm for elliptic
curves, though sub-exponential algorithms are known for some families of
curves such as those with large genus [3]

• Shor’s algorithm [115] yields a polynomial time quantum algorithm for both
the factoring and discrete logarithm problem.

2.4.2 The “Geometric Family”: Lattice/Coding/Knapsack-Based
Cryptosystems

The second type of public-key encryption candidates also have a fairly extended his-
tory.12 Merkle and Hellman proposed in 1978 their knapsack scheme [91] (which,
together with several of its variants, was later broken by lattice reduction tech-
niques [114]). In the same year, McEliece proposed a scheme based on the Goppa
code [88]. In a seminal 1996 work, Ajtai [5] showed how to use integer lattices
to obtain a one-way function based on worst-case assumptions. Motivated by this
work, Goldreich, Goldwasser, and Halevi [58], as well as Ajtai and Dwork [6] gave
lattice-based public-key encryption schemes (the latter based also on worst-case as-
sumptions). Around the same time, Hoffstein, Pipher, and Silverman constructed the
NTRU public-key system [68], which in retrospect can be thought of as a [58]-type
scheme based on lattices of a particularly structured form. In 2003, Regev [107]
gave improved versions of the Ajtai–Dwork cryptosystem. In 2003 Alekhnovich [7]
gave a variant of the Ajtai–Dwork system based on the problem of learning parity
with (very small) noise, albeit at the expense of using average-case as opposed to
worst-case hardness assumptions. See the survey [103] for a more comprehensive
overview of lattice-based cryptography.

11 The proof is very simple and follows from the fact that, if SAT could be reduced via some
reduction R to a problem in TFNP, then we could certify that a formula is not in SAT by giving a
transcript of the reduction.
12 The terminology of “group based” versus “lattice/code based” is perhaps not the most descrip-
tive, as after all, lattices and codes are commutative groups as well. One difference seems to be
the inherent role played by noise in the lattice/coding based constructions, which gives them a
more geometric nature. However, it might be possible to trade non-commutativity for noise, and it
has been shown that solving some lattice-based problems reduces to non-Abelian hidden subgroup
problems [108].
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Remark 2.4.1 (discreteness + noise = hardness?). One way to think about all
these schemes is that they rely on the brittleness of the Gaussian elimination al-
gorithm over integers or finite fields. This is in contrast to the robust least-squares
minimization algorithm that can solve even noisy linear equations over the real
numbers. However, when working in the discrete setting (e.g., when x is constrained
to be integers or when all equations are modulo some q), no analog of least-squares
minimization is known. The presumed difficulty of this problem and its variants un-
derlies the security of the above cryptosystems.

The Learning with Errors Problem (LWE). The cleanest and most useful for-
malization of the above intuition was given by Regev [109], who made the following
assumption:

Definition 2.4.2. For functions δ = δ(n) and q = q(n), the learning with error (LWE)
problem with parameters q, δ is the task of recovering a fixed random s ∈ Zn

q, from
poly(n) examples (a, b) of the form

b = 〈s, a〉 + bηc (mod q) (2.3)

where a is chosen at random in Zn
q and η is chosen from the normal distribution with

standard deviation δq.

The LWE assumption is the assumption that this problem is hard for some δ(n)
of the form n−C (where C is some sufficiently large constant). Regev [109] and
Peikert [102] showed that it is also equivalent (up to some loss in parameters) to its
decision version where one needs to distinguish between samples of the form (a, b)
as above and samples where b is simply an independent random element of Zq.
Using this reduction, LWE can be easily shown to imply the existence of public-key
cryptosystems, see Figure 2.2.

Regev [109] showed that if the LWE problem with parameter δ(n) is easy, then
there is a Õ(n/δ(n))-factor (worst-case) approximation quantum algorithm for the
gap shortest vector problem on lattices. Note that even if one doesn’t consider quan-
tum computing to be a physically realizable model, such a reduction can still be
meaningful, and recent papers gave classical reductions as well [102, 28].

The LWE assumption is fast becoming the centerpiece of public-key cryptog-
raphy, in the sense that a great many schemes for “plain” public-key encryption,
as well as encryption schemes with stronger properties such as fully homomor-
phic [47, 29], identity based, or more, rely on this assumption, and there have also
been several works which managed to “port” constructions and intuitions from the
group-theoretic world into LWE-based primitives (e.g., see [105, 31]).

Ideal/ring LWE. The ideal or ring variants of lattice problems correspond to the
case when the matrix A has structure that allows to describe it using n numbers as op-
posed to n2, and also often enables faster operations using a fast-Fourier-transform
like algorithm. Such optimizations can be crucial for practical applications. See the
manuscript [104] for more on this assumption and its uses.
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Private key: s←R Z
n
q

public-key: (a1, b1), . . . , (am, bm) where each pair (ai, bi) is sampled independently
according to (2.3).

Encrypt m ∈ {0, 1}: Pick σ1, . . . , σm ∈ {±1}, output (a′, b′) where a′ =
∑m

i=1 σiai
(mod q) and b′ =

∑m
i=1 σibi + b

q
2 c (mod q).

Decrypt (a′, b′): Output 0 iff |〈s, a′〉 − b′ − b q
2 c (mod q)| < q/100.

Fig. 2.2: Regev’s simple public-key cryptosystem based on the LWE problem [109].
The scheme will be secure as long as LWE holds for these parameters and m �
n log q. Decryption will succeed as long as the noise parameter δ is o(1/

√
m)

Approximate GCD. While in lattice-based cryptography we typically think of
lattices of high dimension, when the numbers involved are large enough one can
think of very small dimensions and even one-dimensional lattices. The computa-
tional question used for such lattices is often the approximate greatest common de-
nominator (GCD) problem [71] where one is given samples of numbers obtained
by taking an integer multiple of a secret number s plus some small noise, and the
goal is to recover s (or at least distinguish between this distribution and the uniform
one). Approximate GCD has been used for obtaining analogs of various lattice-
based schemes (e.g., [117]).

Structural properties of lattice-based schemes. The following structural prop-
erties are known about these schemes:

• All the known lattice-based public-key encryption schemes can be broken using
oracle access to an O(

√
n) approximation algorithm for the lattice closest vector

problem. Goldreich and Goldwasser showed that such an efficient algorithm
exists if the class SZK (which is a subset of AM ∩ coAM) is in P (or BPP, for
that matter). Aharonov and Regev showed this also holds if NP∩coNP ⊆ P [4].
Note that, while most experts believe that NP ∩ coNP is not contained in P,
this result can still be viewed as showing that these lattice-based schemes have
some computational structure that is not shared with many one-way function
candidates.

• Unlike the lattice-based schemes, we do not know whether Alekhnovich’s
scheme [7] is insecure if AM ∩ coAM ⊆ P although it does use a variant of
the learning parity with very low noise, which seems analogous to the closest
vector problem with an approximation factor larger than

√
n. A recent result of

Ben-Sasson et al. [19] suggests that using such a small amount of noise might
be an inherent limitation of schemes of this general type.13

13 [19] define a general family of public-key encryption schemes which includes Alekhnovich’s
scheme as well as Regev’s and some other lattice-based schemes. They show that under a certain
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• The order-finding problem at the heart of Shor’s algorithm can be thought of as
an instance of a more general hidden subgroup problem. Regev showed a reduc-
tion from lattice problem into this problem for diehedral groups [108]. Kuper-
berg gave a subexponential (i.e., exp(O(

√
n)) time) quantum algorithm for this

problem [83], though it does not yield a subexponential quantum algorithm for
the lattice problems since Regev’s reduction has a quadratic blowup.

• A sequence of recent results showed that these problems are significantly easier
(both quantumly and classically) in the case of principal ideal lattices which
have a short basis that is obtained by taking shifts of a single vector (see [38]
and the references therein).

The bottom line is that these schemes still currently represent our best hope for
secure public-key systems if the group-theoretic schemes fail for a quantum or clas-
sical reason. However, the most practical variants of these schemes are also the ones
that are more structured, and even relatively mild algorithmic advances (such as
subexponential classical or quantum algorithms) could result in the need to square
the size of the public-key or worse. Despite the fact that this would only be a poly-
nomial factor, this can have significant real-world implications. One cannot hope to
simply “plug in” a key of 106 or 109 bits into a protocol designed to work for keys
of 103 bits and expect it to work as is, and so such results could bring about signifi-
cant changes to the way we do security over the Internet. For example, it could lead
to a centralization of power, where key exchange will be so expensive that users
would share public-keys with only a few large corporations and governments, and
smaller companies would have to route their communication through these larger
corporations.

Remark 2.4.3 (Impagliazzo’s worlds). In a lovely survey, Russell Impagliazzo [72]
defined a main task of computational complexity as determining which of several
qualitatively distinct “worlds” is the one we live in, see Figure 2.3. That is, he
looked at some of the various possibilities that, as far as we know, the open ques-
tions of computational complexity could resolve in, and saw how they would affect
algorithms and cryptography.

As argued in Section 2.2 above, there is very strong evidence that one-way func-
tions exist, which would rule out the three worlds Impagliazzo named as “Algo-
rithmica”,“Heuristica”, and “Pessiland”. This survey can be thought of as trying
to understand the evidence for ruling out the potential world “Minicrypt” where
private-key cryptography (i.e., one-way functions) exist but not public-key cryptog-
raphy. Impagliazzo used the name “Cryptomania” for the world in which public-key
crypto, secure multiparty computation, and other similar primitives exist; these days
people also refer to “Obfustopia” as the world where even more exotic primitives
such as indistinguishability obfuscation [45] exist.

conjecture from additive combinatorics, all such schemes will need to use noise patterns that satisfy
a generalized notion of being

√
n-sparse.
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World Condition Algorithmic impli-
cations

Cryptographic implications

Algorithmica P = NP Algorithmic par-
adise, all NP
and polynomial-
hierarchy problems
can be solved

Essentially no crypto

Heuristica No average-case
hard NP problem

Almost algorithmic
paradise (though
harder to solve prob-
lems in polynomial
hierarchy)

Essentially no crypto

Pessiland No hard planted NP
problem (i.e., one-
way functions)

Have hard on average
algorithmic problem
though can do all un-
supervised learning

Essentially no crypto

Minicrypt No public-key crypto Algorithmic benefits
minimal (can factor
large integers, do dis-
crete log, solve linear
equations with very
small noise)

CPA and CCA secure private-key encryp-
tion, pseudorandom functions, digital sig-
natures, zero-knowledge proofs, etc.

Cryptomania LWE conjecture
holds but not IO

No algorithmic bene-
fits known for lack of
IO

All of the above plus CPA and CCA se-
cure public-key encryption, secure multi-
party computation, fully homomorphic en-
cryption, private information retrieval, etc.

Obfustopia LWE and IO All of the above plus a growing number of
applications including functional encryp-
tion, witness encryption, deniable encryp-
tion, replacing random oracles in certain
instances, multiparty key exchange, and
many more.

Fig. 2.3: A variant of Impagliazzo’s worlds from [72]. We have redefined Cryp-
tomania to be the world where LWE holds and denote by “Obfustopia” the world
where indistinguishability obfuscators (IO) exist (see also [46])

2.5 Alternative Public-Key Constructions
The group-theoretic and lattice-based families described above represent the main
theoretical and practical basis for public-key encryption, as well as the more ad-
vanced applications, including secure multiparty computation [118, 63], fully homo-
morphic encryption [47, 29], and many other primitives. However, there have been
other proposals in the literature. We do not attempt a comprehensive survey here
but do give some pointers (for another perspective, see also the NIST report [32];
these days, such alternative constructions are often grouped under the category of
“post-quantum cryptography”).
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Scheme Computational assumption Notes
Merkle puzzles [90] Strong one-way functions Only quadratic security
Alekhnovich [7] Solving linear mod 2 equations with ≈

1/
√

n noise
Mod 2 analog of Regev/Ajtai–Dwork,
though not known to be solvable in
NP ∩ coNP/SZK

ABW Scheme 1 [10] Planted 3LIN with n1.4 clauses and
noise n−0.1

Similar to refuting random 3SAT
with n1.4 clauses, has nondetermin-
istic refutation; some similarities to
Alekhnovich

ABW Scheme 2 [10] Planted 3LIN with m clauses and noise
δ + unbalanced expansion with param-
eters (m, n, δm)

Some similarities to Alekhnovich

ABW Scheme 3 [10] Nonlinear constant locality PRG with
expansion m(n) + unbalanced expan-
sion with parameters (m, n, log n)

At best nΩ(log n) security

Couveignes,
Rostovtsev, Stol-
bunov [37, 112]

Isogeny star problem Algebraic structure, similarities to el-
liptic curve cryptography, subexpo-
nential quantum algorithm

Patarin HFE sys-
tems [101]

Planted quadratic equations Several classical attacks

Sahai–Waters IO
based system [113]

Indistinguishality obfuscation or wit-
ness encryption

All currently known IO/WE candi-
dates require much stronger assump-
tions than Lattice schemes

Fig. 2.4: A nonexhaustive list of some “non-mainstream” public-key candidates.
See also Section 2.5

2.5.1 Merkle puzzles
The first public-key encryption proposed by an academic researcher was Ralph
Merkle’s “puzzle-based” scheme which he submitted to the Communications of the
ACM in 1975 [90] (as well as described in a project proposal for his undergraduate
security class in the University of Berkeley), see Figure 2.5.14

Merkle’s scheme can yield up to a quadratic gap between the work required to
run the scheme and work required to break it, in an idealized (and not fully specified)
model. Biham, Goren and Ishai [23] showed that this model can be instantiated using
exponentially strong one way functions.

Merkle conjectured that it should be possible to obtain a public-key scheme with
an exponential gap between the work of the honest parties and the adversary but was

14 Merkle’s scheme, as well as the Diffie–Hellman scheme it inspired, are often known in the
literature as key-exchange protocols, as opposed to a public-key encryption schemes. However, a
key-exchange protocol that takes only two messages (as is the case for both Merkle’s and Diffie–
Hellman’s schemes) is essentially the same as a (randomized) public-key encryption scheme, and
indeed Diffie and Hellman were well aware that the receiver can use the first message as a public
key that can be placed in a “public file” [41]. I believe that this confusion in notation arose from the
fact that the importance of randomization for encryption was not fully understood until the work of
Goldwasser and Micali [64]. Thus, Diffie and Hellman reserved the name “public-key encryption”
for a deterministic map we now call a trapdoor permutation that they envisioned as yielding an
encryption by computing it in the forward direction and a signature by computing its inverse.
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unable to come up with a concrete candidate. (The first to do so would be Diffie and
Hellman, who, based on a suggestion of John Gill to look at modular exponentia-
tion, came up with what is known today as the Diffie–Hellman key exchange.) As
mentioned in Remark 2.3.1, [17] (building on [74]) showed that Merkle’s original
protocol is optimal in the setting where we model the one-way function as a random
oracle and measure running time in terms of the number of queries to this function.

We should note that, although n2 security is extremely far from what we could
hope for, it is not completely unacceptable. As pointed out by Biham et al. [23], any
superlinear security guarantee only becomes better with technological advances,
since, as the honest parties can afford more computation, the ratio between their
work and the adversary’s grows.

Assumptions: f : S → {0, 1}∗ is an “ideal” 1-to-1 one-way function, that requires
almost |S | times as much time to invert as it does to compute. Let n = |S |.

Private key: x1, . . . , x√n that are chosen independently at random in S .

public-key: f (x1), . . . , f (x√n)

Encrypt m ∈ {0, 1}: Pick x at random in S , and if f (x) appears in the public-key then
output f (x), h(x)⊕m where h(·) is a “hardcore bit function” that can be obtained, e.g.,
by the method of Goldreich–Levin [62]. If f (x) is not in the public-key then try again.
Decrypt (y, b): Output h(xi) ⊕ b where i is such that f (xi) = y.

Fig. 2.5: In Merkle’s puzzle-based public-key encryption, the honest parties make
≈
√

n invocation to an ideal one-way function, while an adversary making � n
invocations would not be able to break it

2.5.2 Other Algebraic Constructions
There were several other proposals made for public-key encryption schemes. Some
of these use stronger assumptions than those described above, for the sake of achiev-
ing better efficiency or some other attractive property. We briefly mention here
schemes that attempt to use qualitatively different computational assumptions.

Hidden field equations. Patarin [101] (following a work of Matsumoto and
Imai [87]) proposed the Hidden Field Equations (HFE) cryptosystem. It is based on
the difficulty of a “planted” variant of the quadratic equation problem over a finite
field. The original HFE system was broken by Kipnis and Shamir [80], and some
variants have been attacked as well. It seems that currently fewer attacks are known
for HFE-based signatures, though our interest here is of course only in public-key
encryption; see [36] for more information about known attacks.
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Assumptions: (i) There is a constant d and some f : {0, 1}d → {0, 1} such that,
if we choose a random (n,m, d) graph H, then the map G : {0, 1}n → {0, 1}m

where GH(x) j = f (x←−
ΓH ( j)

) is a pseudorandom generator, where
←−
ΓH( j) denotes the

left-neighbors of j in H. (ii) It is hard to distinguish between a random (n,m, d)
graph H and a random (n,m, d) graph where we plant a set S of right vertices of size
k = O(log n) such that |

←−
ΓH(S )| = k− 1 where

←−
ΓH(S ) denotes the set of left-neighbors

of S in H.

Key Generation: Choose a random (n,m, d) graph H with a planted nonexpanding
set S . The public-key is H, and the private key is S .

Encrypt m ∈ {0, 1}: If m = 0 then output a random y ∈ {0, 1}m. If m = 1 pick random
x ∈ {0, 1}n and output y = GH(x).

Decrypt y: Output 1 iff yS ∈ {GH(x)|S : x ∈ {0, 1}n}. By our condition this set has at
most 2k−1 elements.

Fig. 2.6: The ABW Goldreich-generator-based encryption scheme (a simplified
variant)

Isogeny star. Rostovtsev and Stolbunov [112] (see also [37]) proposed a cryp-
tographic scheme based on the task of finding an isogeny (an algebraic homomor-
phism) between two elliptic curves. Although this scheme is inspired by elliptic-
curve cryptography, its security does not reduce to the security of standard elliptic-
curve based schemes. In particular, there are no known quantum algorithms to attack
it, though there have been some related results [33, 22]. Another group-theoretic
construction that was suggested is to base cryptography on the conjugacy problem
for braid groups though some attacks have been shown on these proposals (e.g.,
see [95] and references therein).

2.5.3 Combinatorial(?) Constructions
Applebaum, Barak and Wigderson [10] tried to explore the question of whether
public-key encryption can be based on the conjectured average-case difficulty of
combinatorial problems. Admittedly, this term is not well defined, though their
focus was mostly on constraint satisfaction problems, which are arguably the
quintessential combinatorial problems.

[10] gave a construction of a public-key encryption scheme (see Figure 2.6) based
on the following conjectures:

• A local pseudorandom generator: this is a strengthening of the assumption that
Golreich’s one-way function discussed in Section 2.2.1.4 is secure. Namely, we
assume that we can obtain a pseudorandom generator mapping n bits to m bits
where every output bit applies some predicate f to a constant number d of input
bits. Furthermore, we assume that we can do so by choosing which input bits
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map into which output bits using a random (n,m, d) bipartite graph as defined
in Section 2.2.1.4.15

• The unbalanced expansion problem: this is the problem of distinguishing be-
tween a random (n,m, d) bipartite graph as above, and such a graph where we
plant a set S of size k of left vertices such that S has at most k − 1 neighbors
on the right-hand side (as opposed to the (d − 1 − o(1))k neighbors you would
expect in a random graph).16 Expansion problems in graphs have been widely
studied (e.g., see [69]), and at the moment no algorithm is known for this range
of parameters.

The larger m is compared with n, the stronger the first assumption and the weaker
the second assumption. Increasing the parameter k makes the second problem harder
(and in fact, depending on m/n, at some point the assumption becomes uncondition-
ally true since there would exist such a nonexpanding set with high probability even
in a random graph). Moreover, there is always a way to solve the expansion prob-
lem in

(
n
k

)
time, and so smaller values of k make the problem quantitatively easier.

[10] showed that, if both assumptions hold for a set of parameters (n,m, d, k) where
k = O(log n), then there exists a public-key cryptosystem.

By construction, the above cryptosystem cannot achieve better than nΩ(log n) se-
curity which is much better than the n2 obtained by Merkle puzzles but still far from
ideal. It also relies on the somewhat subtle distinction between nO(k) and poly(n)2O(k)

complexity. [10] showed how to get different tradeoffs if, instead of using a non-
linear function f for the pseudo-random generator, we use a linear function with
some probabilistic additional noise. The noise level δ should satisfy δk = O(1/ log n)
for efficient decryption, and so the lower the noise level we consider (and hence the
stronger we make our assumption on the pseudo-random generator), the larger value
of k we can afford. In particular, if we assume a sufficiently low level of noise, then
we can get k to be so large as to avoid the second assumption (on difficulty of de-
tecting nonexpanding sets) altogether. However, there is evidence that at this point
the first assumption becomes more “structured” since it admits a non-constructive
short certificate [43].

Using such a linear function f raises the question of to which extent these
schemes are different from coding-based schemes such as Alekhnovich’s. Indeed,
there are similarities between these schemes and the main difference is the use of
the unbalanced expansion assumption. An important question is to find the extent
to which this problem is combinatorial versus algebraic. We do not yet fully under-
stand this question, nor even the right way to formally define it, but it does seem key
to figuring out whether the [10] scheme is truly different from the coding/lattices-
based constructions. On one hand, the unbalanced expansion questions “feels” com-
binatorial. On the other hand, the fact that we require the set S to have fewer than
S neighbors implies that, if we define for each right-vertex j in H a linear equation

15 [10] also gave a version of their cryptosystem which only assumed that the function is one way,
and more general reductions between these two conditions were given in [8].
16 One only needs to conjecture that it has to distinguish between these graphs with some constant
bias, as there are standard techniques for hardness amplification in this context.
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corresponding to the sum of variables in
←−
ΓH(S ), then the equations corresponding

to S are linearly dependent. So this problem can be thought of as the task of looking
for a short linear dependency.

Thinking about the noise level might be a better way of considering this question
than the combinatorial versus algebraic distinction. That is, one could argue that the
main issue with the coding/lattice-based constructions is not the algebraic nature of
the linear equations (after all, both the knapsack and approximating kXOR problems
are NP hard). Rather, it is the fact that they use a noise level smaller than 1/

√
n (or,

equivalently, a larger than
√

n approximation factor) that gives them some structure
that could potentially be a source of weakness. In particular, using such small noise
is quite analogous to using an approximation factor larger than

√
n for lattice prob-

lems, which is the reason why lattice-based schemes can be broken in NP ∩ coNP.
However, at the moment no such result is known for either the [7] or [10] schemes.

This viewpoint raises the following open questions:

• Can we base a public-key encryption scheme on the difficulty of solving O(n)
random kXOR equations on n variables with a planted solution satisfying 1 − ε
of them for some constant ε > 0?

• Does the reliance on the unbalanced expansion problem introduce new structure
in the problem? For example, is there a nondeterministic procedure to certify
the nonexistence of a short non-expanding subset in a graph?

One way to get evidence for a negative answer for the second question would
be to get a worst-case NP hardness of approximation result for the unbalanced ex-
pansion problem with parameters matching those used by [10]. We do not at the
moment know whether such a result is likely or not to hold.

2.5.4 Public-key Cryptography from Indistinguishability
Obfuscators

From the early writing of Diffie and Hellman [40], it seems that one of the reasons
why they believed that public-key cryptography is at least not inherently impos-
sible is the following: Given a block cipher/pseudorandom permutation collection
{pk}, one could imagine fixing a random key k and letting Pk be a program that on
input x outputs pk(x). Now, if Pk was compiled via some “optimizing compiler”
to a low-level representation such as assembly language, one could imagine that it
would be hard to “extract” k from this representation. Thus, one can hope to obtain
a public-key encryption scheme (or, more accurately, a trapdoor permutation fam-
ily) by letting the public encryption key be this representation of Pk, which enables
computing the map x 7→ pk(x), and letting the private decryption key (or trapdoor)
be the secret key k that enables computing the map y 7→ p−1

k (y). It seems that James
Ellis, who independently invented public-key encryption at the British intelligence
agency GCHQ, had similar thoughts [42].

Diffie and Hellman never managed to find a good enough instantiation of this
idea, but over the years people have kept trying to look for such an obfuscating com-
piler that would convert a program P to a functionally equivalent but “inscrutable”
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form. Many practical attempts at obfuscation have been broken, and the paper [14]
showed that a natural definition for security of obfuscation is in fact impossible to
achieve. However, [14] did give a weaker definition of security, known as indistin-
guishability obfuscation (IO), and noted that their impossibility result did not rule it
out. (See the survey [13].)

In a recent breakthrough, a candidate construction for an IO compiler was given
by [45]. They also showed that an IO compiler is sufficient to achieve Diffie and
Hellman’s dream of constructing a public-key encryption scheme based only on one-
way functions (see also [113]). Now from a first look, this might seem to make as
much sense as a bottle opener made out of diamonds: after all, we can already build
public-key encryption from the learning with error assumption, while building IO
from LWE would be a major breakthrough with a great many applications. Indeed,
many of the current candidate constructions for IO would be easily broken if LWE
was easy. (And in fact might be broken regardless [92].)

However, a priori, it is not at all clear that achieving IO requires an algebraic
approach. While at the moment it seems far removed from any techniques we have,
one could hope that a more combinatorial/program transformation approach can
yield an IO obfuscator without relying on LWE. One glimmer of hope is given by
the observation that despite the great many applications of IO, so far we have not
been able to obtain primitives such as fully homomorphic encryption that imply that
AM ∩ coAM * BPP (see also [11]). In contrast, such primitives do follow from
LWE.

2.6 Is Computational Hardness the Rule or the
Exception?

As long as the P versus NP question remains open, cryptography will require un-
proven assumptions. Does it really make sense to distinguish between an assump-
tion such as the hardness of LWE and assuming hardness of the problems that yield
private-key encryption? This is a fair question. After all, many would argue that the
only real evidence we have that P , NP is the fact that a lot of people have tried to
get algorithms for NP-hard problems and failed. That same evidence exists for the
LWE assumption as well.

However, I do feel there is a qualitative difference between these assumptions.
The reason is that assuming P , NP yields a coherent and beautiful theory of com-
putational difficulty that agrees with all current observations. Thus we accept this
theory not only because we do not know how to refute it, but also because, following
Occam’s razor principle, one should accept the cleanest/most parsimonious theory
that explains the world as we know it. The existence of one-way functions, with the
rich web of reductions that have been shown between it and other problems, also
yields such a theory. Indeed, these reductions have shown that one-way functions
are a minimal assumption for almost all of cryptography.

In contrast, while LWE has many implications, it has not been shown to be min-
imal for “Cryptomania” in the sense that it is not known to be implied by any prim-
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itives such as public-key encryption or even stronger notions such as fully homo-
morphic encryption. We also do not have a clean theory of average-case hardness
that would imply the difficulty of LWE (or the existence of public-key encryptions).

In fact, I believe it is fair to say that we don’t have a clean theory of average-case
hardness at all.17 The main reason is that reductions—which underpin the whole the-
ory of worst-case hardness, as well as the web of reductions between cryptographic
primitives—seem to have very limited applicability in this setting. As a rule, a re-
duction from a problem A to a problem B typically takes a general instance of A
and transforms it to a structured instance of B. For example, the canonical reduction
from 3SAT to 3COL takes a general formula ϕ and transforms it into a graph G
that has a particular form with certain gadgets that correspond to every clause of ϕ.
While this is enough to show that, if A is hard in the worst-case then so is B, it does
not show that, if A is hard on, say, uniformly random instances, then this holds for
B as well. Thus reductions have turned out to be extremely useful for relating the
worst-case complexity of different problems, or using the conjectured average-case
hardness of a particular problem to show the hardness of other problems on tailored
instances (as we do when we construct cryptographic primitives based on average-
case hardness). However, by and large, we have not been able to use reductions to
relate the hardness of natural average-case problems, and so we have a collection of
incomparable tasks including integer factoring, discrete logarithms, the RSA prob-
lem, finding planted cliques, finding planted assignments in 3SAT formulas, LWE,
etc. without any reductions between them.18

Even the successful theory of worst-case complexity is arguably more descriptive
or predictive than explanatory. That is, it tells us which problems are hard, but it
does not truly explain to us why they are hard. While this might seem as not a well-
defined question, akin to asking “why is 17 a prime?”, let me try to cast a bit more
meaning into it, and illustrate how an explanatory theory of computational difficulty
might be useful in situations such as average-case complexity, where reductions do
not seem to help.

What makes a problem easy or hard? To get some hints on answers, we might
want to look at what algorithmicists do when they want to efficiently solve a prob-
lem, and what cryptographers do when they want to create a hard problem. There are
obviously a plethora of algorithmic techniques for solving problems, and in particu-
lar many clever data structures and optimizations that can make improvements that
might be moderate in theory (e.g., reducing an exponent) but make all the difference
in the world in practice. However, if we restrict ourselves to techniques that help
show a problem can be solved in better than brute force, then there are some themes
that repeat themselves time and again. One such theme is local search. Starting with

17 Levin [85] has proposed a notion of completeness for average-case problems, though this theory
has not been successful in giving evidence for the hardness of natural problems on natural input
distributions.
18 One notable exception is the set of reductions between different variants of lattice problems,
which is enabled by the existence of a worst-case to average-case reduction for these problems [5].
However, even there we do not know how to relate these problems to tasks that seem superficially
similar such as the learning parity with noise [60, 24] problem.
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a guess for a solution and making local improvements is a workhorse behind a great
many algorithms. Such algorithms crucially rely on a structure of the problem where
local optima (or at least all ones you are likely to encounter) correspond to global
optima. In other words, they rely on some form of convexity.

Another theme is the use of algebraic cancellations. The simplest such structure
is linearity, where we can continually deduce new constraints from old ones without
a blowup in their complexity. In particular, a classical example of cancellations in
action is the algorithm to efficiently compute the determinant of a matrix, which
works even though at least one canonical definition of it involves computing a sum
on an exponential number of terms.

On the cryptography side, when applied cryptographers try to construct a hard
function such as a hash function or a block cipher, there are themes that recur as
well. To make a function that is hard to invert, designers try to introduce nonlinearity
(the function should not be linear or close to linear over any field and in fact have
large algebraic degree so it is hard to “linearize”) and nonlocality (we want the
dependency structure of output and input bits to be “expanding” or “spread out”).
Indeed, these themes occur not just in applied constructions but also in theoretical
candidates such as Goldreich’s [57] and Gowers’ [65] (where each takes one type
of parameters to a different extreme).

Taken together, these observations might lead to a view of the world in which
computational problems are presumed hard unless they have a structural reason to
be easy. A theory based on such structure could help to predict, and more than that
to explain, the difficulty of a great many computational problems that currently we
cannot reach with reductions. However, I do not know at the moment of any such
clean theory that will not end up “predicting” some problems are hard where they
are in fact solvable by a clever algorithm or change of representation. In the sur-
vey [18], Steurer and I tried to present a potential approach to such a theory via
the conjecture that the sum of squares convex program is optimal in some domains.
While it might seem that making such conjectures is a step backwards from cryp-
tography as a science towards “alchemy”, we do hope that it is possible to extract
some of the “alchemist intuitions” practitioners have, without sacrificing the predic-
tive power and the mathematical crispness of cryptographic theory. However, this
research is still very much in its infancy, and we still do not even know the right
way to formalize our conjectures, let alone try to prove them or study their impli-
cations. I do hope that eventually an explanatory theory of hardness will emerge,
whether via convex optimization or other means, and that it will not only help us
design cryptographic schemes with stronger foundations for their security, but also
shed more light on the mysterious phenomena of efficient computation.
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Chapter 3
Pseudorandom Functions: Three Decades Later

Andrej Bogdanov and Alon Rosen

Abstract In 1984, Goldreich, Goldwasser and Micali formalized the concept of
pseudorandom functions and proposed a construction based on any length-doubling
pseudorandom generator. Since then, pseudorandom functions have turned out to
be an extremely influential abstraction, with applications ranging from message au-
thentication to barriers in proving computational complexity lower bounds.

In this tutorial we survey various incarnations of pseudorandom functions, giv-
ing self-contained proofs of key results from the literature. Our main focus is on
feasibility results and constructions, as well as on limitations of (and induced by)
pseudorandom functions. Along the way we point out some open questions that we
believe to be within reach of current techniques.

I have set up on a Manchester computer a small programme using only
1000 units of storage, whereby the machine supplied with one sixteen
figure number replies with another within two seconds. I would defy
anyone to learn from these replies sufficient about the programme to be
able to predict any replies to untried values.

A. Turing (from [64])

Andrej Bogdanov
Dept. of Computer Science and Engineering and Institute of Theoretical Computer Science and
Communications, Chinese University of Hong Kong. e-mail: andrejb@cse.cuhk.edu.hk

Alon Rosen
Efi Arazi School of Computer Science, IDC Herzliya. e-mail: alon.rosen@idc.ac.il

79© Springer International Publishing AG 2017 
Y. Lindell (ed.), Tutorials on the Foundations of Cryptography, 
Information Security and Cryptography, DOI 10.1007/978-3-319-57048-8_3 

mailto:andrejb@cse.cuhk.edu.hk
mailto:alon.rosen@idc.ac.il


80 Andrej Bogdanov and Alon Rosen

3.1 Introduction
A family of functions Fs : {0, 1}k → {0, 1}`, indexed by a key s ∈ {0, 1}n, is said to
be pseudorandom if it satisfies the following two properties:

Easy to evaluate: The value Fs(x) is efficiently computable given s and x.
Pseudorandom: The function Fs cannot be efficiently distinguished from a uni-

formly random function R : {0, 1}k → {0, 1}`, given access to pairs (xi, Fs(xi)),
where the xi’s can be adaptively chosen by the distinguisher.

One should think of the key s as being kept secret, and of the running time of eval-
uation as being substantially smaller than that of the distinguisher. This faithfully
models a prototypical attack on a cryptographic scheme: the adversary’s running
time is bounded but can still exceed that of the system, and he may adaptively ad-
just his probing of the system’s input/output behavior.

The definition of pseudorandom functions (PRFs), along with the demonstration
of its feasibility, is one of the keystone achievements of modern cryptography [64].
This owes much to the fact that the definition hits a “sweet spot” in terms of level
of abstraction: it is simple enough to be studied and realized, and at the same time
is powerful enough to open the door to countless applications.

Notably, PRFs lend themselves to simple proofs of security. Being indistinguish-
able from a random function means that analysis cleanly reduces to an idealized
system in which a truly random function is used instead of the pseudorandom one.

3.1.1 Applications
Perhaps the most natural application of pseudorandom functions is that of message
authentication. The goal is to allow Bob to verify that a message m was sent to him
by Alice and nobody else. To this end, Alice and Bob share a randomly sampled
secret key s, known only to them. When Alice wishes to authenticate m, she appends
a tag σ that is efficiently computable from m and s. Verifiability of (m, σ) follows
from the fact that Bob also knows m and s and so can compute σ efficiently.

An authentication scheme is said to be unforgeable if no computationally bounded
adversary (not possessing s) can generate a pair (m, σ) that passes verification,
where m can be any message that was not previously sent (and hence authenticated)
by Alice. To authenticate m using a PRF family Fs, Alice simply sends to Bob the
(message, tag) pair

(m, Fs(m)). (3.1)

Upon receiving (m, σ), Bob uses s to evaluate Fs(m) and verifies that it equals σ.
Unforgeability follows from the fact that the probability with which any computa-
tionally bounded adversary correctly guesses σ = Fs(m) does not noticeably change
if Fs(m) is replaced with R(m), where R is a random function. The probability of cor-
rectly guessing R(m) is 2−`. This remains true even if the adversary gets to see pairs
of the form (mi, σi), where m , mi for all i and the mi’s are adaptively chosen.
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Symmetric-key encryption. In the setting of symmetric-key encryption, Alice
and Bob share a randomly sampled secret key s, which is used along with some other
string r to generate an encryption Encs(m; r) of a plaintext m. Alice sends Encs(m; r)
to Bob, who can use s in order to compute the decryption m = Decs(Encs(m; r)).

An encryption scheme is said to be secure if for any two plaintexts m0,m1 the
distributions Encs(m0; r) and Encs(m1; r) cannot be efficiently distinguished. Given
a PRF family Fs, one can implement a secure encryption scheme as follows:

Encs(m; r) = (r, Fs(r) ⊕ m), Decs(r, c) = Fs(r) ⊕ c. (3.2)

Similarly to the case of message authentication, security is established by observing
that the advantage of any efficient distinguisher between Encs(m0; r) and Encs(m1; r)
will not noticeably change if we replace Fs(r) with R(r), where R is a random func-
tion. In the latter case, the adversary’s task is to distinguish between R(r) ⊕ m0 and
R(r) ⊕ m1, which is information-theoretically impossible.

This argument is valid even if the distinguisher gets to see Encs(mi; ri) for adap-
tively chosen mi’s (m0,m1 are also allowed), provided that ri , r for all i. In practice,
this can be enforced by either deterministically choosing the r’s using a counter, or
by sampling them independently at random each time. The counter solution does
not require including r as part of the encryption, but requires maintaining state be-
tween encryptions. The randomized solution does not require state, but has longer
ciphertexts and moreover requires r to be long enough so that collisions of the form
ri = r are unlikely.

Interestingly, neither of the above solutions necessitates the full strength of PRFs,
in the sense that they do not require security against adaptive access to the function.
In the counter solution, the PRF adversary only observes the function values on a
predetermined set of inputs, whereas in the randomized mode, it observes values on
randomly chosen inputs. This motivates two interesting relaxations of PRFs, called
nonadaptive PRFs and weak PRFs, respectively, and opens the door to more efficient
constructions.

Key derivation. The following is a convenient method for generating a long se-
quence of cryptographic keys “on-the-fly”. Let Fs be a PRF, and define a key ki by

ki = Fs(i). (3.3)

This method has advantages both in terms of memory usage and in terms of key
management, at least as long as one is able to protect the (relatively short) “master-
key” s from leaking to an attacker (by definition, Fs remains pseudorandom even if
some of the ki’s are leaked). In terms of security, any efficient system that uses the
ki’s as secret keys is guaranteed to be no less secure than the same system would
have been if it were to use truly random and independent keys.

Storing, protecting, and managing a single short key s is indeed convenient.
However, it has the disadvantage that compromise of s results in loss of security
for the entire system. One way to mitigate this concern would be to store FHE(s),
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where FHE is a fully homomorphic encryption scheme [120]. The idea would be
to store c = FHE(s) and erase s, keeping only the FHE decryption key. One can
then homomorphically compute FHE(Fs(i)) for any desired i (think of the circuit
Ci(s) = Fs(i)), and then decrypt the result at the location in which the FHE de-
cryption key is stored (say on a client machine). An attacker who compromises the
system learns nothing about the master key s, whereas an attacker who compromises
the client alone learns only the FHE key.

While conceptually simple, this solution is still not practical. Currently known
FHE schemes can practically support only simple computations, certainly not ones
nearly as complex as evaluating a PRF. Can PRFs be made simple enough to allow
their fast homomorphic evaluation? Alternatively, could one devise FHE schemes
so that efficient homomorphic evaluation of compatible PRFs is enabled?

Hardness of learning. The fundamental task in machine learning is to make fu-
ture predictions of an unknown concept based on past training data. In the model of
probably approximately correct (PAC) learning [127, 82] the concept is described
by an efficient function F, the data comes in the form of input–output samples
(x, F(x)), and the objective is for the learner to make almost always correct predic-
tions (with respect to a given distribution on inputs). Statistical considerations show
that O(log|C|) random samples provide sufficient information to learn any function
coming from a given class C with precision at least 99%.

In particular, a PRF Fs can in principle be learned from O(n) random samples,
where n is the size of its key. The learning, however, cannot be carried out efficiently:
any learner L that is able to predict the value of Fs at a new input x∗ based on past
data (x1, Fs(x1)), . . . , (xq, Fs(xq)) can be applied to distinguish the sequences

(x1, Fs(x1)), . . . , (xq, Fs(xq)), (x∗, Fs(x∗)) and
(x1,R(x1)), . . . , (xq,R(xq)), (x∗,R(x∗)),

thereby violating the pseudorandomness of Fs. To distinguish, one can use the first q
elements as training data for the learner and test the value F(x∗) against the learner’s
prediction L(x∗). If the learner is probably approximately correct, L(x∗) is likely to
agree with F(x∗) when F = Fs. On the other hand, when F = R, the value F(x∗) is
statistically independent of the training data and uncorrelated with L(x∗).

A learning algorithm can thus be viewed as a potential cryptanalytic attack
against any PRF. Vice versa, any algorithm that is believed to learn a given concept
class should be tested on conjectured PRF constructions that fall within this class.

3.1.2 Feasibility
The construction of PRFs necessitates postulating computational hardness. This is
not surprising given that the existence of PRFs requires at the very least ruling
out the possibility that P equals NP: distinguishing Fs from a random function R
reduces to the NP-search problem of finding a key s consistent with the samples
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(F(1), F(2), . . . , F(m)). Such a key always exists when F = Fs, but only with small
probability when F = R (assuming m` > n).

The first hardness assumption under which PRFs were constructed is the exis-
tence of pseudorandom generators [64]. A pseudorandom generator (PRG) is an ef-
ficiently computable deterministic function G : {0, 1}n → {0, 1}m with m > n whose
output G(s) ∈ {0, 1}m, where s is sampled uniformly from {0, 1}n, cannot be effi-
ciently distinguished from a uniformly random string r ∈ {0, 1}m.

While PRGs and PRFs both map a short random string into a longer pseudoran-
dom string, the definitions differ in the quantity of output bits and in the adversary’s
access to them. Any PRF family Fs : {0, 1}k → {0, 1} gives rise to a PRG:

G(s) = (Fs(1), Fs(2), . . . , Fs(m)),

as long as n < 2k (assuming, for simplicity, that the distribution on keys s is uni-
form). In other words, the truth-table of a PRF is an efficiently computable sequence
of pseudorandom bits of essentially unbounded length. In contrast, the output length
of a PRG is a priori bounded by its running time.

From this perspective, a PRF can be thought of as a PRG whose output length is
much larger than the running time of the distinguisher. As this output is too large to
be stored in the distinguisher’s memory, a definitional choice must be made regard-
ing how these bits are accessed by the adversary. In this respect, the definition of a
PRF provides the adversary with imposing power: his access to the pseudorandom
bits is adversarial and adaptive.

Goldreich, Goldwasser, and Micali showed how to use any length-doubling PRG,
G : {0, 1}n → {0, 1}2n, to construct a PRF family Fs : {0, 1}k → {0, 1}`, that is
keyed by s ∈ {0, 1}n, for arbitrary k and `. Subsequently, it was shown that PRGs
are polynomial-time equivalent to one-way functions [73, 69, 126]. A function
f : {0, 1}n → {0, 1}` is one-way if f is efficiently computable, but given y = f (x)
for a random x, it is infeasible to find any x′ such that f (x′) = y.

Theorem 3.1.1 ([64, 73]). Pseudorandom functions exist iff one-way functions exist.

One-way functions are the most rudimentary primitive in modern cryptography.
Their existence is necessary for virtually all applications of interest, save a select few
in which information-theoretic security is achievable. The definition of a one-way
function merely postulates the ability to hide a “secret” that is computationally hard
to reconstruct. This encompasses, in particular, the secret key s of any candidate
PRF construction. In contrast, the security requirements of a PRF are significantly
more stringent: the adversary is given access to multiple input–output samples of
its choice and is only asked to detect any form of nonrandom behavior, a seemingly
much easier task than reconstructing the secret key s.

Owing to the relatively mild security requirement of one-way functions, candi-
date constructions abound. Any stochastic computational process that is typically
difficult to invert can be modeled as a one-way function. In contrast, pseudoran-
dom functions must exhibit significant internal structure in order to resist the vast
variety of distinguishers that they can be tested against (see Section 3.7 for some
representative examples). It is thus remarkable that the two notions are equivalent.
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3.1.3 Efficiency, Security, and Functionality
The work of Goldreich, Goldwasser, and Micali (GGM) provides an elegant concep-
tual solution to the problem of constructing PRFs. This has opened the door towards
the finer study of their theory and practice, and has resulted in a large body of work.
In this survey we will focus on the following aspects:

Efficiency. Every evaluation of the GGM PRF on a k-bit input necessitates k se-
quential invocations to the underlying PRG, while its provable security deteriorates
as k becomes larger. Are there more efficient constructions?

Naor and Reingold gave a construction that has lower parallel evaluation com-
plexity than the GGM construction, but assumes the availability of a pseudorandom
synthesizer, an object (seemingly) stronger than a PRG. In Section 3.3 we present
the two constructions of PRFs, and in Section 3.4 we give concrete instantiations of
PRFs obtained using this paradigm.

On the negative side, the existence of efficient learning algorithms for certain
types of circuits implies inherent lower bounds on the complexity of pseudoran-
dom functions. Razborov and Rudich explain how such learning algorithms arise
naturally from proofs of circuit lower bounds. We discuss these connections in Sec-
tion 3.6.

Security. Pseudorandom functions are required to be secure against all efficient
distinguishers. It is sometimes useful to consider security against restricted classes
of distinguishers that model specific types of attacks such as differential cryptanal-
ysis. A sufficiently restrictive class of adversaries may allow for a proof of security
that is unconditional. Proofs of security against restricted distinguishers can also
provide confidence in the soundness of heuristic constructions.

In Section 3.7 we discuss some restricted classes of distinguishers arising from
the study of pseudorandomness (bounded query distinguishers, linear distinguish-
ers, space-bounded algorithms), complexity theory (polynomials, rational func-
tions), and learning theory (statistical queries).

Functionality. In Section 3.5 we illustrate the robustness of the definition of PRFs
with respect to domain size and discuss how PRFs provide a basis for implement-
ing “huge random objects”, the most notable example of which are pseudorandom
permutations.

For certain cryptographic applications it is useful to have pseudorandom func-
tions with additional functionality. In Section 3.8 we present two such extensions:
key-homomorphic PRFs and puncturable PRFs.

Open questions. In spite of the enormous body of work on pseudorandom func-
tions in the last three decades, many questions of interest remain unanswered. We
mark some of our favorite ones with the symbol©? as they come up in the text. For
convenience, all the open questions are indexed at the end of the chapter.
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3.1.4 The Wide Scope of Pseudorandom Functions
Pseudorandom functions permeate cryptography and are of fundamental importance
in computational complexity and learning theory. In this survey we do not attempt to
provide comprehensive coverage of their applications, but focus instead on a handful
of representative settings which highlight their conceptual importance. The follow-
ing (partial) list gives an indication of the wide scope of PRFs.

Basic cryptographic applications. Pseudorandom functions fit naturally into
message authentication and in particular underlie the security of the widely de-
ployed authentication function HMAC [22, 21]. They are also used in construc-
tions of deterministic stateless digital signatures [59], and randomized stateless
symmetric-key encryption (see Section 3.1.1).

Pseudorandom permutations (PRPs, see Section 3.5.2), which are closely related
to PRFs, model block ciphers such as DES and AES, where the PRP security notion
was a criterion in the design [111].

Advanced cryptographic applications. PRFs have been applied to achieve re-
settable security in protocols [48, 18], to hide memory access patterns in oblivi-
ous RAM [60, 66], and to bootstrap fully homomorphic and functional encryption
schemes [9, 8]. The construction of authentication schemes from PRFs extends nat-
urally to provide digital signatures from verifiable PRFs [23, 97].

Key-homomorphic PRFs are useful for constructing distributed PRFs, proxy re-
encryption, and other applications with high relevance to “cloud” security (see Sec-
tion 3.8.2). The recently introduced notion of puncturable PRFs, in conjunction
with indistinguishability obfuscation, has found applications for the construction of
strong cryptographic primitives, and demonstrates how to bridge between private-
key and public-key encryption (see Section 3.8.2).

Puncturable PRFs have also been recently combined with indistinguishability
obfuscation to exhibit hard on the average instances for the complexity classses
PPAD [32, 58] and CLS [74].

Other applications. In the realm of data structures, permutation-based hashing,
which is inspired by the Feistel construction of PRPs, has been applied to improve
the performance of dynamic dictionaries [12]. PRPs were also recently used in the
construction of adaptively secure Bloom filters [108]. More generally, PRFs are a
basic building block in implementations of huge random objects (see Section 3.5.3).

Lower bounds and barriers. As pointed out in Section 3.1.1, PRF constructions
present a fundamental barrier for efficient learning algorithms (see Section 3.6.1)
and for our ability to prove circuit lower bounds (see Section 3.6.2).

Finally, pseudorandom functions provide natural examples for “pseudo-entropic”
functions that cannot be virtually black-box obfuscated in a strong sense [67, 31].
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3.1.5 Intellectual Merit
The evolution in the design and use of PRFs exemplifies how theory affects practice
in indirect ways, and how basic conceptualizations free our minds to develop far-
reaching and unexpected ideas. The wide array of applications of PRFs can in large
part be attributed to their simplicity and flexibility. These traits facilitate the robust
design of cryptographic primitives, while relying on clearly stated and well-defined
assumptions (compare this with vague terms such as “diffusion” and “confusion”).

For instance, while a candidate PRP was already proposed in the mid 1970s
(DES), there was no methodology available at the time for capturing the desired se-
curity properties. Indeed, rigorous analysis of various modes of operation for block
ciphers [24, 85] and Feistel-like constructions [90, 104] only emerged after the 1984
work of Goldreich, Goldwasser, and Micali [64].

From a pedagogical point of view, the study of pseudorandom functions clari-
fies concepts and sharpens distinctions between notions that arise in the study of
cryptographic constructions. Some examples that come to mind are:

Computational indistinguishability. PRFs are a prime example of a distribution
that is extremely nonrandom from a statistical perspective, yet indistinguishable
from random by computationally bounded observers (see discussion on “A delicate
balance” in Section 3.2.1). Moreover, computational indistinguishability in PRF
constructions and applications exemplifies the use of the hybrid proof technique,
which is prevalent in cryptographic reasoning.

Key recovery, prediction, and distingushing. For an adversary to break a cryp-
tographic system it does not necessarily have to fully recover the key, which may
be underspecified by the system’s behavior. A more reasonable notion of security
is that of unpredictability of future responses based on past interaction. In the case
of PRFs, this type of attack is exemplified by PAC learning algorithms, which re-
construct an approximation of the function based on past input–output data. As ex-
plained in Section 3.6.1, unpredictability is implied by indistinguishability from a
random function. The converse does not hold in general. The ability to distinguish a
system’s behavior from random already opens the door to severe security breaches,
even if the function cannot be predicted or the key fully recovered.

Modeling access to a system. The definition of PRFs cleanly captures what type
of access an adversary can have to a system, be it adaptive, nonadaptive, sequential,
or statistically random (see Section 3.2.1). It also clarifies the distinction between
the adversary’s running time and the number of times it queries the function/system.

How not to model a random function. For the definition of PRFs to make sense,
the function’s description given by the random key s must be kept secret from the
distinguisher. This should be contrasted to the random oracle model [54, 25], whose
instantiations (wrongly) assume that the oracle retains its random properties even if
its description is fully available to the distinguisher.
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3.2 Definitions

If you have something interesting to say,
it doesn’t matter how you say it.

Leonid Levin (1985)

We give a formal definition of pseudorandom functions, discuss our definitional
choices, and try to provide some intuition behind the requirements. We then gain
some practice through two “warm-ups”: first, we show how to generically increase
the range size of a PRF. Second, we give a security analysis of the symmetric-key
encryption scheme from Section 3.1.1. Although these types of proofs are standard
in cryptography [61, 80], they will serve as compelling motivations to introduce
some additional ideas and should help the reader get accustomed to the notation.

For formal definitions of circuits and oracles the reader is referred to Goldreich’s
textbook on computational complexity [62].

3.2.1 Pseudorandom Functions
Since it does not make sense to require pseudorandomness from a single fixed func-
tion F : {0, 1}k → {0, 1}`, the definition of pseudorandom functions refers to distri-
butions of functions sampled from a family. Each member of the family is a function
F : {0, 1}n × {0, 1}k → {0, 1}`, where the first argument is called the key and denoted
s, and the second argument is called the input to the function. The key is sampled
according to some distribution S and then fixed. We are interested in the pseudoran-
domness of the function Fs(x) = F(s, x) over the distribution S of the keys.

The PRF’s adversary is modeled by a Boolean circuit D that is given oracle access
to some function F. Namely, throughout its computation, D has access to outputs
of the function F on inputs x1, x2, . . . of his choice. The type of access can vary de-
pending on the definition of security. By default D is given adaptive access, meaning
that the input x j may depend on values F(xi) for i < j. For an oracle F we denote
by DF the output of D when given access to F.

Definition 3.2.1 (Pseudorandom function [64]). Let S be a distribution over {0, 1}n

and {Fs : {0, 1}k → {0, 1}`} be a family of functions indexed by strings s in the sup-
port of S . We say {Fs} is a (t, ε)-pseudorandom function family if for every Boolean-
valued oracle circuit D of size at most t,∣∣∣Pr

s
[DFs accepts] − Pr

R
[DR accepts]

∣∣∣ ≤ ε,
where s is distributed according to S , and R is a function sampled uniformly at
random from the set of all functions from {0, 1}k to {0, 1}`.

The string s is called the key, the circuit D is called the distinguisher, and the
above difference in probabilities is its distinguishing advantage with respect to Fs.
Since D is nonuniform, we may assume that it is deterministic, as it can always
hardwire the coin tosses that maximize its distinguishing advantage.
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Weak, nonadaptive, and sequential PRFs. In certain settings it is natural to re-
strict the oracle access mode of the distinguisher. In a nonadaptive PRF the dis-
tinguisher must make all its queries to the oracle at once. In a weak PRF at every
invocation the oracle returns the pair (x, F(x)) for a uniformly random x in {0, 1}k.
In a sequential PRF the i-th oracle invocation is answered by the value F(i).

Efficiency. We say {Fs} has size c if s can be sampled by a circuit of size at most
c and for every s there exists a circuit of size at most c that computes Fs. We are
interested in the parameter regime where the size of {Fs} is much smaller than the
distinguisher size t and the inverse of its distinguishing advantage 1/ε. In the theory
of cryptography it is customary to view n as a symbolic security parameter and
study the asymptotic behavior of other parameters for a function ensemble indexed
by an infinite sequence of values for n. The PRF is viewed as efficient if its input
size k grows polynomially in n, but its size is bounded by some polynomial of n.

Security. Regarding security, it is less clear what a typical choice of values for
t and ε should be. At one end, cryptographic dogma postulates that the adversary
be given at least as much computational power as honest parties. In the asymptotic
setting, this leads to the minimalist requirement of superpolynomial security: for
every t that grows polynomially in n, ε should be negligible in n (it should even-
tually be smaller than 1/p(n) for every polynomial p). At the other end, it follows
from statistical considerations that (2n, 1/2) and (ω(n), 2−n)-PRFs cannot exist. In an
attempt to approach these limitations as closely as possible, the maximalist notion
of exponential security sets t and ε to 2αn and 2−βn, respectively, for some con-
stants α, β ∈ (0, 1). Most cryptographic reductions, including all the ones presented
here, guarantee deterioration in security parameters that is at most polynomial. Both
super-polynomial and exponential security are preserved under such reductions.

A delicate balance. PRFs strike a delicate balance between efficiency and secu-
rity. A random function R : {0, 1}k → {0, 1}` is ruled out by the efficiency require-
ment: its description size, let alone implementation size, is as large as ` · 2k. For the
description size to be polynomial in k, the PRF must be sampled from a set of size at
most 2n = 2poly(k), which is a tiny fraction of the total number of functions 2`2

k
. Let F

be such a set and assume for simplicity that Fs is sampled uniformly from F. Which
sets F would give rise to a PRF? One natural possibility is to choose F at random,
uniformly among all sets of size 2n. Then with overwhelming probability over the
choice of F the function Fs is indistinguishable from random, but the probability
that it can be computed efficiently (in terms of circuit size) is negligible.

Uniformity. We model computational efficiency using circuit size. A more com-
mon alternative is the running time of some uniform computational model such as
Turing machines. Most of the theory covered here carries over to the uniform set-
ting: all reductions between implementations preserve uniformity, but some of the
reductions between adversaries may rely on nonuniform choices. We think that the
circuit model of computation is a more natural one in the context of PRFs. Besides,
proofs of security in the circuit model are notationally simpler.
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3.2.2 Computational Indistinguishability
It will be convenient to define a general notion of computational indistinguishability,
which considers distinguishers D that adaptively interact as part of probabilistic
experiments called games. When a game is not interactive we call it a distribution.

Definition 3.2.2 (Computational indistinguishability). We say that games H0,H1
are (t, ε)-indistinguishable if for every oracle circuit D of size at most t,∣∣∣ Pr[DH0 accepts] − Pr[DH1 accepts]

∣∣∣ < ε,
where the probabilities are taken over the coin tosses of H0,H1.

The definition of pseudorandom functions can be restated by requiring that the
following two games are (t, ε)-computationally indistinguishable:

Fs: Sample s ∈ {0, 1}n from S and give D adaptive oracle access to Fs

R: Sample R : {0, 1}k → {0, 1}` and give D adaptive oracle access to R

Definition 3.2.2 is more general in that it accomodates the specification of games
other than those occurring in the definition of a PRF.

Proposition 3.2.3. Suppose that H0,H1 are (t1, ε1)-indistinguishable and that H1,H2
are (t2, ε2)-indistinguishable. Then, H0,H2 are (min{t1, t2}, ε1+ε2)-indistinguishable.

In other words, computational indistinguishability is a transitive relation (up to
appropriate loss in parameters). Proposition 3.2.3 is proved via a direct application
of the triangle inequality to Definition 3.2.2.

Proposition 3.2.4. Let Hq denote q independently sampled copies of a distribu-
tion H. If H0 and H1 are (t, ε)-indistinguishable then Hq

0 and Hq
1 are (t, qε)-

indistinguishable.

Proof: For i ∈ {0, . . . , q}, consider the “hybrid” distribution Di = (Hi
0,H

q−i
1 ). We

claim that Di and Di+1 are (t, ε)-indistinguishable. Otherwise, there exists a circuit
B of size t that distinguishes between Di,Di+1 with advantage ε. We use B to build
a B′ of size t that distinguishes between H0,H1 with the same advantage.

The circuit B′ is given an h that is sampled from either H0 or H1. It then sam-
ples hi−1

0 from Hi−1
0 and hq−i

1 from Hq−i
1 (the samples can be hardwired inducing

no overhead in size), feeds the vector d = (hi−1
0 , h, hq−i

1 ) to B, and outputs what-
ever B outputs. If h is sampled from H0, then d is distributed according to Di,
whereas if it is sampled from H1, then d is distributed according to Di−1. We get
that B′ distinguishes between H0,H1 with advantage ε, in contradiction to their
(t, ε)-indistinguishability. Thus, Di and Di+1 are (t, ε)-indistinguishable.

The claim now follows by observing that D0 = Hq
1 and Dq = Hq

0 and invoking
Proposition 3.2.3 for q times. ut

Two games are (∞, ε)-indistinguishable if they are indistinguishable by any
oracle circuit, regardless of its size. In the special case of distributions, (∞, ε)-
indistinguishability is equivalent to having statistical (i.e., total variation) distance
at most ε.
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3.2.3 Warm-Up I: Range Extension
Sometimes it is desirable to increase the size of the range of a PRF. This may for
instance be beneficial in applications such as message authentication where one
requires a function whose output on a yet unobserved input to be unpredictable. The
larger the range, the harder it is to predict the output.

We show that a pseudorandom function with many bits of output can be obtained
from a pseudorandom function with one bit of output. Let F′s : {0, 1}k → {0, 1} be
any pseudorandom function family and define Fs : {0, 1}k−dlog `e → {0, 1}` by

Fs(x) = (F′s(x, 1), F′s(x, 2), . . . , F′s(x, `)),

where the integers 1, . . . , ` are identified with their dlog `e-bit binary expansion.

Proposition 3.2.5. If {F′s} is a (t, ε)-pseudorandom function family then {Fs} is a
(t/`, ε)-pseudorandom function family.

Proof: For every oracle circuit D whose oracle type is a function from {0, 1}k−dlog `e

to {0, 1}`, let D′ be the circuit that emulates D as follows: when D queries its oracle
at x, D′ answers it by querying its own oracle at (x, 1), . . . , (x, `) and concatenating
the answers. The distributions DFs and D′F

′
s are then identical, and so are DR and

D′R
′

for random functions R and R′.
It follows that D and D′ have the same distinguishing advantage. By construc-

tion, D′ is at most ` times larger than D. Therefore, if D is a circuit of size t/` with
distinguishing advantage ε, D′ has size t with distinguishing advantage ε. By as-
sumption such a D′ does not exist so neither does such a D. ut

Proposition 3.2.5 provides a generic secure transformation from a PRF with one
bit of output to a PRF with ` bits of output for any given value of `. This generality,
however, comes at the price of worse complexity and security: implementation size
grows by a factor of `, while security drops by the same factor. Such losses are often
unavoidable for a construction obtained by means of a generic transformation, and
it is indeed desirable to directly devise efficient constructions.

3.2.4 Warm-Up II: Symmetric-Key Encryption
We now state and prove the security of the encryption scheme (Enc,Dec) described
in (3.2). Recall that Encs(m; r) = (r, Fs(r) ⊕ m).

Proposition 3.2.6. If {Fs : {0, 1}k → {0, 1}`} is a weak (t + `t, ε)-pseudorandom
function family then for every two messages m0,m1 ∈ {0, 1}`, the following games
are (t, 2ε + t/2k)-indistinguishable:

E0: Sample random s ∈ {0, 1}n and r ∈ {0, 1}k and output Encs(m0; r)
E1: Sample random s ∈ {0, 1}n and r ∈ {0, 1}k and output Encs(m1; r)

In both games the distinguisher is also given access to an oracle that in the i-th
invocation samples a uniform and independent ri and outputs Encs(xi; ri) on input xi.
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Proof: Consider the following two games:

R0: Sample random R : {0, 1}k → {0, 1}` and r ∈ {0, 1}k and output (r,R(r) ⊕ m0)
R1: Sample random R : {0, 1}k → {0, 1}` and r ∈ {0, 1}k and output (r,R(r) ⊕ m1)

In both games the distinguisher is also given access to an oracle that on input xi

samples a uniform and independent ri and outputs (ri,R(ri) ⊕ xi).

Claim 3.2.7. For b ∈ {0, 1} games Eb and Rb are (t, ε)-indistinguishable.

Proof: Suppose for contradiction that there exists a distinguisher A of size t that
distinguishes between Eb and Rb with advantage ε. We use A to build a distinguisher
D between Fs and R with the same advantage.

The distinguisher D is given access to an oracle F that is either Fs or R. It emu-
lates A, answering his queries, which are either according to Eb or to Rb, as follows:

• Sample r, query F to obtain F(r), and output Encs(mb; r) = (r, F(r) ⊕ mb)
• On input xi, sample ri, query F to obtain F(ri), and output (ri, F(ri) ⊕ xi)

Accounting for the ` extra ⊕ gates incurred by each oracle query (out of at most
t queries) of A, the circuit D is of size t + `t. Note that DFs and DR are identically
distributed to AEb and ARb , respectively, so D distinguishes Fs from R with advantage
ε, contradicting the (t + `t, ε)-pseudorandomness of Fs. ut

Claim 3.2.8. Games R0 and R1 are (t, t/2k)-indistinguishable.

Proof: Let A be a potential distinguisher between R0 and R1. Note that A’s view
of the games R0 and R1 is identical conditioned on the event that A never makes a
query x that is answered by (r,R(r)⊕ x). Since an A of size t makes at most t queries
and ri is chosen uniformly and independently for every query the probability of this
event is at most t/2k. ut

Combining the two claims with Proposition 3.2.3, we conclude that E0 and E1
are (t, 2ε + t/2k)-indistinguishable. ut

The analysis above incurs security loss that grows linearly with the number of en-
cryption queries made by the distinguisher D. In this case the number of queries was
bounded by t, which is the size of D. However, as we will see later, it is sometimes
useful to separately quantify the number of queries made by the distinguisher.

Definition 3.2.9 (Bounded-query PRF). A (t, q, ε)-pseudorandom function is a
(t, ε)-pseudorandom function in which the distinguisher makes at most q queries.

We also give an analogous definition for computational indistinguishability.

Definition 3.2.10 (Bounded-query indistinguishability). We say that games H0
and H1 are (t, q, ε)-indistinguishable if they are (t, ε)-indisinguishable by distin-
guishers that make at most q queries.

Decoupling the number of queries from the adversary’s running time (as well
as from the function’s input size) will turn out to be beneficial in the proofs of
security of the GGM and NR constructions (Section 3.3), in the construction of
pseudorandom permutations (Section 3.5.2), and in the discussion of natural proofs
(Section 3.6.2).
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3.3 Generic Constructions

Beware of proofs by induction,
especially in crypto.

Oded Goldreich (1990s)

We now present two generic methods for constructing a pseudorandom function.
The first method, due to Goldreich, Goldwasser, and Micali (GGM), relies on any
length-doubling pseudorandom generator. The second method is due to Naor and
Reingold (NR). It builds on a stronger primitive called a pseudorandom synthesizer.

Both the GGM and NR methods inductively extend the domain size of a PRF.
Whereas the GGM method doubles the domain size with each inductive step, the
NR method squares it. Instantiations of the NR method typically give PRFs of lower
depth. The GGM construction, on the other hand, has shorter keys and relies on a
simpler building block.

3.3.1 The Goldreich–Goldwasser–Micali Construction
We start by defining the notion of a pseudorandom generator (PRG). Pseudorandom
generation is a relatively well-understood cryptographic task. In particular, it admits
many candidate instantiations along with highly efficient implementations.

Definition 3.3.1 (Pseudorandom generator [37, 129]). Let G : {0, 1}n → {0, 1}m

be a deterministic function, where m > n. We say that G is a (t, ε)-pseudorandom
generator if the following two distributions are (t, ε)-indistinguishable:

• Sample a random “seed” s ∈ {0, 1}n and output G(s).
• Sample a random string r ∈ {0, 1}m and output r.

A pseudorandom generator G : {0, 1}n → {0, 1}2n can be viewed as a pseudoran-
dom function F′s : {0, 1} → {0, 1}n over one input bit. For this special case the pair
of values (F′s(0), F′s(1)) should be indistinguishable from a truly random pair. This
is satisfied if we set F′s(0) = G0(s) and F′s(1) = G1(s), where G0(s) and G1(s) are
the first n bits and the last n bits of the output of G, respectively.

The above method extends naturally for larger domains. Suppose for example
that we wish to construct a two-bit input PRF Fs : {0, 1}2 → {0, 1}n, which is spec-
ified by its four values (Fs(00), Fs(01), Fs(10), Fs(11)). To this end one can define
the values of Fs by an inductive application of the pseudorandom generator:

G0(F′s(0)) G1(F′s(0)) G0(F′s(1)) G1(F′s(1)). (3.4)

Since F′s is pseudorandom we can replace it with a random R′ : {0, 1} → {0, 1}n, and
infer that distribution (3.4) is computationally indistinguishable from the distribu-
tion

G0(R′(0)) G1(R′(0)) G0(R′(1)) G1(R′(1)). (3.5)
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On the other hand the distribution (3.5) can be described as the pair of values ob-
tained by applying G on the independent random seeds R′(0) and R′(1). The pair
(G(R′(0)),G(R′(1)) is computationally indistinguishable from a pair of uniformly
random values. Therefore, distribution (3.4) is computationally indistinguishable
from the truth-table of a random function R : {0, 1}2 → {0, 1}n.

The GGM construction generalizes this idea naturally to larger input lengths. It
is described in Figure 3.1.

Building block: A length-doubling pseudorandom generator, G : {0, 1}n → {0, 1}2n

Function key: A seed s ∈ {0, 1}n for G
Function evaluation: On input x ∈ {0, 1}k define Fs : {0, 1}k → {0, 1}n as

Fs(x1 · · · xk) = Gxk (Gxk−1 (· · ·Gx1 (s) · · · )),

where G(s) = (G0(s),G1(s)) ∈ {0, 1}n × {0, 1}n.
Size: k · size(G)
Depth: k · depth(G)

Fig. 3.1: The Goldreich–Goldwasser–Micali construction

The construction can be thought of as a labeling of the leaves of a binary tree
of depth k, where the leaf indexed by x ∈ {0, 1}k is labeled by the value Fs(x). The
value at each leaf is evaluated in the time it takes to reach the leaf but is never stored.
Figure 3.2 illustrates the case k = 3.

s

G0(s)

G0(G0(s)) G1(G0(s))

Fs(010)

0

1

0

G1(s)

G0(G1(s)) G1(G1(s))

Fig. 3.2: Evaluating Fs(010) = G0(G1(G0(s)))

Theorem 3.3.2 ([64]). If G : {0, 1}n → {0, 1}2n is a (t, ε)-pseudorandom generator
then {Fs} is a (t′, kt′ε)-pseudorandom function family, as long as t′ = o(

√
t/k) and

the size of G is at most t′.
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Proof: We prove the theorem by induction on k. Given F′s : {0, 1}k−1 → {0, 1}n

define Fs : {0, 1}k → {0, 1}n as Fs(x, y) = Gx(F′s(y)). For the inductive step we will
apply the following claim. Let c denote the circuit size of G.

Claim 3.3.3. If F′s is a (t−O(kq2)+cq, q, ε′)-PRF then Fs is a (t−O(kq2), q, ε′+qε)-PRF.

Recall that a (t, q, ε)-PRF is a (t, ε)-PRF in which the distinguisher makes at most q
queries to the function (Definition 3.2.9).

Proof: Let (x, y) ∈ {0, 1} × {0, 1}k−1 be an oracle query made by a purported distin-
guisher D between Fs and a random R. Consider the following three games:

Fs: Sample random s ∈ {0, 1}n. Answer with Fs(x, y) = Gx(F′s(y)).
H: Sample random R′ : {0, 1}k−1→ {0, 1}n. Answer with H(x, y) = Gx(R′(y)).
R: Sample random R : {0, 1}k → {0, 1}n. Answer with R(x, y).

Claim 3.3.4. Games Fs and H are (t − O(kq2), ε′)-indistinguishable.

Proof: If D distinguishes Fs from H with advantage ε′ then consider the circuit
AF′ that simulates D by answering D’s queries (x, y) with Gx(F′(y)). Then AF′s and
AR′ are identically distributed to DFs and DH , respectively, so A is a circuit of size
at most t−O(kq2)+cq and query complexity q that distinguishes F′s from R′ with
advantage ε′. This contradicts (t−O(kq2)+cq, q, ε′)-pseudorandomness of F′s. ut

Claim 3.3.5. Games H and R are (t − O(kq2), qε)-indistinguishable.

Proof: Suppose that D distinguishes H from R with advantage qε. We use D
to build a circuit A of size t that distinguishes between q pseudorandom strings
(G0(si),G1(si)) and q random strings ri ∈ {0, 1}2n with advantage qε. By Proposi-
tion 3.2.4 this is in contradiction with the assumed (t, ε)-pseudorandomness of G.

The distinguisher A obtains q strings zi = (z0i, z1i) ∈ {0, 1}2n as input. It answers
D’s query (x, y) ∈ {0, 1} × {0, 1}k−1 with zxi, where the index i = i(y) is chosen to
ensure consistency among D’s queries. For example i(y) can be set to the small-
est previously unused index when y is queried for the first time. This tracking of
queries can be implemented with O(kq2) additional gates. Then the random vari-
ables A(G(s1), . . . ,G(sq)) and A(r1, . . . , rq) are identically distributed as DH and DR,
respectively, so A has the same distinguishing advantage as D. ut

Combining the two claims with the triangle inequality (Proposition 3.2.3), we
get that Fs is a (t − O(kq2), q, ε′ + qε)-PRF. ut

We now prove that for every q ≤ t, Fs is a (t−O(kq2)−c(k−1)q, q, ((k−1)q+1)ε)-
PRF by induction on k. In the base case k = 1, Fs(x) = Gx(s) and Fs is (t, q, ε)-secure
by the assumed security of G. The inductive step is immediate from the claim we
just proved.

If we set q = α
√

t/k for a sufficiently small absolute constant α > 0, assume that
c ≤ q, and simplify the expression, we get that Fs is a (t/2, q, kqε)-PRF. Because
q ≤ t/2, Fs is a (q, kqε)-PRF. ut
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The quadratic loss in security can be traced to the distinguisher transformation
that enforces the distinctness of its queries. A simple “data structure” for this pur-
pose has size that is quadratic in the number of queries. In other computational
models, such as random access machines, more efficient data structures can be used,
resulting in better security parameters.

Extensions and properties. The GGM construction readily extends to produce a
PRF from {1, . . . , d}n to {1, . . . , d} from a PRG G : {0, 1}n → {0, 1}dn. The output
of such a PRG can sometimes be naturally divided up into d blocks of n bits. This
variant is particularly attractive when random access to the blocks is available (see
Section 3.4.2 for an example).

The security of the GGM PRF extends to quantum adversaries, where the distin-
guisher may query the function in superposition [131].

The GGM construction is not correlation intractable [63]: it is possible to effi-
ciently find an x ∈ {0, 1}k that maps to say 0` given the key s for a suitable instan-
tiation of the PRG G. At the same time, the GGM construction is weakly one-way
for certain parameter settings [51]: for a nonnegligible fraction of the inputs x it is
infeasible to recover x given s and Fs(x).

3.3.2 The Naor–Reingold Construction
Using pseudorandom synthesizers as building blocks, Naor and Reingold give a
generic construction of a PRF [106]; see Fig. 3.3. Synthesizers are not as well un-
derstood as PRGs, and in particular do not have as many candidate instantiations.
Most known instantiations rely on assumptions of a “public-key” flavor. Towards the
end of this section we show how weak PRFs give rise to pseudorandom synthesizers,
opening the door for basing synthesizers on “private-key” flavored assumptions.

Definition 3.3.6 (Pseudorandom synthesizer [106]). Let S : {0, 1}n × {0, 1}n →
{0, 1}n be a deterministic function. We say that S is a (t, q, ε)-pseudorandom syn-
thesizer if the following two distributions are (t, ε)-indistinguishable:

• Sample a1, . . . , aq, b1, . . . , bq ← {0, 1}n. Output the q2 values S (ai, b j).
• Output q2 independent uniform random strings in {0, 1}n.

A synthesizer can be seen as an almost length-squaring pseudorandom generator
with good locality properties, in that it maps 2q random “seed” elements to q2 pseu-
dorandom elements, and any component of its output depends on only two compo-
nents of the input seed.

Using a recursive tree-like construction, it is possible to obtain PRFs on k-bit
inputs, which can be computed using a total of about k synthesizer evaluations,
arranged in log k levels. Given a synthesizer S and two independent PRF instances
F0 and F1 on t input bits each, one gets a PRF on 2t input bits, defined as

F(x1 · · · x2t) = S
(
F0(x1 · · · xt), F1(xt+1 · · · x2t)

)
. (3.6)

The base case of a 1-bit PRF can trivially be implemented by returning one of two
random strings in the function’s secret key.
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Building block: A synthesizer S : {0, 1}n × {0, 1}n → {0, 1}n

Function key: A collection of 2k strings in {0, 1}n, where k is a power of two
Function evaluation: On input x ∈ {0, 1}k recursively define Fs : {0, 1}k → {0, 1}n as

Fs(x) =

S (Fs0 (x0), Fs1 (x1)), if k > 1,
sx, if k = 1,

where z0 and z1 denote the left and right halves of the string z.
Size: k · size(S )
Depth: log k · depth(S )

Fig. 3.3: The Naor–Reingold construction

The evaluation of Fs can be thought of as a recursive labeling process of a binary
tree with k leaves and depth log k. The i-th leaf has two possible labels: si,0 andsi,1.
The i-th input bit xi selects one of these labels si,xi . The label of each internal node
at depth d is the value of S on the labels of its children, and the value of Fs is simply
the label of the root; see Fig. 3.4.

This labeling process is very different than the one associated with the GGM
construction. First, the binary tree is of depth log k instead of depth k as in GGM.
Second, the labeling process starts from the leaves instead of from the root. More-
over, here each input defines a different labeling of the tree, whereas in GGM the
labeling of the tree is fully determined by the key.

Fs(10110110) = S
(
S
(
S (s1,1, s2,0), S (s3,1, s4,1)

)
, S

(
S (s5,0, s6,1), S (s7,1, s8,0)

))
S (·, ·)

S (·, ·)

S (s1,1, s2,0)

s1,0 s1,1 s2,0 s2,1

S (s3,1, s4,1)

s3,0 s3,1 s4,0 s4,1

S (·, ·)

S (s5,0, s6,1)

s5,0 s5,1 s6,0 s6,1

S (s7,1, s8,0)

s7,0 s7,1 s8,0 s8,1

Fig. 3.4: Evaluating Fs(x) at x = 10110110
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Theorem 3.3.7 ([106]). If S : {0, 1}n × {0, 1}n → {0, 1}n is a (t, q, ε)-pseudorandom
synthesizer then {Fs} is a (q, (k− 1)ε)-pseudorandom function family, as long as the
size of S is at most q and that q = o(

√
t/max{k, n} log k).

Proof: We prove the theorem by induction on k. Given F′s : {0, 1}k → {0, 1}n define
Fs : {0, 1}2k → {0, 1}n by Fs0,s1 (x0, x1) = S (F′s0

(x0), F′s1
(x1)). Let c be the size of S

and k? = max{k, n}.

Claim 3.3.8. If F′s is a (t+O(k?q2 + ckq), q, ε′)-PRF then Fs is a (t, q, 2ε′+ε)-PRF.

Proof: Let (x0, x1) ∈ {0, 1}k × {0, 1}k be an oracle query made by a purported
distinguisher D between Fs and a random R. Consider the following four games:

Fs: Sample random s0, s1 ← {0, 1}2k×n. Answer with S (F′s0
(x0), F′s1

(x1)).
H: Sample random R0,R1 : {0, 1}k → {0, 1}n. Answer with S (F′s0

(x0),R1(x1)).
H′: Sample random R0,R1 : {0, 1}k → {0, 1}n. Answer with S (R0(x0),R1(x1)).
R: Sample a random R : {0, 1}2k → {0, 1}n. Answer with R(x0, x1).

Claim 3.3.9. Games Fs and H are (t, q, ε′)-indistinguishable.

Proof: If this were not the case, namely there is a distinguisher D with the corre-
sponding parameters, then F′s1

and R1 would be distinguishable by a circuit AF that
simulates D and answers each query x by S (F′s0

(x0), F(x)). The key s0 can be hard-
wired to maximize the distinguishing advantage between F′s1

and R. The additional
complexity of A is (c+O(1))k gates per query, as the evaluation of F′s0

requires k−1
evaluations of S . This contradicts the assumed security of F′s1

. ut

Claim 3.3.10. Games H and H′ are (t, q, ε′)-indistinguishable.

Proof: The proof is analogous to the previous claim, except that now AF answers
each query x with S (F(x0),R1(x1)). The distinguisher emulates the function R1(x1)
by answering every new query with a fresh random string (eventually hardwired
to maximize the distinguishing advantage). This requires tracking previous queries,
which can be accomplished with O(kq2) additional gates. Another cq gates are suf-
ficient for evaluating the synthesizer. The resulting circuit A has size t + O(kq2 + cq)
and distinguishes F′s0

from R0 with q queries and advantage ε′, violating the as-
sumed security of F′s0

. ut

Claim 3.3.11. Games H′ and R are (t, q, ε)-indistinguishable.

Proof: Suppose that D distinguishes between H′ and R in size t and q queries
with advantage ε. We will argue that D can be used to break the security of the
synthesizer. The challenge of the synthesizer consists of a collection of q2 strings
ui j, 1 ≤ i ≤ j ≤ q coming from one of the two distributions in Definition 3.3.6.

We describe the circuit A that distinguishes these two distributions. The circuit
A simulates D, answering query (x0, x1) with ui j where the indices i = i(x0) and
j = j(x1) are chosen in some manner consistent with past queries. For example,
i(x0) can set to the smallest previously unused index when x0 is queried for the



98 Andrej Bogdanov and Alon Rosen

first time, and similarly for j(x1). This tracking of queries can be implemented with
O(k?q2) additional gates. Then A perfectly simulates the games H′ and R under the
two distributions ui j from Definition 3.3.6, respectively, thereby distinguishing them
with advantage ε in size t + O(k?q2). ut

This completes the proof of Theorem 3.3.7. ut

We now prove by induction on k that Fs is a (t −O(k∗q2 + ckq) log k, q, (k − 1)ε)-
PRF. In the base case k = 1, F′s is perfectly secure, so it is a (t, q, 0)-PRF for all t
and q. The inductive step from length k to length 2k follows from the above claim.

Setting q = α
√

t/k? log k for a sufficiently small absolute constant α > 0 and
assuming that c ≤ q, after simplifying we obtain that Fs is a (t/2, q, (k − 1)ε)-PRF.
Since q ≤ t/2, Fs is in particular a (q, (k − 1)ε)-PRF. ut

The NR function can be shown to admit natural time/space tradeoffs, as well as
techniques for compressing the key size. These ideas are described in detail in [106].
As in the case of GGM, the NR construction is also secure against quantum distin-
guishers [131]. We next show that any weak PRF gives rise to a synthesizer.

Proposition 3.3.12. If Ws : {0, 1}n → {0, 1}n is a (t, ε)-weak PRF for uniformly dis-
tributed keys s ∈ {0, 1}n then the function S (s, x)=Ws(x) is a (t−cq2, q, ε+

(
q
2

)
· 2−n)-

pseudorandom synthesizer for every q, where c is the circuit size of Ws.

Proposition 3.3.12 assumes that the weak PRF is length preserving. This assump-
tion is essentially without loss of generality (see Section 3.5.1), though for efficiency
it may be desirable to guarantee this property directly by construction.

Proof: The q queries provided to the synthesizer’s adversary can be represented as
a q× q matrix. Assume for contradiction that there is a circuit D′ of size t − cq2 that
distinguishes between the following two distributions with advantage qε:

S : Sample random si, x j ∈ {0, 1}n. Output the q × q matrix S (si, x j) = Wsi (x j).
R: Sample q2 random entries ri j ∈ {0, 1}n. Output the q × q matrix ri j.

Let S ′ be the distribution S with the additional condition that the strings x j are
pairwise distinct. Distributions S and S ′ are (∞, q,

(
q
2

)
2−n)-indistinguishable.

Claim 3.3.13. Distributions S ′ and R are (t − cq2, q, ε)-indistinguishable.

Proof: Let Hi be the hybrid in which the first q − i rows are sampled from distri-
bution S ′ and the rest are sampled from distribution R. Then D′ distinguishes Hi?−1
and Hi? with advantage ε for some i?. This holds even after a suitable fixing of the
values si for all i < i? and ri j for all i > i? and j. Consider now the following distin-
guisher D: First, obtain samples (x1, y1), . . . , (xq, yq) from the oracle. Then generate
the matrix M whose (i, j)-th entry is Wsi (x j) for i < i∗, y j for i = i∗ and ri j for i > i∗

and simulate D′ on input M. Then D has size at most t and distinguishes Ws from a
random function with advantage at least ε. ut

The proposition now follows from the triangle inequality (Proposition 3.2.3). ut

Despite their close relation, in Section 3.7.6 we present evidence that pseudoran-
dom synthesizers are objects of higher complexity than weak PRFs.
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3.4 Instantiations

Why don’t they do all the riots
at the same time?

Charlie Rackoff (1980s)

The building blocks underlying the GGM and NR constructions can be instantiated
with specific number-theoretic and lattice-based computational hardness assump-
tions, resulting in efficient constructions of pseudorandom functions. The first class
of instantiations is based on the decisional Diffie–Hellman (DDH) problem. The sec-
ond class is based on the learning with errors (LWE) problem, via a deterministic
variant of LWE called learning with rounding (LWR).

Utilizing the structure of the constructions, it is possible to optimize efficiency
and obtain PRFs that are computable by constant-depth polynomial-size circuits
with unbounded fan-in threshold gates (TC0 circuits). Beyond giving rise to ef-
ficient PRFs that are based on clean and relatively well-established assumptions,
these constructions have direct bearing on our ability to develop efficient learning
algorithms and prove explicit lower bounds for the corresponding circuit classes
(see Section 3.6).

The algebraic structure underlying the PRF instantiations also opens the door
to more advanced applications such as verifiability, key homomorphism, and fast
homomorphic evaluation. Some of these are described in Section 3.8.

3.4.1 Number-Theoretic Constructions
We consider the availability of public parameters (G, g), where g is a randomly
chosen generator of a group G of prime order q with |q| = n. For concreteness think
of G as being a subgroup of Z∗p where p is a prime such that q divides p − 1.

The DDH problem. We say that the DDH problem is (t, ε)-hard in (G, g) if the
following two games are (t, ε)-indistinguishable:

• Sample random and independent a, b ∈ Zq and output (ga, gb, gab) ∈ G3.
• Sample random and independent a, b, c ∈ Zq and output (ga, gb, gc) ∈ G3.

For (t, ε)-DDH hardness to hold it is necessary that the discrete logarithm prob-
lem is (t, ε)-hard in the group G; namely no circuit of size less than t can find x
given gx with probability larger than ε. It is not known whether (t, ε)-hardness of
the discrete logarithm problem is sufficient for (poly(t), poly(ε))-DDH hardness.

The fastest known method for breaking DDH is to find the discrete logarithm of
ga or of gb.1 The best classical algorithms for finding discrete logarithms run in time
2Õ(n1/3). Thus, given the current state of knowledge, it does not seem unreasonable
to assume that there exist α, β > 0 such that DDH is (2nα , 2−nβ )-hard.

1 In particular, since discrete logarithms can be found in time poly(n) by a quantum algo-
rithm [123], then the DDH problem is not (poly(n), 1 − ε)-hard for quantum algorithms.
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Instantiating GGM using a DDH-based PRG. Consider the following family of
(effectively) length-doubling functions Gga : Zq → G × G, defined as:

Gga (b) = (gb, gab). (3.7)

When ga ∈ G and b ∈ Zq are sampled independently at random, the distribution
of Gga (b) is (t, ε)-indistinguishable from a random pair in G2 if and only if DDH
is (t, ε)-hard. This suggests using the function Gga as a PRG, and instantiating the
GGM construction with it. However, the efficiency of the resulting construction is
not very appealing, as it requires k sequential exponentiations modulo p.

To improve efficiency, Naor and Reingold [105] proposed the following construc-
tion of a DDH-based length-doubling PRG Gga : G→ G × G:

Gga (gb) = (G0
ga (gb),G1

ga (gb)) = (gb, gab). (3.8)

At a first glance this alternative construction does not appear useful, as it is not
clear how to compute Gga (gb) efficiently. Nevertheless, a closer look at the proof of
security of GGM reveals that efficient public evaluation of the underlying PRG is
not actually necessary. What would suffice for the construction and proof of GGM
to work is that the underlying PRG can be efficiently computed using the random
bits a that were used to sample its index ga.

The key observation is that, if a is known, then Gga (gb) can be efficiently evalu-
ated, and thus satisfies the required property.2 Invoking the GGM construction with
the PRG from (3.8), where at level i ∈ [k] one uses a generator indexed by gai for
independently and randomly chosen ai ∈ Zq, one obtains the PRF

Fa0,...,ak (x) = Gxk
gak (Gxk−1

gak−1 (· · ·Gx1
ga1 (ga0 ) · · · )). (3.9)

The final observation leading to an efficient construction of a PRF is that the
k sequential exponentiations required for evaluating Fā(x) can be collapsed into
a single subset product ax1

1 · · · a
xk
k , which is then used as the exponent of ga0 ; see

Fig. 3.5.

Public parameters: A group G and a random generator g of G of prime order q with |q| = n
Function key: A vector ā of k + 1 random elements a0, . . . , ak ∈ Z

∗
q

Function evaluation: On input x ∈ {0, 1}k define Fā : {0, 1}k → G as

Fā(x1 · · · xk) = ga0
∏k

i=1 axi
i .

Size: k · poly(log |G|)
Depth: O(1) (with threshold gates)

Fig. 3.5: The Naor–Reingold DDH-based construction

2 In a uniform model of computation (where randomness that maximizes distinguishing advantage
cannot be hardwired), it is also necessary to generate the distribution of Gga ’s output given its index
ga (this is in fact also possible since if b is known then Gga (gb) can be efficiently evaluated). Such
a requirement would have come up in the hypothesis of Proposition 3.2.4.
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Theorem 3.4.1 ([105]). If the DDH problem is (t, 1/2)-hard in (G, g) then {Fā} is
a (t′, ε′)-pseudorandom function family, as long as t′ = o(ε′2/3t1/3/k) and group
operations in G require circuit size at most t′.

Proof: As seen in (3.9), the function Fā is based on the GGM construction. Thus,
Theorem 3.4.1 follows from Theorem 3.3.2. The PRG from (3.8), which underlies
the construction, is (t, ε)-pseudorandom iff the DDH problem is (t, ε)-hard, meaning
that security depends on the hardness parameters of the DDH problem.

The DDH problem is random self-reducible: If it can be solved on a random
instance, then it can be solved on any instance. This can be leveraged to reduce
the distinguishing advantage at the cost of increasing the complexity of the distin-
guisher. Let op be the circuit size of a group operation in G.

Claim 3.4.2. If DDH is (t, 1/2)-hard then it is (o(ε2t− 10 · op), ε)-hard for all ε > 0.

Proof: Consider the randomized mapping T : G3 → G3 defined as

T (ga, gb, gc) =
(
(ga)r · gs1 , gb · gs2 , (gc)r · (ga)r·s2 · (gb)s1 · gs1·s2

)
,

where s1, s2, and r are uniformly and independently sampled in Zq. It can be verified
that T is computable using 10 group operations, given ga, gb, gc, s1, s2, and r. Letting
(ga′ , gb′ , gc′ ) = T (ga, gb, gc) and writing c = ab + e mod q, we have that:

a′ = ra + s1 mod q, b′ = b + s2 mod q, c′ = a′b′ + er mod q.

Using the fact that c = ab mod q if and only if e = 0 mod q and that if e ,
0 mod q then er mod q is uniformly distributed in Zq (since q is prime), it follows
that

• If c = ab then c′ = a′b′ and a′, b′ are uniform and independent in Zq.
• If c , ab then a′, b′, c′ are uniform and independent in Zq.

To obtain the desired parameters, invoke the distinguisher O(1/ε2) times indepen-
dently on the output of the reduction. Accept if the number of times the distinguisher
accepts exceeds a threshold that depends on the distinguisher’s acceptance proba-
bility (this can be determined in advance and hardwired). ut

The theorem follows by plugging the parameters into those of Theorem 3.3.2. ut

Efficiency. The evaluation of the NR function can be performed by invoking the
following two steps in sequence:

1. Compute the “subset product” a0 · a
x1
1 · · · a

xk
k mod q.

2. Compute the PRF output Fā(x) = ga0·a
x1
1 ···a

xk
k .

As shown in [118], both steps can be computed by constant-depth polynomial-
size circuits with threshold gates.3 Thus, if the DDH problem is indeed hard, PRFs
can be computed within the class TC0, which corresponds to such circuits.

3 The second step reduces to subset product by hardwiring gi = g2i
mod p for i = 1, . . . , dlog qe

and observing that gx =
∏

gxi
i mod p for x =

∑
2i xi.
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An additional efficiency optimization with interesting practical implications comes
from the observation that, for sequential evaluation, efficiency can be substantially
improved by ordering the inputs according to a Gray code, where adjacent inputs
differ in only one position. The technique works by saving the entire state of the
subset product

∏
ax1

i from the previous call, updating to the next subset product by
multiplying with either a j or a−1

j depending on whether the j-th bit of the next input
is turned on or off (according to the Gray code ordering). This requires only a single
multiplication per call (for the subset product part), rather than up to k − 1 when
computing the subset product from scratch.

Applications and extensions. The algebraic structure of the NR pseudorandom
functions has found many applications, including PRFs with “oblivious evalua-
tion” [55], verifiable PRFs [91], and zero-knowledge proofs for statements of the
form “y = Fs(x)” and “y , Fs(x)” [106]. Naor and Reingold [106], and Naor, Rein-
gold and Rosen [107] give variants of the DDH-based PRF based on the hardness
of RSA/factoring. The factoring-based construction directly yields a large number
of output bits with constant computational overhead per output bit. Such efficiency
cannot be attained generically (i.e., by applying a PRG to the output of a PRF).

3.4.2 Lattice-Based Constructions
Underlying the efficient construction of lattice-based PRFs are the (decision) learn-
ing with errors (LWE) problem, introduced by Regev, and the learning with round-
ing (LWR) problem, introduced by Banerjee, Peikert, and Rosen (BPR).

The LWE problem ([117]). We say that the LWE problem is (t,m, ε)-hard if the
following two distributions are (t, ε)-indistinguishable:

• Sample random s ∈ Zn
q and output m pairs (ai, bi)∈Zn

q × Zq, where ai’s are uni-
formly random and independent and bi = 〈ai, s〉+ei mod q for small random ei.

• Output m uniformly random and independent pairs (ai, bi) ∈ Zn
q × Zp.

One should think of the “small” error terms ei ∈ Z as being of magnitude ≈ αq,
and keep in mind that without random independent errors, LWE would be easy.
While the dimension n is the main hardness parameter, the error rate α also plays
an important role: as long as αq exceeds

√
n or so, LWE is as hard as approxi-

mating conjectured hard problems on lattices to within Õ(n/α) factors in the worst
case [117, 112, 94]. Moreover, known attacks using lattice basis reduction [87, 122]
or combinatorial/algebraic methods [36, 13] require time 2Ω̃(n/ log(1/α)). Unlike DDH,
no nontrivial quantum algorithms are known for LWE.

The learning with rounding problem is a “derandomized” variant of LWE, where
instead of adding a small random error term to 〈ai, s〉 ∈ Zq, one deterministically
rounds 〈ai, s〉 to the nearest element of a public subset of p well-separated values
in Zq, where p is much smaller than q. Since there are only p possible rounded
values in Zq, we view them as elements of Zp and denote the rounded value by
b〈ai, s〉ep ∈ Zp, where bxep equals b(p/q) · x mod qe mod p.
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The LWR problem ([17]). We say that the LWR problem is (t,m, ε)-hard if the
following two distributions are (t, ε)-indistinguishable:

• Sample random s ∈ Zn
q and output m pairs (ai, bi) ∈ Zn

q × Zp, where the ai’s are
uniformly random and independent and bi = b〈ai, s〉ep.

• Output m uniformly random and independent pairs (ai, bi) ∈ Zn
q × Zp.

The LWR problem can be hard only if q > p, for otherwise no error is introduced.
The “absolute” error is roughly q/p, and the “error rate” relative to q (the analogue
of the parameter α in the LWE problem) is on the order of 1/p.

An LWE-error distribution is B-bounded if for all errors e in the support of the
distribution it holds that e ∈ [−B, B].4 Let rd be the cost of rounding a single element
in Zq into an element in Zp.

Proposition 3.4.3 ([17]). If the LWE problem is (t,m, ε)-hard for some B-bounded
error distribution then the LWR problem is (t − m · rd,m,mp(2B + 1)/q) + ε)-hard.

The proof relies on the fact that when e is small relative to q/p we have
b〈a, s〉 + eep = b〈a, s〉ep with high probability (see Figure 3.6), while bxep for a ran-
dom x ∈ Zq is random in Zp (assuming p divides q). Therefore, given samples (ai, bi)
of an unknown type (either LWE or uniform), we can round the bi terms to generate
samples of a corresponding type (LWR or uniform, respectively).

0

1

2

3
4

5678
9

10
11

12

13

14

15

16
17

18
19 20 21 22

23
24

25

26b
·
e

p
=

0

b ·
e p

=
1

b · ep = 2

Fig. 3.6: Rounding an LWE sample 〈a, x〉 + e with q = 27, p = 3, and B = 2.
The shaded areas denote the possibility of a rounding error. For instance, when
〈a, x〉 = 3, b〈a, x〉ep = 0 but it is possible that b〈a, x〉 + eep = 1, but when 〈a, x〉 = 17,
b〈a, x〉ep and b〈a, x〉 + eep are equal with probability one

4 Under typical LWE error distributions the event ei < [−B, B] does have some positive probability.
This probability, however, is usually negligible (think of a Gaussian distribution with α ≈ B/q),
and so one can conduct the analysis conditioning on the event not occurring without substantial
loss in parameters.
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Proof: Consider the following three distributions:

H0: Output m pairs (ai, b〈ai, s〉ep) ∈ Zn
q × Zp.

H1: Output m pairs (ai, b〈ai, s〉 + eiep) ∈ Zn
q × Zp.

H2: Output m pairs (ai, bbiep) ∈ Zn
q × Zp, where the bi’s are random.

In all the distributions above, the ai’s are uniformly random and independent in Zn
q

and the ei’s are chosen independently from the LWE error distribution. For sim-
plicity, we assume that s is random in the set of nonzero divisors Zn∗

q = {x ∈ Zn
q :

gcd(x1, ..., xn, q) = 1}.

Claim 3.4.4. Distributions H0 and H1 are (∞,mp(2B + 1)/q)-indistinguishable.

Proof: Since the ei’s are selected according to a B-bounded error distribution, it
holds that ei ∈ [−B, B] for all i ∈ [m]. We thus know that, as long as 〈ai, s〉 does not
fall within ±B of a multiple of q/p, it is guaranteed that b〈ai, s〉 + eiep = b〈ai, s〉ep.

For any fixed s ∈ Zn∗
q the probability over random ai ∈ Z

n
q that 〈ai, s〉 ∈ Zq falls

within ±B of a multiple of q/p is p(2B + 1)/q. By the union bound:

Pr
[
∃i ∈ [m] : b〈ai, s〉 + eiep , b〈ai, s〉ep

]
≤ mp(2B + 1)/q,

where probability is taken over random and independent ai ∈ Z
n
q and ei ∈ [−B, B].

Since this holds for every fixed s ∈ Zn∗
q then it also holds for random s. ut

Claim 3.4.5. Distributions H1 and H2 are (t − m · rd, ε)-indistinguishable.

Proof: Suppose that there exists an oracle circuit D of size t − m · rd that distin-
guishes between H1 and H2, and consider the circuit D′ of size t that on input m
pairs (ai, bi) ∈ Zq ×Zq simulates D on input (ai, bbiep) ∈ Zq ×Zp. If (ai, bi) are LWE
samples then the input fed to D is distributed as in H1, whereas if (ai, bi) are random
then the input fed to D is distributed as H2. Thus, D′ has the same distinguishing
advantage as D, in contradiction to the (t, ε)-hardness of LWE. ut

The theorem follows by combining the two claims with Proposition 3.2.3 and by
observing that H2 is distributed uniformly at random in Zn

q × Zp. ut

Proposition 3.4.3 gives a meaningful security guarantee only if q � mp(2B + 1).
Nevertheless, the state of the art in attack algorithms [36, 13, 87, 122] indicates that,
as long as q/p is an integer (so that bxep for a random x ∈ Zq is random in Zp)
and is at least Ω(

√
n), LWR may be exponentially hard for any p = poly(n), and

superpolynomially hard when p = 2nε for any ε < 1. It is open whether one could
obtain worst-case hardness guarantees for LWR in such parameter regimes.©?

In some applications, such as the PRG described below, the parameter m can
be fixed in advance, allowing smaller q. Several works have studied LWR in this
setting [7, 38, 6]. In other applications, however, m cannot be a priori bounded. It is
an open problem whether the dependency of q on m can be removed.©?
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Instantiating GGM using an LWR-based PRG. The LWR problem yields a
simple and practical pseudorandom generator GA : Zn

q → Z
m
p , where the moduli

q > p and the (uniformly random) matrix A ∈ Zn×m
q are publicly known [17]. Given

a seed s ∈ Zn
q, the generator is defined as

GA(s) =
⌊
AT · s

⌉
p
, (3.10)

where rounding is performed coordinate-wise. The generator’s seed length (in bits)
is n log2 q and its output length is m log2 p, which gives an expansion rate of
(m log2 p)/(n log2 q) = (m/n) logq p. For example, to obtain a length-doubling PRG,
we may set q = p2 = 22k > n and m = 4n. In this case rounding corresponds to
outputting the k most significant bits.

When evaluating the GGM construction instantiated with GA, one can get the
required portion of GA(s) by computing only the inner products of s with the cor-
responding columns of A, not the entire product AT · s. This becomes particularly
attractive if one considers GGM trees with fan-in d > 2.

Instantiating NR using an LWR-based weak PRF. Consider the following weak
pseudorandom function Ws : Zn

q → Zp, indexed by s ∈ Zn
q:

Ws(a) = b〈a, s〉ep. (3.11)

Weak (t,m, ε)-pseudorandomness of Ws follows from (t,m, ε)-hardness of the LWR
problem, using the fact that the ai vectors are public [17]. To instantiate the NR con-
struction of PRFs from synthesizers, invoke Proposition 3.3.12, giving a synthesizer
from a weak PRF. This requires the weak PRF’s output length to match its input
length. To this end, one can apply an efficient bijection, K : Z`×`p → Zn×`

q , for ` ≥ n
such that p` = qn, and modify the weak PRF from Equation (3.11) as follows:

WS(A) := K
(
bAT · Sep

)
∈ Zn×`

q ,

where S,A ∈ Zn×`
q . The resulting synthesizer can be plugged into Equation (3.6) to

give LWR-based PRFs F{Si,b} : {0, 1}
k → Zn×`

q . Security assuming (t,m`, ε)-hardness
of LWE follows from combining Propositions 3.4.3 and 3.3.12 with Theorem 3.3.7.
This results in a (t′, ε′)-pseudorandom function family, where t′ = t − poly(n,m, `)
and ε′ = O(`(k − 1)(mp(2B + 1)/q + ε)). As a concrete example, the evaluation of
this PRF when k = 8 (so x = x1 · · · x8) unfolds as follows:⌊⌊⌊

S1,x1 · S2,x2

⌉
q·
⌊
S3,x3 · S4,x4

⌉
q

⌉
q
·
⌊⌊

S5,x5 · S6,x6

⌉
q·
⌊
S7,x7 · S8,x8

⌉
q

⌉
q

⌉
q
,

where for clarity we let bSi,xi · S j,x jeq stand for K
(
bSi,xi · S j,x jep

)
.

A direct construction of PRFs. One drawback of the synthesizer-based PRF is
that it involves log k levels of rounding operations, which appears to lower-bound
the depth of any circuit computing the function by Ω(log k).
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Aiming to get around this issue, BPR suggested to imitate the DDH-based con-
struction, where sequential exponentiations are collapsed into one subset product.
Since such a collapse is not possible in the case of LWR, they omitted all but the
last rounding operation, resulting in a “subset-product with rounding” structure.

Public parameters: Moduli q � p
Function key: A random a ∈ Zn

q and k random short (B-bounded) Si ∈ Z
n×n
q

Function evaluation: On input x ∈ {0, 1}k define F = Fa,{Si} : {0, 1}
k → Zn

p as

Fa,{Si}(x1 · · · xk) =

aT ·

k∏
i=1

Sxi
i

p

.

Size: poly(k, n)
Depth: O(1) (with threshold gates)

Fig. 3.7: The Banerjee–Peikert–Rosen LWR-based construction

The BPR function can be proved to be pseudorandom assuming that the LWE
problem is hard. Two issues that affect the parameters are the distribution of the
secret key components Si, and the choice of q and p. For the former, the proof re-
quires the Si to be short. (LWE is no easier to solve for such short secrets [10].) This
appears to be an artifact of the proof, which can be viewed as a variant of the LWE-
to-LWR reduction from Proposition 3.4.3, enhanced to handle adversarial queries.

Theorem 3.4.6 ([17]). If the LWE problem is (t,mn, ε)-hard for some B-bounded
error distribution then {Fa,{Si}} is a (t′,m, ε′)-pseudorandom function family, where

t′ = t − m max{n, 2k}op − O(nm2) − n · rd, ε′ = mnp(2nkBk+1 + 1)/q + kεn,

and op is the cost of a group operation in Zq.

Proof: Define the function P : {0, 1}k → Zn
q as

P(x) = Pa,{Si}(x) := aT ·

k∏
i=1

Sxi
i (3.12)

to be the subset product inside the rounding operation. The fact that F = bPep lets us
imagine adding independent error terms to each output of P. Consider then a related
randomized function P̃ that computes the subset product by multiplying by each Sxi

i
in turn, but also adds a fresh error term immediately following each multiplication.

By LWE-hardness and using induction on k, the randomized function P̃ can be
shown to be itself pseudorandom (over Zq), hence so is bP̃ep (over Zp). Moreover, for
every queried input, with high probability bP̃ep coincides with bPep = F, because
P and P̃ differ only by a cumulative error term that is small relative to q (this is
where we need to assume that Si’s entries are small). Finally, because bP̃ep is a
(randomized) pseudorandom function over Zp that coincides with the deterministic
function F on all queries, it follows that F is pseudorandom as well.
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Specifically, consider the following three games:

R: Give adaptive oracle access to a random function R : {0, 1}k → Zn
q.

P: Give adaptive oracle access to P : {0, 1}k → Zn
q defined in (3.12).

P̃: Give adaptive oracle access to P̃ : {0, 1}k → Zn
q inductively defined as:

• For i = 0, define P̃0(λ) = aT, where λ is the empty string.
• For i ≥ 1, and on input (x, y) ∈ {0, 1}i−1×{0, 1}, define P̃i : {0, 1}i → Zn

q as

P̃i(x, y) = P̃i−1(x) · Sy
i + y · ex, (3.13)

where a,S1, . . . ,Sk are sampled at random and the ex ∈ Z
n
q are all sampled

independently according to the B-bounded LWE error distribution.

The function P̃ = P̃k is specified by a, {Si}, and exponentially many vectors ex. The
error vectors can be sampled “lazily”, since the value of P̃(x) depends only on a,
{Si}, and ex.

Lemma 3.4.7. Games bPep and bP̃ep are (∞,m,mnp(2nkBk+1+1)/q)-indistinguishable.

Proof: Observe that for x ∈ {0, 1}k

P̃(x) = (· · · ((aT · Sx1
1 + x1 · eλ) · Sx2

2 + x2 · ex1 ) · · · ) · Sxk
k + xk · ex1···xk−1 mod q

= aT ·

k∏
i=1

Sxi
i︸      ︷︷      ︸

P(x)

+ x1 · eε ·
k∏

i=2

Sxi
i + x2 · ex1 ·

k∏
i=3

Sxi
i + · · · + xk · ex1···xk−1︸                                                               ︷︷                                                               ︸

ex

modq.

Now since both Si and ei are sampled from a B-bounded distribution, then each entry
of an “error term” vector ex is bounded by nkBk+1 (the magnitude being dominated
by the entries of eε ·

∏k
i=2 Sxi

i ). By an analogous argument to the one in the proof of
Proposition 3.4.3, it follows that, for every fixed choice of S1, . . . ,Sk,

Pr
a

[
∃x : bP(x) + exe , bP(x)ep

]
≤ mnp(2nkBk+1 + 1)/q.

Since this holds for every choice of Si’s, it also holds for a random choice. ut

Lemma 3.4.8. Games bP̃ep and bRep are (t−2mkop−nrd,m, kεn)-indistinguishable.

Proof: For i ∈ [k], consider the following games:

Ri: Give adaptive oracle access to a random function Ri : {0, 1}i → Zn
q.

P̃i: Give adaptive oracle access to the function P̃i : {0, 1}i → Zn
q as defined in (3.13).

Hi: Give adaptive oracle access to the function Hi : {0, 1}i → Zn
q, defined as

Hi(x, y) = ax · Sy
i + y · ex, (3.14)

where (x, y) ∈ {0, 1}i−1 × {0, 1}, and ax, Si, and ex are all sampled at random.
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We prove inductively that P̃k and Rk are (t−2mkop,m, kεn)-indistinguishable. For the
induction basis we have that P̃0 and R0 are (∞,m, 0)-indistinguishable by definition,
and so are in particular (t,m, 0)-indistinguishable. For the inductive step, suppose
that P̃i−1 and Ri−1 are (t − 2m(i − 1)op,m, (i − 1)εn)-indistinguishable.

Claim 3.4.9. Games P̃i and Hi are (t − 2miop,m, (i − 1)εn)-indistinguishable.

Proof: Suppose that there exists a circuit D of size t − 2miop that distinguishes
between P̃i and Hi with advantage (i − 1)εn using m queries. We use D to build an
A that (t − 2m(i − 1)op,m, (i − 1)εn)-distinguishes between P̃i−1 and Ri−1.

The distinguisher A starts by sampling a random S ∈ Zn×n
q . Then, given a query

of the form (x, y) ∈ {0, 1}i−1 × {0, 1} from D, it queries its oracle with input x to
obtain ax, and replies to D with ax · Sy + y · ex, using a random LWE error ex.

If A’s oracle is distributed according to P̃i−1, then A’s replies to D are distributed
as P̃i. On the other hand, if A’s oracle is distributed according to Ri−1, then ax =

Ri−1(x) is random, and so A’s replies are distributed as Hi. Thus, A has the same
advantage as D. Accounting for the two additional operations required by A for
each of the m queries made by D we get that A is of size t − 2miop + 2mop. ut

Claim 3.4.10. Games Hi and Ri are (t − mnop − O(nm2),m, εn)-indistinguishable.

Proof: Using a hybrid argument (akin to the proof of Proposition 3.2.4) it can be
shown that the (t,mn, ε)-hardness of LWE implies that the following two distribu-
tions are (t − mnop,m, εn)-indistinguishable:

• Sample a random S ∈ Zn×n
q and output ((a1,b1) . . . , (am,bm)) ∈ (Zn

q × Z
n
q)m,

where the a j’s are uniformly random and b j = aT
j · S + e j mod q for random e j.

• Output m uniformly random pairs ((a1,b1) . . . , (am,bm)) ∈ (Zn
q × Z

n
q)m.

Suppose that there exists a distinguisher D of size t − mnop − O(nm2) that distin-
guishes between Hi and Ri with m queries and advantage εn. We use D to build a
distinguisher A that (t−mnop,m, εn)-distinguishes the two distributions from above.

Given m pairs (a j,b j) ∈ Zn
q × Z

n
q, the distinguisher A emulates an oracle for D as

follows: for j ∈ [m], answer the query (x j, y j) ∈ {0, 1}i−1 × {0, 1} given by D with a j

if y j = 0 and with b j if y j = 1. Similarly to Theorem 3.3.2, O(nm2) additional gates
are required for A to memorize previous answers so that he can answer consistently.

If b j = aT
j ·S + e j mod q then the replies given by the above oracle are distributed

exactly as in (3.14) (with Si = S), and hence according to Hi. On the other hand,
if b j is random, then the oracle’s replies are random and independent and hence
distributed according to Ri. Thus A has the same advantage as D. ut

Combining the two claims using Propositions 3.2.3 and 3.2.4, we get that games
P̃i and Ri are (min{t−mnop−O(nm2), t−2miop},m, (i−1)εn+εn)-indistinguishable.
Thus, games P̃k and Rk are (t −m max{n, 2k}op−O(nm2),m, kεn)-indistinguishable.

Since P̃k = P̃ and Rk = R, we finally conclude that the games bP̃e and bRe are
(t − m max{n, 2k}op − O(nm2) − n · rd,m, kεn)-indistinguishable. ut

The theorem now follows by combining Lemma 3.4.7 with Lemma 3.4.8 via the
triangle inequality (Proposition 3.2.3), and by observing that F = bPe and that bRe
is a random function from {0, 1}k to Zn

p (assuming p divides q). ut
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Parameters. In the proof, the gap between P and P̃ grows exponentially in k,
because noise is added after each multiplication by an Si. So in order to ensure that
bP̃ep = bPep on all queries, we need both q and 1/α to exceed (nB)k+1 = nΩ(k).
However, as in Proposition 3.4.3, it is unclear whether such large parameters are
necessary, or whether Si really need to be short. It would be desirable to have a
security reduction for smaller q and 1/α, ideally both poly(n) even for large k.©?

It would be even better if the construction were secure if the Si were uniformly
random in Zn×n

q , because one could then recursively compose the function in a k-ary
tree to rapidly extend its input length.©?

One reason for optimism (beyond the fact that no attacks are known) is that the
PRF does not actually expose any low-error-rate LWE samples to the attacker; they
are used only in the proof as part of a thought experiment. This appears to be related
to the so-called hidden number problem (see, e.g., [2]). It would be interesting to
investigate whether there exist connections between the problems.©?

A closely related PRF, due to Banerjee and Peikert [16], is described in Sec-
tion 3.8.1. This PRF achieves the tightest known tradeoffs between LWE-based se-
curity and parallellism, though if one were to instantiate it with concrete parameters,
then it would still be slower than instantiations of the subset product with rounding
PRF with comparable security (see description of the SPRING family below).

Efficiency. The fastest instantiations of the PRF use ring elements instead of ma-
trices. In the ring variant, a is replaced with a uniform a ∈ Rq for some polynomial
ring Rq (e.g., Zq[X]/(Xn +1) for n a power of 2), and each Si by some si ∈ R∗q, the
set of invertible ring elements modulo q.5 This function is particularly efficient to
evaluate using the discrete Fourier transform, as is standard with ring-based prim-
itives (see, e.g., [93, 94]). Similarly to [106], one can optimize the subset-product
operation via preprocessing, and evaluate the function in TC0.

The functions are amenable to the same key-compression and amortization
tehniques as the one used to optimize the performance of the NR DDH-based PRFs.

The SPRING family of PRFs ([15]). The SPRING (Subset Product with Round-
ing over a Ring) family of functions is a concrete instantiation of the PRF described
in Figure 3.7 (aiming for 128-bit security), with parameters

n = 128, q = 257, p = 2, k = 128.

Using “Gray code” amortization, an implementation of SPRING was shown to per-
form as much as 4x slower than that of AES-128 (in software) with further potential
optimization [15, 46]. We describe the main ideas behind the implementation.

The key, consisting of a, s1, . . . , sk ∈ R∗q, is stored as vectors in Zn
q using the DFT

or “Chinese remainder” representation mod q (that is, by evaluating a and the si

5 Here, hardness is based on the ring-LWE problem [94], in which we are given noisy/rounded ring
products bi ≈ ai · s, where s and the ai are random elements of Rq, and the error terms are “small”
in a certain basis of the ring; the goal again is to distinguish these from uniformly random pairs.
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as polynomials at the n roots of Xn + 1 mod q), so that multiplication of two ring
elements corresponds to a coordinate-wise product. Then to evaluate the function,
one computes a subset product of the appropriate vectors, interpolates the result
using an n-dimensional FFT over Zq, and rounds coordinate-wise. For k = ω(log n),
the runtime is dominated by the kn scalar multiplications in Zq to compute the subset
product; in parallel, the arithmetic depth (over Zq) is O(log(nk)).

The subset-product part of the function might be computed even faster by stor-
ing the discrete logs of the Fourier coefficients of a and si, with respect to some
generator g of Z∗q. The subset product then becomes a subset sum, followed by ex-
ponentiation modulo q, which can be implemented by table lookup if q is relatively
small. Assuming that additions modulo q − 1 are significantly less expensive than
multiplications modulo q, the sequential running time is dominated by the O(n log n)
scalar operations in the FFT, and the parallel arithmetic depth is again O(log n).

3.5 Transformations

Do you have the notion of a refill?
Shafi Goldwasser (1995)

The significance of pseudorandom functions can be partly explained by their re-
markable robustness and flexibility. In Section 3.2.3 we saw that the size of the
function range is essentially irrelevant in the PRF definition. PRFs are similarly ro-
bust with respect to the choice of domain size: the domain can be easily enlarged and
restricted for strong and weak PRFs alike. Domain extension can be accomplished
with the help of pairwise independence, a restricted notion of pseudorandomness
for which simple, unconditional constructions are available.

With regard to flexibility, PRFs serve as the main building block used in the con-
struction of more complex pseudorandom functionalities. The best-known example
is that of pseudorandom permutations, but the paradigm can be applied more gen-
erally to obtain succinct implementations of various huge random objects such as
pseudorandom codes and pseudorandom graphs.

3.5.1 Domain Extension (and Restriction)
The domain extension problem is to efficiently construct a PRF on long inputs from
a PRF on relatively short inputs. The GGM and NR constructions can be viewed as
domain extension procedures in which the input length grows by one bit and doubles
in every stage, respectively. Consequently, the complexity of the domain-extended
PRF grows with the resulting input size (at different rates in the two constructions).

We present a domain extension procedure of Levin [88] in which the efficiency
of the original PRF is essentially preserved. However, unlike in the GGM and NR
constructions, the original domain size affects the security of the domain-extended
PRF. Levin’s construction makes use of pairwise independent functions.
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Definition 3.5.1 (Pairwise independence). A family {Hs : {0, 1}k → {0, 1}k
′

} of
functions is pairwise independent if it is perfectly indistinguishable from a random
function by any distinguisher that makes at most two queries.

In other words, {Hs} is (∞, 2, 0)-indistinguishable from random. This is a special
case of the notion of bounded independence (see Definition 3.7.1 in Section 3.7).
Pairwise independent hash families can have size as small as linear in k + k′ [78].

Theorem 3.5.2. If Hs : {0, 1}k → {0, 1}k
′

is a pairwise independent family of func-
tions and F′s′ : {0, 1}

k′ → {0, 1}` is a (t, q, ε)-PRF then the function Fs,s′ (x) =

F′s′ (Hs(x)) is a (t − c, q, ε +
(

q
2

)
· 2−k)-PRF, where c is the circuit size of Hs.

Proof: We analyze the advantage of the distinguisher with respect to the following
sequence of games:

F′: Sample s and s′. Answer query x by F′s′ (Hs(x)).
R′: Sample s and R′ : {0, 1}k

′

→ {0, 1}`. Answer query x by R′(Hs(x)).
R: Sample R : {0, 1}k → {0, 1}n. Answer query x by R(x).

Games F′ and R′ can be shown to be (t − c, q, ε)-indistinguishable using a standard
simulation argument.

Claim 3.5.3. Games R′ and R are (∞, q,
(

q
2

)
· 2−k/2)-indistinguishable.

Proof: We will assume, without loss of generality, that the distinguisher’s queries
are pairwise distinct. We relate R′ and R to the following pair of games:

C: Sample s. Answer query x by collision if Hs(x) = Hs(x′) for some previously
queried x′, and by ⊥ if not.

⊥: Answer every query by ⊥.

If games C and ⊥ are (∞, q, ε)-indistinguishable so must be R′ and R: Unless a
collision occurs, the answers of R′ and R are identically distributed (to a sequence
of independent random strings).

Any distinguisher between C and ⊥ is essentially nonadaptive: The query se-
quence x1, . . . , xq can be extracted by assuming that the distinguisher interacts with
the ⊥ oracle. Its advantage equals the probability of a collision, which can be
bounded by

Pr[collision] ≤
∑

1≤i< j≤q

Pr[Hs(xi) = Hs(x j)] =

(
q
2

)
· 2−k.

The inequality is obtained by taking a union bound over all pairs of queries, while
the equality follows from pairwise independence. ut

The theorem follows by applying the triangle inequality. ut
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The security guarantee in Theorem 3.5.2 becomes meaningless when the num-
ber of queries exceeds 2k/2. This is unavoidable by the birthday paradox: A dis-
tinguisher that looks for collisions among 2k/2 random queries has constant advan-
tage. Berman, Haitner, Komargodski, and Naor [28] give a different domain exten-
sion procedure with improved security: Their construction uses two independent
instances of the PRF F′s and has security that is independent of the input length k,
as long as the number of queries is at most 2k−2.

Domain restriction and range extension for weak PRFs. Domain extension for
weak PRFs is rather straightforward: If F′s : {0, 1}k

′

→ {0, 1}` is a (t, q, ε)-weak PRF
then the function Fs(x, y) = F′s(x) is a (t, q, ε +

(
q
2

)
2−k′ )-weak PRF.

Naor and Reingold [105] consider domain restriction—namely, the problem of
reducing the input length—for weak PRFs. (Their construction applies, more gen-
erally, to synthesizers.) They prove the following statement, which follows by an
application of Proposition 3.2.4:

Proposition 3.5.4. If F′s is a (t, q, ε)-weak PRF and G : {0, 1}k → {0, 1}k
′

is a (t +

c, ε′)-PRG then the function Fs(x) = F′s(G(x)) is a (t, q, ε + ε′)-weak PRF, where c
is the circuit size of F′s.

Proposition 3.5.4 can be combined with the following range extension construc-
tion to convert a weak PRF with sufficiently long input and one bit of output into a
length-preserving weak PRF:

Proposition 3.5.5. If F′s : {0, 1}k → {0, 1} is a (t, q, ε)-weak PRF then Fs(x1, . . . , x`) =

(F′s(x1), . . . , F′s(x`)) is a (t, q/`, ε +
(

q`
2

)
· 2−k)-weak PRF.

3.5.2 Pseudorandom Permutations

Nu, permutaziot!
Abraham Lempel (1981)

A pseudorandom permutation (PRP) is a permutation that is easy to evaluate, but
hard to distinguish from a random permutation. PRPs are a model of block ciphers,
which are used to implement various modes of operation in symmetric-key encryp-
tion and authentication schemes. PRPs will also serve as an illustrative example of
the “huge random objects” discussed in Section 3.5.3.

Definition 3.5.6 (Pseudorandom permutation [90]). A family of permutations
Fs : {0, 1}k → {0, 1}k is (t, q, ε)-pseudorandom if the following two games are
(t, q, ε)-computationally indistinguishable:

Fs: Sample a random s← {0, 1}n and answer query x ∈ {0, 1}k by Fs(x),
P: Sample a random permutation P : {0, 1}k → {0, 1}k and answer x by P(x).

The security requirement of Definition 3.5.6 is met by any pseudorandom func-
tion family Fs:
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Proposition 3.5.7. If Fs is a (t, q, ε)-PRF then games Fs and P are (t, q, ε+
(

q
2

)
2−k)-

indistinguishable.

Proof: Consider the game

R: Sample a random function R : {0, 1}k → {0, 1}k and answer query x by R(x).

Claim 3.5.8. Games R and P are (∞, q,
(

q
2

)
2−k)-indistinguishable.

Proof: We may assume, without loss of generality, that the distinguisher’s queries
are pairwise distinct. We analyze the hybrid game Hi in which the first i queries
x1, . . . , xi are answered using P and the rest are answered using R. Games Hi−1
and Hi are identically distributed conditioned on R(xi) taking a different value from
P(x1), . . . , P(xi−1). The probability this fails is (i − 1)2−k. The claim follows by the
triangle inequality. ut

As Fs and R are (t, q, ε)-indistinguishable, Proposition 3.5.7 follows by applying
the triangle inequality again. ut

In general, the functionality requirement of being a permutation may not be sat-
isfied by certain PRFs such as those obtained via the GGM and NR constructions.
Luby and Rackoff [90] describe a generic transformation for constructing a PRP
from any length-preserving PRF.

Both of these constructions are based on the Feistel shuffle

Fei[F](x, y) = (y, x + F(y)), x, y ∈ {0, 1}k/2,

where F is a function from {0, 1}k/2 to {0, 1}k/2 and + is bit-wise XOR. The function
Fei[F] is a permutation on {0, 1}n; its inverse is (x, y) 7→ (y + F(x), x).

x y

+

+

F

F′

x + F(y) y + F′(x + F(y))

Fig. 3.8: The two-round Feistel network. The intermediate outputs are flipped for
clarity

The Feistel permutation is clearly not pseudorandom (regardless of the choice of
F) as its output reveals half of its input. The starting point of the PRP construction
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is the composition Fei2[F, F′] = Fei[F′]◦Fei[F] for “independent” functions F and
F′ (see Figure 3.8). This is the permutation

Fei2(x, y) =
(
x + F(y), y + F′(x + F(y))

)
.

The permutation Fei2 also fails to be pseudorandom (regardless of the choice of
F and F′) as its outputs satisfy the relation

Fei2(x, y) + Fei2(x′, y) = (x + x′, something) (3.15)

for any pair of queries of the form (x, y) and (x′, y). It turns out that this is the only
nonrandom feature of the permutation, in the following sense:

Proposition 3.5.9. For every q, the following two games are (∞, q, q(q − 1) · 2−k/2)-
indistinguishable:

F: Sample F, F′ : {0, 1}k/2 → {0, 1}k/2. Answer query (x, y) by Fei2[F, F′](x, y).
P: Sample a random permutation P : {0, 1}k → {0, 1}k and answer with P(x, y),

assuming all queries made by the distinguisher are ynique.

Definition 3.5.10 (ynique sequence). We call a sequence (x1, y1), . . . , (xq, yq) ynique
if all y-components are distinct (i.e., yi , y j when i , j).

Proof: We analyze the advantage of the distinguisher with respect to the sequence
F,R, P, where R is the game

R: Sample R : {0, 1}k → {0, 1}k. Answer query (x, y) by R(x, y).

By Proposition 3.5.7, games R and P are (∞, q,
(

q
2

)
· 2−k/2)-indistinguishable. It re-

mains to analyze the distinguishing advantage between F and R.

Claim 3.5.11. Games F and R are (∞, q,
(

q
2

)
·2−k/2)-indistinguishable, assuming the

sequence of queries made by the distinguisher is ynique.

Proof: Consider the hybrid Hi in which the first i queries (x1, y1), . . . , (xi, yi) are
answered as in F and the rest are answered as in R. We will show that Hi and Hi−1
are (∞,∞, (i − 1) · 2−k/2)-indistinguishable. The claim then follows by the triangle
inequality.

The first i outputs of Hi are(
x j + F(y j), y j + F′(x j + F(y j))

)
j=1,...,i−1,

(
xi + F(yi), yi + F′(xi + F(yi))

)
By yniqueness, F(yi) is random and independent of F(y1), . . . , F(yi−1), F′, as well
as the other q − i outputs of Hi, which can be fixed to maximize the distinguishing
advantage. We can therefore represent this distribution as(

x j + F(y j), y j + F′(x j + F(y j))
)

j=1,...,i−1,
(
xi + r, yi + F′(xi + r)

)
.

for a random r ← {0, 1}k. The probability that xi + r = x j + F(y j) for some j < i is at
most (i−1) ·2−k/2. Conditioned on this event not happening, F′(xi +r) is independent
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of all the other j − 1 evaluations of F and F′ and of r. Changing notation again, we
can represent the distribution as(

x j + F(y j), y j + F′(x j + F(y j))
)

j=1,...,i−1,
(
xi + r, yi + r′

)
.

for a random r′ ← {0, 1}k. The pair (xi+r, yi+r′) is uniformly random. By yniqueness
it can be replaced with R(xi, yi) as in the distribution Hi−1. ut

The proposition now follows from the triangle inequality. ut

The Luby–Rackoff and Naor–Reingold constructions. The requirement that all
queries have distinct y-coordinates can be enforced by preprocessing the queries.
Luby and Rackoff apply another Feistel round for this purpose. Here we describe a
variant of Naor and Reingold [104], who use a pairwise independent permutation
instead. A family of permutations Hs : {0, 1}k → {0, 1}k is pairwise independent if it
is perfectly indistinguishable from a random permutation by any distinguisher that
makes at most two queries. One simple example is the family Ha,b(x) = a · x + b
where a← F×2k , b, x← F2k , and the operations are performed over the field F2k .

Theorem 3.5.12. If {Fs} is a (t, q, ε)-PRF and Hs is a pairwise independent family
of permutations then the function Fei2[Fs′ , Fs′′ ]◦Hs is a (t−O(kq2 + ckq), q, 3

2 q(q−
1) · 2−k/2 + 2ε)-PRP, assuming Fs and Hs have circuit size at most c.

Proof: We may assume that the distinguisher never makes the same query twice by
modifying it to memorize its previous answers. This incurs a loss of at most O(kq2)
in size. Consider the sequence of games

Fs: Sample s, s′, s′′ independently. Answer by Fei2[Fs′′ , Fs′ ](Hs(x, y)).
I: Sample s and F, F′ : {0, 1}k/2 → {0, 1}k/2. Answer by Fei2[F′, F](Hs(x, y)).
P: Sample Hs and a random permutation P on {0, 1}k. Answer by P(Hs(x, y)).

Games Fs and I are (t − O(kq2 + ckq), q, 2ε)-indistinguishable by an analysis as in
the proof of Theorem 3.3.7. Game P is perfectly indistinguishable from a random
permutation. To show indistinguishability of I and P we need the following claim.
Let (x1, y1), . . . , (xq, yq) denote the query sequence.

Claim 3.5.13. The probability that the sequence (Hs(xi, yi))i=1,...,q is not ynique in
game P is at most

(
q
2

)
· 2−k/2.

Proof: By the same argument used in the proof of Theorem 3.5.2, it can be assumed
without loss that the distinguisher makes its queries nonadaptively. Writing (x′i , y

′
i)

for H(xi, yi),

Pr[(x′i , y
′
i)i=1,...,q is not ynique] ≤

∑
1≤i< j≤q

Pr[y′i = y′j] =

(
q
2

)
·

2−k/2 − 2−k

1 − 2−k .

The inequality follows from the union bound, and the equality follows from pairwise
independence of Hs. After simplifying we obtain the desired bound. ut
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Claim 3.5.14. Games I and P are (∞, q, 3
2 q(q − 1) · 2−k/2)-indistinguishable.

Proof: Consider the following pair of games:

I?: Same as F, but fail if Hs(x, y) is not ynique.
P?: Same as P′, but fail if Hs(x, y) is not ynique.

By the above claim, P? and P are (∞, q,
(

q
2

)
· 2−k/2)-indistinguishable. By Propo-

sition 3.5.9, I? and P? are (∞, q, q(q − 1) · 2−k/2)-indistinguishable. Applying the
triangle inequality, I? and P are (∞, q, 3

2 q(q − 1) · 2−k/2)-indistinguishable. The dis-
tinguishing advantage cannot increase when I? is replaced by I, proving the claim.

ut

The theorem follows by applying the triangle inequality. ut

The pairwise independence of Hs is only used in the proof to ensure that the y-
components of the sequence Hs(xi, yi) are pairwise pseudorandom. Luby and Rack-
off accomplish the same effect with an initial Feistel round.

Strongly pseudorandom permutations. A family of permutations is strongly
pseudorandom if security holds even against adversaries that are allowed to query
both the permutation P and its inverse P−1. This property is required in certain cryp-
tographic applications. The construction from Theorem 3.5.12 may not be strongly
pseudorandom as the inverse permutation satisfies relations analogous to (3.15).
Strong pseudorandomness can be achieved by adding another hashing step at the
output, or via an additional Feistel round (see Figure 3.9).

x y

+

+

Fs2

Fs3

Hs1

Hs4

x y

+

+

+

+

Fs1

Fs2

Fs3

Fs4

Fig. 3.9: The pseudorandom permutations of Naor–Reingold and Luby–Rackoff.
The last layer is needed for strong pseudorandomness

Security versus domain size. In Theorem 3.5.12, the parameter k governs both
the input size and the security guarantee of the pseudorandom permutation. The
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security guarantee is poor for PRPs on small domains, which are useful in prac-
tice [33]. This is unavoidable for the Luby–Rackoff construction; Aiello and Venkate-
san [1] proved that the four-round Feistel network is not (poly(k) · 2k/4, 2k/4, 1

2 )-
pseudorandom. Maurer, Pietrzak, and Renner [96] show that increasing the number
of Feistel rounds can improve the dependence on k in the security. However, their
security guarantee is still inadequate for small values of k.

While it is not known in general if this dependence between security and input
size is necessary for Feistel-type PRP instantiations, it is an inherent limitation of
“information-theoretic” security proofs such as the proof of Theorem 3.5.12. There,
the security of the PRP is deduced from the security of an idealized game I in
which the underlying PRF instances are replaced by truly random functions. It is
then shown that the game I is statistically secure: Any q-query adversary, regardless
of its size, distinguishes I from a random permutation P with probability at most
O(q2 · 2−k/2).

A counting argument shows that the analogues of games I and P for the r-round
Feistel network Feir[F1, . . . , Fr] are not (∞, r2k/2, 1

2 )-indistinguishable [100]. To see
this, consider the sequence of permutation values at the lexicographically first q
inputs. The permutation Feir is fully specified by the truth-tables of the r underlying
PRFs F1, . . . , Fr : {0, 1}k/2 → {0, 1}k/2, so the sequence (Feir(1), . . . ,Feir(q)) can by
described by at most rk/2 · 2k/2 bits. On the other hand, for a random permutation
P, the sequence (P(1), . . . , P(q)) has min-entropy log(2k)q ≥ q log(2k − q). The two
can be distinguished with constant advantage when q ≥ r2k/2.

In summary, the security analysis of the Feistel construction is limited by the
relatively small input size of the underlying (pseudo)random functions, which is
an artifact of its balanced nature—namely, the requirement that x and y should be
equally long. It is therefore sensible to investigate the security of unbalanced vari-
ants. In the extreme setting |x| = 1, |y| = k − 1 the analog of the Feistel shuffle is the
Thorp shuffle

Th[F](x, y) = (y, x + F(y)), x ∈ {0, 1}, y ∈ {0, 1}k−1

with underlying (pseudo)random function F : {0, 1}k−1 → {0, 1}. Morris, Rogaway,
and Stegers [100] show that the r-round Thorp network Thr (instantiated with ran-
dom functions) is (∞, q, (q/r?) · (4kq/2k)r? )-indistinguishable from a random per-
mutation, where r? = r/(2k + 1). In the case q = 2k, Morris [99] proves that
r = O(k3 log 1/ε) rounds yield (∞, 2k, ε) security for any k and ε.

The Feistel shuffle Fei[F] and the Thorp shuffle Th[F] are examples of oblivious
card-shuffling procedures: The permutation can be viewed as a rule for shuffling a
deck of 2k cards with the randomness described by the underlying (pseudo)random
function F.6 For the resulting PRP to be efficiently computable, the shuffle should
be oblivious in the sense that the new position of every card in the deck can be
computed efficiently as a function of only its previous position and the randomness,
and not the positions of the other cards in the deck. Oblivious shuffles that enjoy

6 This perspective is attributed to Naor [104], who was the first to propose the Thorp shuffle-based
PRP construction.
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rapid “local” mixing give rise to PRP constructions with a good tradeoff between
efficiency and security.

3.5.3 Implementing Huge Random Objects
A pseudorandom permutation is an example of a huge object that is guaranteed
to satisfy the global property of being a permutation, while being “locally” indis-
tinguishable from a random permutation. An implementation of a pseudorandom
permutation by a (pseudo)random function would preserve the local indistinguisha-
bility (by Proposition 3.5.7), but is likely to violate the global property. This may be
relevant in applications where the user of the implementation may rely, for instance,
on the existence of inverses.

The distinction is even more prominent in the case of a strong pseudorandom
permutation. In a “truthful” implementation, such as the four-round Feistel network,
the user is guaranteed that evaluating P−1

s (Ps(x)) always outputs x. In contrast, if P
is instantiated with an arbitrary PRF, a consistent inverse may not even exist, much
less be efficiently computable.

Goldreich, Goldwasser, and Nussboim [65] initiated a general study of efficient
implementations of huge random objects of various types. The Luby–Rackoff con-
struction suggests a generic two-step template for this purpose:

1. Starting from a random function R, construct an object OR that is statistically
indistinguishable from a random object of the desired type (for a suitable bound
on the number of queries).

2. Replace the random function R by a PRF to obtain an efficient implementation
Os of the object.

Let us call the implementation Os truthful if the object Os is of the desired type.7

Goldreich et al. observe that, even if one is willing to tolerate untruthful implemen-
tations with some small probability in the second step, the first step must guarantee
a truthful random object with probability one. This phenomenon is illustrated in the
following example:

Example 3.5.15 (Random injective function). A random function R : {0, 1}n →
{0, 1}3n−1 is injective with probability at least 1 − 2−n. However, a PRF Fs with the
same domain and range need not be injective for any key s. In fact, any PRF can
be converted into a noninjective PRF by planting a random collision: If Fs is a
(t, q, ε)-PRF then the family

Fs,a(x) =

Fs(x), if x , a
Fs(0), if x = a

is a (t, q, ε + q · 2−n)-PRF that is not injective for any key (s, a), a , 0.

Example 3.5.15 can be explained by the fact that injectivity is a global property of
functions, while step 2 only guarantees that local indistinguishability is preserved.

7 Our use of the term deviates slightly from the definition in [65].
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In view of this it is interesting to ask if an almost always truthful implementation of
a random injective function can be obtained. In this case the answer is positive.

Proposition 3.5.16. If Fs : {0, 1}k → {0, 1}` is a (t, ε)-PRF and Hs : {0, 1}k → {0, 1}`

is a pairwise-independent hash family then Is,s′ (x) = Fs(x) ⊕ Hs′ (x) satisfies the
following two properties:

1. Is,s′ is (t − c, ε +
(

2k

2

)
· 2−`)-indistinguishable from a random injective function,

where c is the size of Hs′ .
2. Prs,s′ [Is,s′ is not injective] ≤

(
2k

2

)
· 2−`.

Proof: The first property follows by a hybrid argument (details omitted). We prove
that the second property holds for every fixing of s:

Pr
s′

[Is,s′ is not injective] ≤
∑
x,x′

Pr[Is,s′ (x) = Is,s′ (x′)]

=
∑
x,x′

Pr[Hs′ (x) ⊕ Hs′ (x′) = Fs(x) ⊕ Fs(x′)]

=

(
2k

2

)
· 2−`.

The inequality is the union bound, and the last equality follows from the pairwise
independence of Hs′ . ut

Can Proposition 3.5.16 be strengthened so as to also provide the distinguisher
access to F−1? More generally, Is,s′ almost always truthfully implements a random
code of linear distance. Goldreich et al. ask if there is an alternative implementation
in which the distinguisher can be also furnished with a decoding oracle.©?

The work [65] contains many additional results and open questions regarding
huge random objects arising from random graph theory and the theory of random
Boolean functions.

Efficient implementations of huge random objects can enable an experimentalist
to carry out simulations on random objects that are prohibitively large (e.g., random
graphs, random codes) with results that are guaranteed to be sound, assuming the
availability of a sufficiently strong PRF. In this setting, the stateless nature of PRFs
is a desirable feature (as it provides a short description of the huge object) but not
entirely necessary.

Bogdanov and Wee [39] introduce the notion of a stateful implementation, which
may keep state in between queries. Their work gives a stateful implementation of a
specification suggested by Goldreich et al. (a Boolean function f : {0, 1}n → {0, 1}
in which the distinguisher may query the XOR of all the values of f over a subcube
of its choice) for which a stateless implementation is not known. While stateful
implementations seem easier to construct than stateless ones, no formal separation
between these two notions is known.©?
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3.6 Complexity of Pseudorandom Functions

Chazak Razborov!
Benny Chor (1980s)

The GGM and NR constructions from Section 3.3 are generic methods for obtaining
a PRF from a simpler pseudorandom object. The resulting PRF is in general more
complex than the underlying primitive. In the specific instantiations discussed in
Section 3.4, this increase in complexity was mitigated by careful implementation.

There is however a limit to the amount of efficiency that can be squeezed by
further optimizations. PRF implementations inherently require a certain amount of
complexity. We discuss two related reasons for this: the availablity of efficient learn-
ing algorithms and the existence of “natural” lower-bound proofs for sufficiently
simple circuit classes. We then describe some heuristic PRF candidates that are just
complex enough to arguably match these limitations.

3.6.1 Learning Algorithms
A learner for a class of functions F is a two-stage algorithm L that works as follows:
In the first stage the algorithm is given oracle access to some function F ∈ F. In the
second stage the algorithm receives an input x and outputs a prediction for the value
F(x). The learner has approximation error δ if Pr[LF(x) , F(x)] ≤ δ for x chosen
from the uniform distribution on inputs.8

Learning algorithms differ depending on the learner’s mode of oracle access. A
membership query learner may query the oracle adaptively on inputs of its choice.
A learner from random examples has only access to random input–output pairs
(x, F(x)) for independent and uniform inputs x.

The existence of a low-complexity learner for a class of functions implies bounds
on the security of any implementation of a pseudorandom function family in this
class [113]. We state the result for Boolean-valued functions Fs : {0, 1}k → {0, 1}.

Proposition 3.6.1. If the function family {Fs} can be learned from membership
queries (resp., random examples) with approximation error 1

2 − ε by an algorithm
of size t then Fs is not a (t + O(k), ε − t/2k)-PRF (resp., weak PRF).

Learning with approximation error 1
2 amounts to random guessing. Proposi-

tion 3.6.1 states that any nonnegligible improvement to the approximation error by
an efficient learner rules out pseudorandomness of Fs.

Proof: Consider the distinguisher DF that simulates LF and makes one additional
random query x to obtain answer F(x) (or, in the case of random examples, obtains
one additional example (x, F(x))). If LF(x) = F(x) the distinguisher accepts, and
otherwise it rejects.

8 Other distributions on inputs are also studied in learning theory.
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By assumption, LFs (x) equals Fs(x) with probability at least 1
2 + ε. On the other

hand, if R is a random function, LR(x) is statistically independent of R(x) as long as
the oracle has not been queried at x, which fails to happen with probability at most
t/2k. The advantage of the distinguisher is therefore at least ( 1

2 + ε) − ( 1
2 + t/2k) =

ε − t/2k. ut

We will say a pseudorandom function Fs can be implemented in class F if Fs

belongs to F for all s. Applying Proposition 3.6.1 to different algorithms from the
computational learning theory literature yields the following limitations on the im-
plementation complexity of PRFs:

1. Weak PRFs cannot be implemented by linear threshold functions, as such func-
tions can be learned efficiently using the algorithm of Blum et al. [34].

2. PRFs cannot be implemented by polynomial-size formulas in disjunctive nor-
mal form (DNF), as these can be learned efficiently (under the uniform distri-
bution) by Jackson’s harmonic sieve algorithm [79].

3. Any function family implemented by AND/OR circuits of size s, depth d, and
input length k is not (

(
k

≤O(log s)d−1

)
, 1

2 )-weakly pseudorandom, as such circuits can
be learned under the uniform distribution by the algorithm of Linial, Mansour,
and Nisan [89].

The learning algorithms of Blum et al. and Linial, Mansour, and Nisan can be
implemented in the statistical query model that is discussed in Section 3.7.7.

Proposition 3.6.1 can also be applied in the contrapositive form to argue compu-
tational limitations on learning. In particular:

1. Polynomial-size circuit families cannot be learned efficiently from membership
queries, assuming polynomial-size one-way function families exist. This fol-
lows from the equivalence of one-way functions and PRFs discussed in Sec-
tion 3.1.2.

2. Polynomial-size constant-depth circuit families with linear threshold gates (the
class TC0) cannot be learned efficiently from membership queries, assuming the
hardness of DDH or LWE. This follows from the complexity of the construc-
tions in Section 3.4.

3. Polynomial-size constant-depth AND/OR circuit families require quasipolyno-
mial time to learn from membership queries, assuming the exponential hardness
of factoring Blum integers [83].

3.6.2 Natural Proofs

I asked my wife what is the definition of natural,
and she said “anything that does not contain
petroleum products.”

Leonid Levin (2007)

In an attempt to understand the difficulties inherent in proving lower bounds on the
size of Boolean circuits computing explicit functions, Razborov and Rudich intro-
duced a formal framework that captures many of the currently available techniques.
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A circuit lower-bound proof can be viewed as a property P of functions that dis-
tinguishes between the functions computable by circuits in the given class and the
“hard” function.

Razborov and Rudich showed that, in many known proofs, the distinguishing
property has the following two features. For convenience let us assume that the
domain and range are {0, 1}k and {0, 1}, respectively.

Smallness: Property P fails not only for the hard function, but for, say, at least half
the functions from {0, 1}k to {0, 1}.9

Constructivity: There exists an oracle circuit of size 2O(k) that, given oracle access
to F, decides if F has property P.

A small and constructive property that holds for all functions in a given class F
is called natural for F.

Proposition 3.6.2. If there exists a property that is natural for the function family
{Fs} then Fs is not a (2O(k), 1

2 )-PRF.

It is useful to keep in mind that the (strong) PRF distinguisher can control the
input length k of the candidate PRF by fixing some of the input bits.

Proof: Let D be the circuit of size 2O(k) that decides if F has property P. By
assumption, DFs always accepts. By smallness, Pr[DR accepts] ≤ 1

2 . Therefore D
has distinguishing advantage at least 1/2. ut

Applying Proposition 3.6.2 to various properties implicit in circuit lower-bound
proofs, Razborov and Rudich derive the following consequences among others:

1. Any function family implemented by AND/OR circuits of size exp o(k)1/(d−1)

and depth d is not pseudorandom. This follows from the parity circuit lower
bound of Hastad [56, 130, 71]. Boppana [42] shows that the following simple
distinguisher works: Choose two random inputs x, y that differ on a single co-
ordinate and check if F(x) = F(y). Distinguishers of this type are discussed in
Section 3.7.1.

2. Any function family implemented by AND/OR/PARITY circuits of size s and
depth d (the class AC0[⊕]) is not (exp(log s)O(d), 1

2 )-pseudorandom. This follows
from a “naturalization” of the lower-bound proof of Razborov and Smolen-
sky [115, 124]. The conclusion also holds if PARITY is replaced by the MODq

function for any constant prime power q. This distinguisher is described as the
Razborov–Rudich test in Section 3.7.4.

3. Any function family implemented by AND/OR formulas of size k3−ε for any
ε > 0 and sufficiently large k is not (2O(k), 1

2 )-pseudorandom. This follows from
Hastad’s proof of hardness for the Andreev function [72].

In summary, PRFs cannot be constructed in any class that is (a) learnable or (b)
has a natural property. The latter requirement appears to be weaker as learnability

9 Razborov and Rudich work with the complementary property not P and call the corresponding
condition largeness.
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(by a specific algorithm) is a natural property. Carmosino et al. [49] recently showed
a converse: Any class of functions (satisfying certain closure requirements) that has
a natural property can be learned efficiently from membership queries. In particular,
AC0[⊕] circuit families can be learned in quasipolynomial time.

While these results essentially rule out the existence of PRFs of very low com-
plexity, it remains an open question whether similar limitations hold for some of
their immediate applications such as symmetric-key encryption schemes or authen-
tication protocols.©?

3.6.3 Heuristic Constructions
Propositions 3.6.1 and 3.6.2 indicate that the efficiency of PRFs is of fundamental
relevance in computational learning theory and computational complexity. These
connections provide extrinsic motivation for a fine-grained study of the complexity
of PRF constructions in various computational models.

In practice, the most efficient PRFs for a given level of security are not obtained
by means of generic methods such as the ones from Section 3.3. The modular nature
of such constructions appears to entail a loss in security which can be potentially
avoided with a carefully crafted design. However, claims of security for “direct”
PRF constructions can no longer be based on standard assumptions and must rely
instead on the collective wisdom of cryptanalysts (motivated in part by social incen-
tives for attacking candidate implementations).

The practical construction of PRFs is an intricate art form that we do not attempt
to cover here. We recommend Chapter 5 in the textbook of Katz and Lindell [80]
as an introduction to this subject. Our emphasis here is on elementary principles of
direct PRF and PRP constructions. We mention some concrete proposals and discuss
their relevance to the feasibility of learning and the existence of natural proofs.

Two paradigms that have been applied towards practical implementations of
PRPs (called block ciphers in the applied cryptography literature) are Feistel net-
works and substitution-permutation networks. Both of these methods in fact yield
(pseudorandom) permutations.

Feistel networks. The most well-known Feistel network-based PRP is DES (the
Data Encryption Standard). Despite the long history and prominence of DES (it
was designed and standardized in the 1970s and has enjoyed widespread use ever
since), it has shown remarkable resilience to cryptanalysis. DES is a permutation
family on 64-bit strings with a 56-bit key. Its basic building block is the 16-round
Feistel network Fei16[Fs1 , . . . , Fs16 ] instantiated with some special function Fs that
“mixes” the input and its key. The round keys s1, . . . , s16 are not independent; they
are derived by applying iterative transformations to the 56-bit master key of DES.

This type of key scheduling process that injects partial information about the key
at different rounds is commonly used in block cipher design. It possibly serves as
a mechanism to hinder cryptanalysis by humans, as it makes the inner workings
of the function challenging to understand. Generic constructions like the ones from
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Section 3.3, on the other hand, are designed so that human analysis is a desirable
feature (for the objective is to come up with proofs of security).

Differential and linear cryptanalysis. One class of attacks that is natural to con-
sider in the context of iterated constructions like the Feistel network is differential
cryptanalysis [29]. The attacker tries to obtain correlations among pairs of outputs
by flipping some bit positions of a (random) input. If the correlations are sufficiently
“typical” they may tend to propagate throughout the Feistel network and be used to
learn the candidate PRF. Biham and Shamir [30] designed such an attack to learn
DES using 247 queries and a similar amount of time, and other iterated constructions
even more efficiently.

Miles and Viola [98] suggest the following formalization of differential crypt-
analysis. Here + denotes bit-wise XOR.

Definition 3.6.3 (Differential cryptanalysis). A family {Fs : {0, 1}k → {0, 1}`} of
functions is said to be ε-secure against differential cryptanalysis if for all ∆x , 0
and ∆y, Prx,s[Fs(x) + Fs(x + ∆x) = ∆y] ≤ ε.

The two-round Feistel construction is an example that is insecure against differ-
ential cryptanalysis (recall (3.15) in Section 3.5.2).

Linear cryptanalysis [95] is a different type of attack that attempts to find linear
relationships between the bits of random input–output pairs. Miles and Viola [98]
formalize it as follows. Here 〈a, x〉 denotes the inner product modulo 2 function
a1x1 + · · · + ak xk.

Definition 3.6.4 (Linear cryptanalysis). A family {Fs : {0, 1}k → {0, 1}`} of func-
tions is said to be ε-secure against linear cryptanalysis if for all a ∈ {0, 1}k and
b ∈ {0, 1}`, Es[Ex[(−1)〈a,x〉+〈b,Fs(x)〉]2] ≤ ε.

Matsui [95] devised an attack of this type to learn DES using 243 queries.
In spite of these attacks, DES is believed to be a remarkably secure PRP. Its 56-bit

key, however, is considered inadequately short for modern applications.

Substitution–permutation networks. Substitution–permutation networks (SPNs)
are another blueprint for constructing PRPs. Here the PRP Ps : {0, 1}k → {0, 1}k is
obtained by sequentially composing “simple” permutations of the following types:

• S-boxes are highly nonlinear fixed (independent of the key) permutations
S : {0, 1}c → {0, 1}c where c is a small factor of k. The input is partitioned
into k/c blocks of size c, and the S-box is applied to each block in parallel.

• P-boxes are linear permutations of the whole input that contain a large number
of input–output dependencies.

• Round key operations are linear shifts of the input by the round key. As in Feis-
tel network-based constructions, round keys are obtained by applying iterative
transformations to the master key.
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The nonlinear nature of the S-boxes is meant to guarantee security against “local” at-
tacks such as linear and differential cryptanalysis. The P-boxes ensure that the effect
propagates throughout the input positions. Miles and Viola prove general bounds on
the security of SPNs against linear and differential cryptanalysis.

AES (the Advanced Encryption Standard) is a highly efficient SPN-based family
of permutations on 128 bits. There are three variants of the construction, allowing
keys of size 128, 192, and 256, respectively. In spite of the scrutiny this design has
received, no significant weakness is known.

Miles and Viola propose several SPN-based constructions of PRP and PRF fami-
lies on infinitely many input lengths and provide some theoretical evidence for their
asymptotic security. If their security conjectures hold, quasilinear-size circuit fam-
ilies, TC0-type circuit families of size n1+ε, and quadratic-time single-tape Turing
machines with a quadratic number of states are hard to learn and have no natural
property.

Dodis et al. [52] study a model of SPNs in which the S-boxes are implemented
by a random permutation oracle that can be queried both by the construction and by
the distinguisher. They observe that 2-round SPNs are insecure in this model and
construct a 3-round SPN that is provably O(n2q2/2c)-secure against a distinguisher
that makes q queries. They also obtain similar security for a 1-round SPN variant
with a nonlinear P-box.

Weak pseudorandom functions. Owing to the severely restricted nature of the
distinguisher, weak PRFs ought to be easier to construct than their strong coun-
terparts. Differential cryptanalysis, in particular, does not apply to weak PRFs, al-
though linear cryptanalysis does. We describe two conjectured separations between
PRFs and weak PRFs as evidence that weak PRFs are indeed a less complex object.

Blum, Furst, Kearns, and Lipton [35] (Section 2.3) consider the following family
of functions FS ,T : {0, 1}n → {0, 1}:

FS ,T (x) = MAJORITY(x|S ) + PARITY(x|T ),

where the key consists of two random (log n)-bit subsets S and T of {1, . . . , n}, x|S
is the projection of x on its S -coordinates, and + denotes XOR. They conjecture
that this family is a (nc, n−c)-weak PRF for any constant c and sufficiently large k.
The best known algorithms for learning such functions from random examples have
complexity nΩ(log n) [101]. For every S and T , FS ,T is a function of 2 log n inputs and
can in particular be computed by a DNF of size n2. In contrast, as discussed in Sec-
tion 3.6.1, DNFs cannot compute strong PRFs whose security is superpolynomial
in their size.

In the regime of exponential security, the binary modulus (q = 2) variant of LWE
(see Section 3.4.2) is a conjectured example of a randomized weak PRF. The noisy
parity randomized function family Fs : {0, 1}n → {0, 1} (s ∈ {0, 1}n) is given by

Fs(x) = 〈s, x〉 + e(x) = s1x1 + · · · + snxn + e(x),
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where the bits e(x) : x ∈ {0, 1}n are independent and δ-biased for some δ < 1/2.
Blum, Kalai, and Wasserman [36] give an algorithm for this problem with run-
ning time 2O(n/(log n−log log 1/(1−2δ))). Lyubashevsky [92] significantly reduces the query
complexity of this algorithm but at the cost of increasing its running time.

Noisy parities are attractive owing to their extreme simplicity, but their random-
ized nature is undesirable. For instance, using Fs as the basis of an encryption
scheme like the one in Section 3.2.4 would introduce decryption errors with some
probability.

Akavia et al. [3] conjecture that the function family GA,b : {0, 1}n → {0, 1} given
by

GA,b(x) = g(Ax + b) (3.16)

is a weak PRF. Here, A is a random n × n matrix, b is a random {0, 1}n vector,
and g : {0, 1}n → {0, 1} is a suitably chosen function of constant depth and size
polynomial in n. By the discussion in Section 3.6.2, the security of any strong PRF
in this class is at most quasipolynomial.

Akavia et al. propose setting g to equal the tribes function of Ben-Or and
Linial [27] XORed with an additional input bit. In Section 3.7.5 we show that this in-
stantiation is insecure. Proposing an explicit choice of g for which the family (3.16)
is arguably weakly pseudorandom, or showing that no such choice exists, remains
an open problem.©?

3.7 Distinguishers

There is no intuition.
You just do the calculation.

Johan Hastad (1990s)

The security of PRFs is required to hold against arbitrary efficient adversaries. It
is however sometimes useful to study distinguishers of restricted computational
power. Restricted distinguishers can model specific classes of cryptanalytic attacks.
Proofs of security against such distinguishers can provide evidence for the sound-
ness of heuristic constructions, and potentially achieve better parameters even when
a generic proof of security is available. Moreover, if the class of distinguishers is
sufficiently restrictive, unconditional proofs of security may be possible.

In the first two parts we focus on distinguishers of bounded query complexity
and linear distinguishers. These lead to natural requirements on the distribution of
outputs of the PRF: bounded independence for the first type and small bias for the
second. We then turn to space-bounded distinguishers and several types of “ran-
domness tests” that have found application in computational complexity and learn-
ing theory: polynomial correlation tests, rational function representations, cylinder
product tests, and statistical query algorithms.
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3.7.1 Distinguishers of Bounded Query Complexity
The following is a generalization of pairwise independence (Definition 3.5.1 in Sec-
tion 3.5.1).

Definition 3.7.1 (Bounded independence). A function family Fs : {0, 1}k → {0, 1}`

is q-wise independent if it is (∞, q, 0)-pseudorandom.

Pairwise (2-wise) indepedence guarantees security against linear and differential
cryptanalysis in the sense of Definitions 3.6.3 and 3.6.4.

Achieving q-wise independence requires a key of length at least q`. When ` = n,
a key of size q` is in fact sufficient: the function Fs(x) = s0 + s1x + · · · + st−1xt−1,
where s is the vector (s0, . . . , st−1) ∈ Ft

2k and all algebra is over the field F2k .10

Although the function Fs is perfectly indistinguishable from a random function
by a q-query distinguisher, it is not even weakly pseudorandom: since Fs is a poly-
nomial of degree q, after observing Fs(x1), . . . , Fs(xq) at any q points, the value
Fs(x) can be computed efficiently for all x using the Lagrange interpolation for-
mula. Therefore, Fs can be distinguished from a random function using any q + 1
queries.

Bounded independence tends to be effective against adversaries that do not
employ attacks based on linear algebra (over various outputs of the PRF). One
model for such adversaries is the class of bounded-depth circuits. Circuits in this
class cannot compute linear functions unless they are very large [56, 130, 71].
Bounded independence ensures security against bounded-depth distinguishers: a
(log s)O(d) · log(1/ε)-wise independent function family is (s, ε)-pseudorandom with
respect to distinguishers of size s and depth d [45] (see also [125, 70]).

The notions of bounded independence and cryptographic pseudorandomness
are incomparable: not only is bounded independence insufficient for cryptographic
pseudorandomness, it is also unnecessary. Even for a single bit of output, bounded
independence requires perfect indistinguishability from true randomness. For cryp-
tographic purposes statistical indistinguishability is adequate. This leads to an ap-
proximate notion of bounded independence.

Definition 3.7.2 (Approximate bounded independence). {Fs} is (q, ε)-wise inde-
pendent if it is (∞, q, ε)-pseudorandom with respect to nonadaptive distinguishers.

Approximate bounded independence is closely related to the small bias property
that we discuss next.

3.7.2 Linear Distinguishers
A linear distinguisher computes some linear function of the values of the PRF.
A distribution that is pseudorandom against such distinguishers is called small-
biased [102]. We focus on the case of linear tests over the group Z2, where it is

10 For one bit of output, a key size of (q log k)/2 + Oq(1) is both necessary and sufficient (see
Section 13.2 of [4]).
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natural to assume that the PRF is Boolean-valued. The definition can be extended to
other Abelian groups.

Definition 3.7.3 (Small bias [102]). A function family {Fs} is (q, ε)-biased if every
distinguisher that computes a linear function modulo 2 of at most q bits of the func-
tion’s output has advantage at most ε/2.

It is convenient to view the range of the function as a multiplicative group, which
allows for easier Fourier analysis [110]. Under this convention, the values of Fs are
represented by the square roots of unity 1 and −1. The small bias property then
requires that for all distinct inputs x1, . . . , xr, 1 ≤ r ≤ q,∣∣∣E[Fs(x1) · · · Fs(xr)]

∣∣∣ ≤ ε.
If a function family is (q, ε/2)-wise independent then it is clearly (q, ε)-biased.

The two definitions are in fact equivalent up to an exponential loss in q:

Lemma 3.7.4. If {Fs} is (q, ε)-biased then it is (q,
√

2q − 1 · ε/2)-wise independent.

It follows from Lemma 3.7.4 that (q, 2−q/2)-wise independence cannot be achieved
when q exceeds the key length. For smaller values of q, the small bias property
provides information-theoretic security against distinguishers that make a bounded
number of queries. In particular, these include differential attacks.

Proof: Let D : {0, 1}X → {−1, 1} be any statistical distinguisher that queries F on
the set X = {x1, . . . , xq}. In the Fourier basis we can write

DF =
∑
A⊆X

D̂(A) ·
∏
x∈A

F(x).

Then∣∣∣E[DFs ] − E[DR]
∣∣∣ =

∣∣∣∣∑A⊆X
D̂(A) ·

(
E

∏
x∈A

Fs(x) − E
∏

x∈A
R(x)

)∣∣∣∣
=

∣∣∣∣∑A⊆X,A,∅
D̂(A) · E

∏
x∈A

Fs(x)
∣∣∣∣

≤
∑

A⊆X,A,∅
|D̂(A)| ·

∣∣∣∣E ∏
x∈A

Fs(x)
∣∣∣∣

≤ ε ·
∑

A⊆X,A,∅
|D̂(A)|.

(3.17)

By the Cauchy–Schwarz inequality and Parseval’s identity the last expression is at
most ε

√
2q − 1. Therefore∣∣∣Pr[DFs accepts] − Pr[DR accepts]

∣∣∣ = 1
2 ·

∣∣∣E[DFs ] − E[DR]
∣∣∣ ≤ √2q − 1 · ε/2.

ut

Generalizing this argument to adaptive distinguishers, it follows that if {Fs} is
(q, ε)-biased then every adaptive distinguisher that makes at most q queries has ad-
vantage at most 2q · ε/2. To prove this, the distinguisher is modeled as a decision
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tree over variables Fs(x) of depth at most q. The sum of the absolute values of the
Fourier coefficients of a decision tree is upper bounded by the number of its leaves,
which is at most 2q. The bound then follows by a calculation similar to (3.17).

There are several efficient constructions of (2k, ε)-biased families Fs : {0, 1}k →
{0, 1} of size polynomial in k and log 1/ε [102, 5, 26]. As in the case of bounded
independence, some of them are cryptographically insecure.

We do not know of any generic methods for obtaining cryptographically secure
PRFs that provably exhibit the small bias property. In the case of the GGM con-
struction, it would be interesting to understand which property of the underlying
PRG is sufficient to guarantee that the PRF has small bias. As an initial step in this
direction, we suggest the problem of constructing an efficient PRG G so that the
GGM construction instantiated with G has small bias.©?

Regarding concrete constructions, Miles and Viola [98] prove that one of their
proposed PRFs is (3, 2−Ω(k))-biased. It would be interesting to prove that the other
constructions described in Section 3.4 have the small bias property.©?

3.7.3 Space-Bounded Distinguishers
A distinguisher is space-bounded if it has less memory than the key size of the PRF.
An algorithm with m bits of memory can be modeled as a branching program of
width 2m whose input is the truth table of the function to be distinguished.

Definition 3.7.5 (Pseudorandomness against bounded space). A function family
{Fs : {0, 1}k → {0, 1}} is ε-pseudorandom against space m if the distinguishing ad-
vantage of any branching program of width 2m is at most ε.

The access mode of the branching programs can be sequential, oblivious, or un-
restricted, corresponding to the notion of sequential, nonadaptive, and general PRFs,
respectively.

The pseudorandom generators of Nisan [109] and Impagliazzo, Nisan, and
Wigderson [76] can be viewed as function families of key length O(k2 + km +

k log(1/ε)) and size polynomial in k, m, and 1/ε that are ε-pseudorandom against
space m with sequential access.

Much less is known with respect to other forms of access. In a permutation
branching program, the answer to each query induces a permutation of the states.
Reingold, Steinke, and Vadhan [119] give a PRF of key length and size polynomial
in k, 2m, and log 1/ε that is ε-pseudorandom against space m permutation branch-
ing programs with nonadaptive read-once access. There is little hope of removing
the read-once and permutation restrictions at the same time: By Barrington’s the-
orem [20], polynomial-size branching program families of width 5 have the same
computational power as the circuit class NC1. A PRF against NC1 with an uncon-
ditional proof of security would imply an explicit circuit lower bound against this
class, thereby resolving a long-standing open problem in computational complexity.

We are not aware of any results regarding the security of weak PRFs with respect
to space-bounded distinguishers.©?
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3.7.4 Correlation with Polynomials

I don’t like polynomials.
They are mysterious.

Oded Goldreich (2000s)

One can attempt to detect nonrandom behavior in a function by looking for correla-
tions with some structured class of functions. In this context, the class of low-degree
polynomials over a finite field is important in many areas of the theory of comput-
ing. On the algorithmic side, there are efficient methods for detecting low-degree
correlations in several interesting parameter regimes. On the complexity-theoretic
side, functions that correlate with some low-degree polynomial capture several in-
teresting classes of computations, in particular bounded-depth circuits with AND,
OR, and PARITY gates [115, 124].

Here we focus on polynomials over the binary field F2. The results can be ex-
tended to other finite fields, but the efficiency of the tests worsens as the field size
becomes larger.

Definition 3.7.6 (Proximity to polynomials). The function F : Fk
2 → F2 is δ-close

to degree d if
Pr

x←Fk
2

[F(x) , p(x)] ≤ δ

for some polynomial p : Fk
2 → F2 of degree at most d.

A standard counting argument shows, for example, that the probability of a ran-
dom function being 1/3-close to degree k/3 is at most 2−Ω(2k). We now describe
some settings in which low-degree correlation can be tested efficiently.

Exact representation. In the extreme setting δ = 0, we are interested in an exact
representation of F as an F2-polynomial of degree at most d:

F(x) =
∑

S : |S |≤d

F̃(S ) ·
∏

i∈S
xi. (3.18)

Every input–output pair (x, F(x)) then reveals a linear dependence between the co-
efficients F̃(S ). Given sufficiently many such linear dependences, the values F̃(S )
can be learned via linear algebra. As there are

(
k
≤d

)
values to be learned, at least

this many queries to F are required. This number of queries is also sufficient: For
example, if x ranges over all

(
k
≤d

)
strings of Hamming weight at most d, then the

system of equations (3.18) has full row rank and the coefficients F̃(S ) are uniquely
determined.

Using a few additional queries, F can even be learned from independent random
samples of the form (x, F(x)): O(2d

(
k
≤d

)
) such pairs are sufficient to ensure full row

rank with constant probability. In Section 3.7.5 we will analyze a more general vari-
ant of this test. Since every function has a unique canonical multilinear expansion, it
can in principle be verified that a given candidate PRF implementation resists these
types of attacks.
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High correlation. Low-degree polynomials have a dual characterization: A func-
tion p has degree at most d if and only if

∑
x∈A p(x) = 0 for all affine subspaces A of

dimension d + 1.
This characterization provides a more efficient test for exact representation of F

by a polynomial of degree at most d. Moreover, it extends to testing correlation in the
regime where δ is smaller than 2−d−2. The test chooses a random a← Fk

2 and outputs∑
x∈A+a F(x) for an arbitrary (d + 1)-dimensional affine subspace A. Assuming F is

δ-close to a polynomial p of degree at most d, it follows from union bounds that

Pr
[∑

x∈A+a
F(x) , 0

]
≤ Pr

[∑
x∈A+a

p(x) , 0
]

+ Pr[F(x) , p(x) for some x ∈ A + a]

≤ 0 +
∑

x∈A
Pr[F(x + a) , p(x + a)]

= δ · 2−d−1,

while Pr[
∑

x∈A+a R(x) , 0] = 1/2 for a random function R.
The learner for exact degree-d representation from random input–output samples

can also be used in a regime of very high correlation: If F is δ = 1/O(2d
(

k
≤d

)
)-close

to degree d, the learner outputs the unique polynomial p that is δ-close to F with
constant probability.

Noticeable correlation. In the regime δ ≥ 2−d−1 there may be more than one poly-
nomial of degree at most d that is δ-close to F. This imposes additional difficulties
in the design and analysis of correlation tests.

The Gowers test. A natural way to test for correlation is to evaluate the expression∑
x∈A p(x) on a random affine subspace A of dimension d + 1. It is more convenient

for the analysis to also allow degenerate subspaces (of lower dimension): The distin-
guisher chooses a0, . . . , ad+1 independently and uniformly at random from Fk

2, sets
A = {a0 + a1x1 + · · · + ad+1xd+1 : x1, . . . , xd+1 ∈ F2}, and outputs

∑
x∈A p(x).

Theorem 3.7.7. The Gowers test distinguishes functions that are δ-close to degree
d from a random function with advantage at least 2 · (2δ − 1)2d+1

.

Proof: Gowers [68] showed that if F is δ-close to degree d then

E
A

[∏
x∈A

(−1)F(x)
]
≥ (2δ − 1)2d+1

.

On the other hand, EA[
∏

x∈A(−1)R(x)] = 0 for a random function R. Therefore,

Pr
[∑

x∈A
F(x) = 0

]
− Pr

[∑
x∈A

R(x) = 0
]

= 2 ·
(
E
[∏

x∈A
(−1)F(x)

]
− E

[∏
x∈A

(−1)R(x)
])
≥ 2 · (2δ − 1)2d+1

.

ut
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The analysis is essentially tight, as can be seen by instantiating F to a random
function with δ2k ones. Owing to the doubly exponential dependence on d in Theo-
rem 3.7.7, the efficiency of the Gowers test degrades rapidly with the degree.

The cylinder product test described in Section 3.7.6 extends the Gowers test to a
larger class of functions. The two have identical soundness guarantees.

In Section 3.7.5 we describe a test of Razborov and Rudich [116] for correlation
with rational functions, of which polynomials are a special case. The Razborov–
Rudich and Gowers tests have incomparable soundness guarantees.

Weak pseudorandomness. If only random input–output samples are available, the
problem of detecting correlation with linear functions (i.e., degree-1 polynomials)
is polynomially equivalent to learning noisy parities [53]. For this purpose, the algo-
rithms of Blum, Kalai, and Wasserman and Lyubashevsky discussed in Section 3.6.3
can be applied. We do not know of any results for higher degree.©?

3.7.5 Correlation with Rational Functions
A rational function is a ratio of two polynomials with the convention that 0/0 may
represent any value.

Definition 3.7.8. A function F : Fk
2 → F2 has rational degree at most r if there exist

polynomials p and q of degree at most r, not both identically zero, such that

F(x) · q(x) = p(x) for all x in Fk
2. (3.19)

Rational degree generalizes polynomial degree, which corresponds to the special
case q ≡ 1. Representation by rational functions is in fact equivalent to one-sided
representation by polynomials in the following sense:

Proposition 3.7.9 ([11]). F has rational degree at most d if and only if there exists
a nonzero polynomial P of degree at most d such that P(x) = 0 whenever F(x) = b
for some b ∈ {0, 1}.

As in the case of polynomials, we say f is δ-close to rational degree at most d if
there exists r of rational degree at most d such that Pr[ f (x) , r(x)] ≤ δ.

We describe and analyze two tests for correlation with rational functions of
low degree. The first one applies to the high-correlation regime and can distin-
guish even weakly pseudorandom functions. The second one, due to Razborov and
Rudich [116], is for strong pseudorandom functions but works even when the prox-
imity parameter δ is close to 1/2.

Exact representation and high correlation. Functions of low rational degree
cannot even be weakly pseudorandom:

Proposition 3.7.10. If Fs : Fk
2 → F2 has rational degree at most d for all s then it is

not a (poly(2d
(

k
≤d

)
), 3

4 )-weak PRF.
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Proof: The test accepts if there exist p and q that are consistent with the equa-
tions (3.19) on m = 4 · 2d(( k

≤d

)
+ 1

)
samples x. This is a linear system in the coeffi-

cients of p and q, so the existence of a nonzero solution can be decided by a circuit
of size polynomial in m. If F = Fs, a nonzero solution always exists. If, on the other
hand, F is a random function, the following claim applies:

Claim 3.7.11. If p, q are polynomials of degree at most d, not both zero, then for a
random function R and a random input x, PrR,x[R(x) · q(x) = p(x)] ≤ 1 − 2−d−1.

Proof: Since p and q are not both zero, it must be that p is nonzero or p and q are
different. If p is nonzero,

Pr[R(x) · q(x) , p(x)] ≥ Pr[p(x) , 0] · Pr[R(x) = 0 | p(x) , 0] ≥ 2−d · 1
2 = 2−d−1,

where the inequality Pr[p(x) , 0] ≥ 2−d follows by the Schwarz–Zippel lemma. If
p and q are different, then Pr[R(x) ·q(x) , p(x)] = Pr[(R(x)+1) ·q(x) , p(x)+q(x)],
and the same argument applies to the functions R + 1, q, and q + p. ut

By independence and a union bound over all pairs (p, q), the probability that a
random function passes the test is at most(

22( k
≤d) − 1

)
·
(
1 − 2−d−1)m

≤ 22( k
≤d)−m·2−d−1

≤ 1
4

by the choice of m. ut

Akavia et al. [3] conjecture that the construction (3.16) instantiated with g equal
to the tribes function XORed with an additional input bit is a weak PRF. Their
conjecture is false as g can be seen to have rational degree at most O(log k). By
Proposition 3.7.10, the resulting function family is not a (kO(log k), 1

3 )-weak PRF.
The following theorem shows, more generally, that weak PRF constructions in

the class DNF ◦ ⊕ cannot be too secure.

Theorem 3.7.12. If Fs : {0, 1}k → {0, 1} is an OR of at most t ANDs of parities of
literals for all s then it is not a (poly(tk · 2log t·log k), 1

3 )-weak PRF.

Proof: [sketch] The distinguisher accepts if (1) F passes the test in Proposi-
tion 3.7.10 with d = log2 t + 2 or (2) the number of x such that F(x) = 0 is at
most 2k/3. From the above proof and large deviation bounds, it follows that a ran-
dom function is accepted with probability at most 1/3.

When F = Fs, we consider two possibilities. If all AND terms of Fs have fan-in
more than log2 t + 2, then by a union bound, Fs(x) is nonzero with probability at
most 1/4 over the choice of x. By a large deviation bound, Fs is then rejected by
test (2) with probability at most 1/3. If, on the other hand, Fs contains an AND term
with fan-in at most log2 t + 2, then this term is a nonzero polynomial of degree at
most log2 t + 2 that evaluates to one whenever Fs does. By Proposition 3.7.9, Fs has
rational degree log2 t + 2 and it is rejected by test (1) with probability one. ut

Proposition 3.7.10 in fact holds under the weaker assumption that Fs is o
(
1/2d

(
k
≤d

))
-

close to rational degree d, as the probability that such a function triggers a false neg-
ative in the test is vanishingly small. Towards understanding the security of (3.16) it
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would be interesting to investigate the approximate rational degree of AC0 function
families. Akavia et al. show that the tribes function on n inputs is Ω(2d)-far from
polynomial degree d for every d ≤ n − ω(log n). Does a similar property hold for
some AC0 function family with respect to rational degree?©?

Noticeable correlation. Testing for correlation with functions of low rational de-
gree can be reduced to testing for exact representation by a rational function of
degree close to k/2.

Proposition 3.7.13. If F is δ-close to rational degree at most r then the linear space
of solutions to (3.19) has dimension at least

(
k
≤d−r

)
− δ · 2k.

Proof: If F is δ-close to rational degree r, then there exist polynomials p, q of
degree at most r such that F(x) · q(x) , p(x) for at most δ2k inputs x ∈ Fk

2. Consider
the linear space Z of polynomials of degree at most d− r that vanish on these inputs.
This space has dimension at least

(
k
≤d−r

)
− δ · 2k. On the other hand, for every z ∈ Z,

it holds that F(x) · p(x)z(x) = q(x)z(x) on all inputs x ∈ Fk
2, so all pairs of the form

(pz, qz) : z ∈ Z are solutions to (3.19). ut

We now restrict our attention to the regime d = (k−o(
√

k))/2. Proposition 3.7.13
then has the following asymptotic behavior for every δ < 1/2 and sufficiently large
k: If r = o(

√
k) then the dimension of the solution space is at least ( 1

2 − δ− o(1)) · 2k.
In particular, if δ is bounded away from 1

2 then the system has at least one solution.
This gives the following reduction from approximate to exact rational degree:

Corollary 3.7.14. For every δ < 1/2 there exists an ε > 0 such that for sufficiently
large k, if F : Fk

2 → F2 is δ-close to rational degree at most ε
√

k, then F has rational
degree at most (k − ε

√
k)/2.

On the other hand, (3.19) is a linear system of 2k equations in (1 − o(1)) · 2k

unknowns. We may conjecture that, for a reasonable fraction of functions F, the
equations should exhibit few linear dependencies and so the system should have no
solution. Razborov and Rudich write that they have no easy proof of this conjecture.
It was recently observed by Swastik Kopparty and the first author that this prop-
erty follows from the asymptotic optimality of Reed–Muller codes under random
erasures, which was recently proved by Kudekar et al. [86].

Proposition 3.7.15. For every ε > 0, the probability that a random function R : Fk
2 →

F2 has rational degree at most (k − ε
√

k)/2 approaches zero for large k.

Proof: Kudekar et al. show that for every ε > 0, if E is a uniformly random subset
of Fk

2 (representing a set of erasures), every polynomial P of degree at most d = (k−
ε
√

k)/2 is uniquely determined by the evaluations (x, P(x)) : x < E with probability
approaching one for large k. In particular, when P ≡ 0, the only polynomial of
degree at most d whose zeros cover the set E is the zero polynomial with probability
approaching one.
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For a random function R, the sets R−1(0) and R−1(1) are uniformly random sub-
sets of Fk

2. Therefore the probability that there exists a nonzero polynomial of degree
at most d whose zeros cover R−1(0) or R−1(1) approaches zero for large k. By Propo-
sition 3.7.9, this is exactly the probability that R has rational degree at most d. ut

We obtain the following consequence regarding the correlation of pseudorandom
functions to functions of low rational degree.

Theorem 3.7.16. For every δ < 1
2 there exists ε > 0 such that for sufficiently large

k, if Fs : Fk
2 → F2 is δ-close to rational degree at most (k − ε

√
k)/2 for all s, then

{Fs} is not a (2O(k), 1
2 )-PRF.

Proof: By Corollary 3.7.14 and Proposition 3.7.15, the probability that a random
function R : Fk

2 → F2 is δ-close to rational degree at most (k − ε
√

k)/2 is at most 1
2

for sufficiently large k. Correlation with rational functions is testable in time 2O(k)

(the time it takes to solve (3.19)). It follows that Fs and R can be distinguished in
size 2O(k) with advantage 1

2 . ut

Razborov and Rudich prove a weaker version of Proposition 3.7.15. They show
that for k odd and d = (k−1)/2 the linear space of solutions to (3.19) has dimension
at most 1

4 2k with probability at least 1
2 over the choice of a random R.11 Together

with Proposition 3.7.13, this establishes the conclusion of Theorem 3.7.16 under the
stronger assumption δ < 1

4 .
For completeness, we give an elementary proof of an even weaker dimension

bound, which yields the conclusion of Theorem 3.7.16 under the assumption δ <
1
2 log2

4
3 ≈ 0.2075.

Proposition 3.7.17. For k odd and d = (k − 1)/2 the linear space (p, q) of solutions
to (3.19) has dimension at most 1

2 log2
3
2 · 2

k + 1 with probability at least 1
2 over the

choice of a random F.

Proof: For a fixed pair q, p and a random F, the probability that Fq equals r is
zero if q(x) = 0 and p(x) = 1 for any x, and 2−|{x : q(x)=1}| if not. If p and q are chosen
independently at random, we have

Pr
F,p,q

[Fq = p] = E
p,q

[
1(q(x) = 1 or p(x) = 0 for all x) · 2−|{x : q(x)=1}|].

Let B = {x : |x| < k/2} and B = {x : |x| > k/2}. By the Cauchy–Schwarz inequality,
we can write

Pr[Fq = r] ≤
√

Eq,r[Z(B)] ·
√

Eq,r[Z(B)],

where
Z(S ) = 1(q(x) = 1 or p(x) = 0 for all x ∈ S ) · 2−2|{x∈S : q(x)=1}|.

By symmetry, E[Z(B)] = E[Z(B)], so Pr[Fq = p] ≤ E[Z(B)].

11 In fact, they only show this holds for the q-component of the solution space, which is sufficient.
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Every polynomial of degree less than k/2 represents a unique function from B
to F2. (The coefficients of an interpolating polynomial for a given function can be
calculated iteratively in order of increasing set size. Since the dimensions of the
space of functions and the space of polynomials are both 2k−1, the correspondence
is one-to-one.) Therefore the values of q and r at different points in B are mutually
independent and

E[Z(B)] =
∏
x∈B

E[Z({x})].

The value of Z({x}) is 1/2 conditioned on q(x) = 0 and 1/4 conditioned on q(x) = 1,
from where E[Z({x})] = 3/8 and E[Z(B)] = (3/8)2k−1

. It follows that the expected
number of solutions (q, r) to Fq = r is at most

22k
· Pr

F,q,r
[Fq = r] ≤ 22k

·
(3
8

)2k−1

= 2
1
2 log2

3
2 ·2

k
.

By Markov’s inequality, the probability that the number of solutions is more than
2

1
2 log2

3
2 ·2

k+1 is less than half, implying the bound on the dimension of the solution
space. ut

3.7.6 Correlation with Cylinder Products
Cylinder products are functions that exhibit a “product structure” with respect to a
fixed partition of the inputs. They play a central role in the study of low-complexity
circuits and communication protocols. Pseudorandom synthesizers and their higher-
dimensional analogues turn out to be closely related to cylinder products.

Definition 3.7.18 (Cylinder product). Let D1, . . . ,Dd be any finite domains. A
function F : D1 × · · · × Dd → {−1, 1} is a d-cylinder product12 if it can be writ-
ten as a product F = f1 · · · fd where the function fi does not depend on its i-th
input.

In particular, 2-cylinder products are the functions of the form F(x, y) = f (x) ·
g(y). It is easily verified that such functions satisfy the relation

F(x1, y1) · F(x2, y1) · F(x1, y2) · F(x2, y2) = 1

for all x1, x2 ∈ D1 and y1, y2 ∈ D2. In general, for a d-cylinder product F, the
following expression vanishes for all x1, y1 ∈ D1, . . . , xd, yd ∈ Dd:∏

σ1∈{x1,y1},...,σd∈{xd ,yd}

F(σ1, . . . , σd). (3.20)

The cylinder product test [50, 114, 128] evaluates (3.20) on uniformly random in-
puts x1, y1, . . . , xd, yd. We next give an analogue of Theorem 3.7.7 for cylinder in-
tersections.
12 This is the class Π∗d of Viola and Wigderson [128] (Section 3.1), who explain the close relation
with the cylinder intersections of Babai, Nisan, and Szegedy [14].
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Theorem 3.7.19. The cylinder product test distinguishes functions that are δ-close
to a d-cylinder from a random function with advantage at least 2 · (2δ − 1)2d

.

The cylinder product test is more general than the Gowers test for the purpose of
distinguishing from a random function: A degree-(d − 1) polynomial from Fk

2 to F2

is a d-cylinder product with respect to any product partition Fk1
2 × · · · × F

kd
2 of the

input domain (with k1, . . . , kd > 0).
The cylinder product test generalizes to functions that take values on the complex

unit circle. (This requires conjugating the entries with an odd number of xi in (3.20).)

On the complexity of synthesizers. As the 2-cylinder product test can be im-
plemented by a two-query distinguisher for a pseudorandom synthesizer, Theo-
rem 3.7.19 has the following corollary:

Corollary 3.7.20. If F if 1
2 (1 − (ε/2)1/4)-close to some 2-cylinder then F is not a

(O(1), 2, ε)-pseudorandom synthesizer.

As 2-cylinders over Zn
2×Z

n
2 include all linear functions, it follows that all Fourier

coefficients of a synthesizer must have negligible magnitude.
Akavia et al. [3] provide evidence that all function families in the class AC0◦⊕ of

polynomial-size, constant-depth AND/OR circuits with a bottom layer of PARITY
gates have a Fourier coefficient of magnitude at least E(−poly log n). Thus, it is
conceivable that AC0 ◦ ⊕ circuits can compute weak PRFs (see Section 3.6.3) but
not synthesizers. In contrast, Proposition 3.3.12 indicates weak PRFs can only be
more complex than synthesizers.

To resolve this apparent contradiction, recall that the complexity of a weak PRF
family Fs(x) is the maximum complexity of the function Fs over all fixings of the
key s. The induced synthesizer S (s, x) = Fs(x) is a function of both the key and the
input of the original PRF. The function S could have high complexity, but reduce to
a function of lower complexity once s is fixed.

This phenomenon is exemplified by the LWR problem from Section 3.4.2: For
every fixing of the key s, the function Fs(a) = b〈a, s〉ep (see (3.11)) has a large
Fourier coefficient over Zk

q (the coefficient F̂s(s)), while all the Fourier coefficients
of the corresponding synthesizer are small.

3.7.7 Statistical Queries
Random input–output pairs (x, F(x)) can be used as samples to estimate statistics
E φ = Ex[φ(x, F(x))] for various real-valued functions φ. If φ is bounded in the
range [−1, 1], then about 1/ε2 samples are needed to estimate the statistic within
error ε with constant probability. Many known algorithms for learning from random
examples operate in this manner: The algorithm computes estimates of E φ for all
φ in some fixed class of real-valued functions Φ and outputs the value of some
function of these estimates only. The algorithm of Linial, Mansour, and Nisan for
low-weight Fourier learning is one such example.
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The statistical query learning model [81] captures this class of algorithms. The
following pseudorandomness property is necessary and sufficient for functions to be
hard to learn in this model [47]. It postulates that any statistic of the queried function
should be close in value to what is expected for a random function.

Definition 3.7.21 (Pseudorandomness against statistical queries). The family {Fs}

is (ε, δ)-pseudorandom against statistical queries Φ if, with probability at least 1−δ
over the choice of s, ∣∣∣E

x
[φ(x, Fs(x))] − E

x,R
[φ(x,R(x))]

∣∣∣ ≤ ε
for all φ in Φ.

For Boolean-valued functions, pairwise independence is sufficient to ensure
pseudorandomness against statistical queries.

Lemma 3.7.22. LetΦ be any set of [−1, 1]-valued functions. If Fs : {0, 1}k → {−1, 1}
is pairwise independent then it is (

√
2|Φ|/δ2k, δ)-pseudorandom against Φ.

Proof: Any statistical query can be written as a combination of two correlation
queries [47]:

E
x
[φ(x, F(x))] = E

x

[
φ(x,−1) ·

1 − f (x)
2

+ φ(x, 1) ·
1 + f (x)

2

]
= 1

2 E
x
[φ(x, 1) · F(x)] − 1

2 E
x
[φ(x,−1) · F(x)] + 1

2 E
x
[φ(x, 1) + φ(x,−1)].

The last term is independent of F, so we can bound the distinguishing advantage of
φ by∣∣∣E

x
[φ(x, Fs(x))] − E

x,R
[φ(x,R(x))]

∣∣∣ ≤ 1
2

∣∣∣E
x
[φ(x, 1) · Fs(x)] − E

x,R
[φ(x, 1) · R(x)]

∣∣∣
+ 1

2

∣∣∣E
x
[φ(x,−1) · Fs(x)] − E

x,R
[φ(x,−1) · R(x)]

∣∣∣
= 1

2 |Ex
[φ(x, 1) · Fs(x)]| + 1

2 |Ex
[φ(x,−1) · Fs(x)|.

It therefore suffices to bound |Ex[ψ(x) · Fs(x)]| for an arbitrary set of 2|Φ| functions
ψ : {0, 1}k → [−1, 1]. We apply the second-moment method. Since every bit of Fs is
uniformly distributed, Es Ex[ψ(x) ·Fs(x)] equals zero. For the second moment, write

E
s

[
E
x
[ψ(x) · Fs(x)]2] = E

s

[
E
x,y

[ψ(x)Fs(x) · ψ(y)Fs(y)]
]

= E
x,y

[
ψ(x)ψ(y) E

s
[Fs(x) · Fs(y)]

]
= E

x,y
[ψ(x)ψ(y)1(x = y)]

≤ Pr[x = y].
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This is the collision probability of the uniform distribution, which equals 1/2k. By
Chebyshev’s inequality, the probability that |Es[ψ(x) · Fs(x)]| exceeds

√
2|Φ|/δ2k is

at most δ/2|Φ|. The lemma follows by taking a union bound over all ψ. ut

It would be interesting to investigate if an analogous statement holds for adaptive
distinguishers.©?

A variant of this proof appears in the work of Akavia et al. [3]. In particular, since
the function family HA,b(x) = Ax + b is pairwise independent, construction (3.16) is
pseudorandom against statistical queries.

3.8 Contemporary Constructions

The dishwasher is a gift of nature!
SilvioMicali (1980s)

We present two contemporary extensions of PRFs and describe some of their ap-
plications. A key-homomorphic PRF allows for the efficient evaluation of Fs1+s2 (x)
given the values Fs1 (x) and Fs2 (x). In a puncturable PRF the adversary obtains code
for evaluating Fs everywhere but at a single input x̊ of its choice and cannot distin-
guish the value Fs(x̊) from a random one.

Puncturable PRFs are an indispensable tool in applications of indistinguishability
obfuscation, an intriguing concept that has attracted recent interest. Sahai and Wa-
ters used puncturable PRFs together with indistinguishability obfuscation to convert
certain private-key encryption schemes into public-key ones. We provide a self-
contained treatment of their result.

3.8.1 Key-Homomorphic PRFs
Key-homomorphic PRFs were introduced by Naor, Pinkas, and Reingold [103], who
constructed, in the random oracle model, a very simple key-homomorphic PRF fam-
ily assuming the DDH problem is hard.

Definition 3.8.1 (Key-homomorphic PRF). Let S andG be Abelian groups. We say
that a family {Fs : {0, 1}k → G} of functions, indexed by s ∈ S, is key homomorphic
if for every s1, s2 ∈ S and every x ∈ {0, 1}k, it holds that

Fs1 (x) + Fs2 (x) = Fs1+s2 (x).

Recently, Boneh et al. [40] constructed the first (almost) key-homomorphic PRF
without random oracles. The construction is based on the LWE problem, and builds
upon ideas used in the non-key-homomorphic LWE-based PRFs of Banerjee, Peik-
ert, and Rosen [17], and specifically on the reduction from LWE to LWR (Proposi-
tion 3.4.3). The Boneh et al. construction was subsequently generalized by Banerjee
and Peikert [16], resulting in higher efficiency and tighter security reductions.
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Constructions in the random oracle model. Let G be a finite cyclic group of
prime order q and let H : {0, 1}k → G be a function modeled as a random oracle.
Define the function Fs : {0, 1}k → G, keyed by s ∈ Zq, as

Fs(x) = H(x)s ∈ G.

Since Fs1 (x) · Fs2 (x) = H(x)s1+s2 = Fs1+s2 (x) then Fs is key homomorphic. Naor,
Pinkas, and Reingold [103] proved that {Fs} is a PRF family in the random oracle
model, assuming DDH is hard in G (see Section 3.4.1 for a description of DDH).

Similarly, it is possible to construct (almost) key-homomorphic PRFs from the
LWR problem in the random oracle model [40]. Let p < q and let H : {0, 1}k → Zq

be a function modeled as a random oracle. Define the function Fs : {0, 1}k → Zp as

Fs(x) = b〈H(x), s〉ep, (3.21)

where bxep equals b(p/q) · x mod qe mod p. The function can be shown to be a se-
cure PRF in the random oracle model, assuming the LWR problem is hard (see
Section 3.4.2 for a description of LWR). Because rounding is not linear, the func-
tion Fs is not actually key homomorphic. However it is almost key homomorphic in
that

Fs1 (x) + Fs2 (x) − Fs1+s2 (x) ∈ {−1, 0, 1}.

This relaxed property turns out to be sufficient for many applications.

Application I: Distributed PRFs. Distributed PRFs support splitting of the se-
cret key among n servers so that at least t servers are needed to evaluate the PRF.
Evaluating the PRF is done without reconstructing the key at a single location. This
can be useful, for instance, in mitigating the risk of master key leakage, as described
in Section 3.1.1 (in the context of key derivation).

Key-homomorphic PRFs give a simple, one-round solution to this problem. For
instance, for n-out-of-n sharing, server i stores a random key si and the overall PRF
key is s = s1 + · · · + sn. To evaluate Fs(x) the client sends x to all servers and each
server responds with yi = Fsi (x). The client combines the results to obtain Fs(x)
using the key-homomorphism property.

For t-out-of-n sharing, the client first homomorphically multiplies the responses
from the key servers by the appropriate Lagrange coefficients and then applies key
homomorphism to add the results. This still works with an almost key-homomorphic
PRF as long as the PRF range is sufficiently larger than the error term. The ho-
momorphism error is eliminated by setting the output to the high-order bits of the
computed value Fs(x).

Application II: Proxy re-encryption. Given a ciphertext encrypted under one
symmetric key, we would like to enable a proxy to transform the ciphertext to an
encryption under a different symmetric key without knowledge of either key. To this
end, the proxy is provided with a short re-encryption token t. Consider a ciphertext
of the form (r, Fs(r) + m) where Fs is a key-homomorphic PRF. To re-encrypt from
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key s to key s′, one sends the re-encryption token t = −s + s′ to the proxy, who
computes Ft(r) and adds it to Fs(r) + m to obtain Fs+t(r) + m = Fs′ (r) + m.

This also works with an almost key-homomorphic PRF except that here we pad
each message m with a small number of zeros on the right to ensure that the small ad-
ditive error term does not affect the encrypted plaintext after several re-encryptions.

Constructions without random oracles. The Boneh et al. PRF [40] is indexed
by two public matrices A0,A1 ∈ {0, 1}n×n, both sampled uniformly at random. The
(secret) key for the PRF is a vector s ∈ Zn

q. The PRF Fs : {0, 1}k → Zn
p is defined as

Fs(x) =

sT ·

k∏
i=1

Axi

p

. (3.22)

The function Fs satisfies Fs1 (x) + Fs2 (x) − Fs1+s2 (x) ∈ {−1, 0, 1}n. It is thus almost
key homomorphic in the same sense as the function Fs from (3.21).

The Banerjee–Peikert (BP) almost key-homomorphic PRF is a generalization of
the Boneh et al. construction. A basic tool underlying the construction is the bit
decomposition operator, which allows one to control the magnitude of individual
entries in a matrix. Let ` = blog qe, and for each a ∈ Zq, identify it with its unique
integer residue in {0, . . . , q − 1}. Define the bit decomposition function d : Zq →

{0, 1}` as
d(a) = (x0, x1, . . . , x`−1),

where a =
∑`−1

i=0 xi2i is the binary representation of a. Similarly, define the function
D : Zn×m

q → {0, 1}n`×m by applying d entry-wise.
For a full (but not necessarily complete) binary tree T , let |T | denote the number

of its leaves. If |T | ≥ 1, let T.l, T.r denote the left and right subtrees of T , and for a
string x ∈ {0, 1}|T | write x = (xl, xr) for xl ∈ {0, 1}|T.l| and xr ∈ {0, 1}|T.r|.

Public parameters: Moduli q � p, matrices A0,A1 ∈ Z
n×n`
q , and a binary tree T

Function key: A random s ∈ Zn
q

Function evaluation: On input x ∈ {0, 1}|T | define F = Fs : {0, 1}|T | → Zn
p as

Fs(x) =
⌊
sT · AT (x)

⌉
p
,

where the function AT : {0, 1}|T | → Zn×n`
q is defined recursively as

AT (x) =

Ax, if |T | = 1
AT.l(xl) · D(AT.r(xr)), otherwise

Size: poly(k, n)
Depth: O(s(T ))

Fig. 3.10: The Banerjee–Peikert key-homomorphic PRF
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The BP function generalizes the function of Boneh et al. This can be seen by
setting public parameters Bb = D(Ab) and a left-spine tree T (as in Figure 3.11.(a)),
which (after a minor adaptation) yields the construction Fs(x) =

⌊
sT ·

∏
i Bxi

⌉
p

from (3.22).

Sequentiality and expansion. In terms of efficiency, the cost of computing Fs(x)
is dominated by the evaluation of AT (x). Since linear operations over Zq can be
computed by depth-one (unbounded fan-in) arithmetic circuits, the circuit depth of
the construction is proportional to the maximum nesting depth of D(·) terms when
one unwinds AT . This is the sequentiality, s(T ), which measures the right depth of
the tree, i.e., the maximum number of right edges over all root-to-leaf paths.

For security based on the hardness of the LWE problem, the public parameters
A0,A1 and the secret key s are sampled uniformly at random over Zq. The modulus
q and underlying LWE error rate, and hence also the dimension n needed to obtain
a desired level of security, are determined by the maximum number of terms of
the form D(·) that are consecutively multiplied when one unwinds the recursive
definition of AT . This is the expansion e(T ), which measures the left depth of the
tree, i.e., the maximum number of left edges over all root-to-leaf paths.

Ax1 Ax2

D
Ax3

D
Ax4

D

Ax1 · D(Ax2 ) · D(Ax3 ) · D(Ax4 )

(a)

Ax1

Ax2

Ax3 Ax4

D

D

D

Ax1 · D(Ax2 · D(Ax3 · D(Ax4 )))

(c)

Ax1 Ax2

D

Ax3 Ax4

D

D

Ax1 · D(Ax2 ) · D(Ax3 · D(Ax4 ))

(b)

Fig. 3.11: Instantiations of the Banerjee–Peikert PRF. All functions are on four
inputs with the following sequentiality (s)/expansion (e) tradeoffs: (a) s = 1, e = 3,
(b) s = e = 2, (c) s = 3, e = 1

Theorem 3.8.2 ([16]). If the LWE problem is (t,mn`, ε)-hard for some B-bounded
error distribution then {Fs} as defined in Figure 3.10 is an almost key-homomorphic
(t′, ε′)-pseudorandom function family, where

t′ = t − poly(n,m, k), and ε′ = pB(n`)e(T )/q + poly(ε).
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The use of a left-spine tree T (as in Figure 3.11 (a)) yields a maximally paral-
lel instantiation: Its sequentiality is s(T ) = 1. This instantiation, however, also has
maximal expansion e(T ) = |T |−1. In Theorem 3.8.2, the modulus q and error param-
eter 1/p have to grow exponentially with e(T ), so using a tree with large expansion
leads to a strong hardness assumption on LWE, and therefore large secret keys and
public parameters. Other trees give different sequentiality/expansion tradeoffs (as in
Figure 3.11 (b) and (c)).

Efficiency. The cost of computing Fs(x) is dominated by the evaluation of AT (x),
which can be done publicly without any knowledge of the secret key s. This property
can be very useful for the efficiency of certain applications, such as the homomor-
phic evaluation of Fs given an encryption of s (see Section 3.1.1).

In addition, if AT (x) has been computed and all the intermediate matrices saved,
then AT (x) can be incrementally updated for an x′ that differs from x in just one bit.
As discussed in Sections 3.4.1 and 3.4.2, this can significantly speed up successive
evaluations of Fs on related inputs, e.g., in a counter-like mode using a Gray code.

3.8.2 Puncturable PRFs

I cannot relate to emotional statements.
Which of the words here is incorrect?

Leonid Levin (1989)

A function family is puncturable if it can be evaluated at all but a single point x̊ and
its value at this point is secret [84, 43]. The GGM construction has this property, so
a puncturable PRF can in principle be obtained from any one-way function.

Sahai and Waters [121] show how to build public-key encryption from any punc-
turable function family using an indistinguishability obfuscator. Their construction
has yet to produce encryption schemes that are as practical as available alternatives.
Moreover, the existence of efficient and secure indistinguishability obfuscators is
currently a subject of debate. Despite these shortcomings, the methodology holds
significant conceptual appeal: If indistinguishability obfuscation is possible then
public-key encryption can be constructed generically from any one-way function.

Definition 3.8.3 (Puncturable function family). A puncturing of a function fam-
ily Fs is a pair of deterministic algorithms Gen and F̊ such that for all s, x̊, and
x , x̊, F̊ s̊(x) = Fs(x), where s̊ = Gen(s, x̊). The puncturing is (t, ε)-secure if the
distributions (s̊, Fs(x̊)) and (s̊, r) are (t, ε)-indistinguishable for every x̊.

Every puncturable function family is a PRF, but the opposite may not hold. A
PRF distinguisher can only make black-box queries to the function, while the adver-
sary to a puncturable function family has a circuit that evaluates the PRF everywhere
except at the challenge point. It may be interesting to study under which conditions
the two notions can be formally separated.©?

Proposition 3.8.4. If Fs has a (t, ε)-secure puncturing of size at most c then it is a
(t − qc, q, qε)-PRF for every q.
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Proof: Assume Fs is not a (t − qc, q, qε)-PRF. By a hybrid argument the following
two games are (t − qc, ε)-distinguishable for some i ≤ q:

Answer the first q − i queries randomly and the other i according to Fs.
Answer the first q − i − 1 queries randomly and the other i + 1 according to Fs.

After fixing the first q − i − 1 answers to maximize the distinguishing advantage we
obtain that the games

F: Answer all i queries according to Fs

R: Answer the first query randomly and the other i − 1 according to Fs

are also (t−qc, ε)-distinguishable. Let x̊ be the first query made by the distinguisher
D of size at most t − qc and s̊ = Gen(s, x̊). The following circuit A of size t then
breaks the assumed security of puncturing: Given a challenge (s̊, y), emulate D by
answering the first query by y and every subsequent query x , x̊ by F̊ s̊(x). By the
functionality of puncturing, A(s̊, Fs(x̊)) = DF and A(s̊, r) = DR, so the distributions
(s̊, Fs(x̊)) and (s̊, r) are (t, ε)-distinguishable. ut

A puncturable PRF. The PRF Fs of Goldreich, Goldwasser, and Micali from
Section 3.3.1 is puncturable. The puncturing is specified recursively by

Gen(s, åx̊) =
(
å,G1−å(s),Gen(Gå(s), x̊)

)
,

F̊(å,y,g)(ax) =

Fy(x), if a , å
F̊g(x), if a = å,

where a, å ∈ {0, 1} and x, x̊ ∈ {0, 1}k−1. In the base case k = 0, Gen and Eval output
an empty string. The functionality requirement follows from the definition of the
GGM pseudorandom function. See Figure 3.12 for an example.

s

G0(s)

G0(G0(s)) G1(G0(s))

0

G1(G1(G0(s)))

1

0

G1(s)

Fig. 3.12: The GGM function family punctured at x̊ = 010. The punctured key is
s̊ = (0,G1(s), 1,G0(G0(s)), 0,G1(G1(G0(s))))
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Proposition 3.8.5. If G is a (t, ε)-PRG of size c then (Gen, F̊) is a (t −O(ck3), 2kε)-
secure puncturing of Fs.

Proof: We prove the proposition by induction on k. When k = 0, (s̊, Fs(λ)) and
(s̊, r) are both distributed like (λ, s), so the two distributions are identical. Here λ is
the empty string.

Now assume (t − O(c(k − 1)3), 2(k − 1)ε)-security holds for input length k − 1,
namely the distributions

(Gen′(s, x̊), F′s(x̊)) and (Gen′(s, x̊), r)

are (t − O(c(k − 1)3), 2(k − 1)ε)-indistinguishable for all x̊ ∈ {0, 1}k−1. Here, F′s is
the GGM construction on input size k − 1 and Gen′ is the corresponding punctured
key-generation algorithm.

Claim 3.8.6. The distributions

(Gen(s, åx̊, Fs(åx̊)) =
(
å,G1−å(s),Gen′(Gå(s), x̊), F′Gå(s)(x̊)

)
and

(Gen(s, åx̊), r) =
(
å,G1−å(s),Gen′(Gå(s), x̊), r

)
are (t − O(ck3), 2kε)-indistinguishable for every å ∈ {0, 1} and x̊ ∈ {0, 1}k−1.

Proof: Since G is (t, ε)-pseudorandom and Gen′ can be computed using O(k2) calls
to G, these two distributions are (t − O(ck2), ε)-indistinguishable from(

å, r1,Gen′(r0, x̊), F′r0
(x̊)

)
and

(
å, r1,Gen′(r0, x̊), r

)
, (3.23)

respectively, for random strings r0 and r1 of length n. The distributions (3.23) are
(t − O(c(k − 1)3), 2(k − 1)ε)-indistinguishable by inductive assumption. The claim
follows by the triangle inequality. ut

This completes the inductive step. ut

From private-key to public-key encryption. Much cryptographic evidence sug-
gests that public-key encryption needs to be based on the hardness of “structured”
problems such as discrete logarithms or finding close vectors in lattices. In contrast,
private-key encryption follows from the existence of one-way functions, which are
seemingly abundant. This divide is explained by theoretical results that rule out a
fully-black-box construction of key exchange from one-way functions [77, 75].

On the other hand, there is an appealing blueprint for upgrading encryption from
private-key to public-key: Publish an obfuscation of the encryption circuit as the
public key. Assuming the encryption circuit can be obfuscated in the “virtual black-
box” (VBB) sense, the resulting public-key scheme can be proved secure. Unfor-
tunately, VBB obfuscation is impossible for all but a few rudimentary classes of
functions [19].

Sahai and Waters propose applying this transformation to a variant of the private-
key encryption scheme (3.2) that was analyzed in Section 3.2.4. They show that
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the resulting public-key scheme is secure under the assumption that the obfuscator
satisfies the seemingly weaker security notion of indistinguishability [19]. Garg et
al. [57] give a candidate construction of an indistinguishability obfuscator. How-
ever this and related candidates were subsequently shown to be insecure. The fea-
sibility of indistinguishability obfuscation is currently a highly active research area.
Whether such obfuscation is attainable in its most general form is still uncertain.

Circuits C0 and C1 are functionally equivalent if C0(x) = C1(x) for all x. Let
C,C′ denote the classes of circuits of sizes c and c′, respectively.

Definition 3.8.7 (Indistinguishability obfuscation [19]). We say that a probabilis-
tic function iO: C → C′ is a (t, ε)-indistinguishability obfuscator if, for all C ∈ C,
it holds that iO(C) and C are functionally equivalent with probability 1 (functional-
ity), and for all pairs of functionally equivalent circuits C0,C1 ∈ C the distributions
iO(C0) and iO(C1) are (t, ε)-indistinguishable (indistinguishability).

The construction of Sahai and Waters relies on the existence of a puncturable
family Fs : {0, 1}2n → {0, 1}`, a PRG G : {0, 1}n → {0, 1}2n, and an indistinguisha-
bility obfuscator iO. The starting point is the following variant of the private-key
encryption scheme (3.2):

Enc′s(m; r) = (G(r), Fs(G(r)) ⊕ m), Dec′s(y, z) = Fs(y) ⊕ z. (3.24)

The public-key encryption scheme of Sahai and Waters is shown in Figure 3.13. Its
functionality follows from the functionality of indistinguishability obfuscation and
the private-key scheme (Enc′,Dec′).

Private key: A key s for the scheme (Enc′,Dec′)
Public key: The circuit pk = iO(Enc′s)

Encryption/decryption: For message m ∈ {0, 1}` and randomness r ∈ {0, 1}n

Encpk(m; r) = pk(m; r), Decs(y, z) = Dec′s(y, z).

Fig. 3.13: The Sahai–Waters public-key encryption scheme

Proposition 3.8.8 ([121]). Suppose that {Fs} is a (t, ε)-puncturable family, that G is
a (t, ε)-pseudorandom generator, and that iO is a (t, ε)-indistinguishability obfusca-
tor, all of size at most c. Then for every two messages m0,m1 ∈ {0, 1}`, the following
games are (t − O(c), 6ε + 2 · 2−n)-indistinguishable:

E0: Sample pk, s, r and output (pk,Encpk(m0; r)).
E1: Sample pk, s, r and output (pk,Encpk(m1; r)).

Proof: For b ∈ {0, 1} consider the following sequence of games:
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Eb: Sample random s, r and pk = iO(Enc′s). Output (pk,G(r), Fs(G(r)) ⊕ mb).
Yb: Sample random s, ẙ and pk = iO(Enc′s). Output (pk, ẙ, Fs(ẙ) ⊕ mb).
Hb: Sample random s, ẙ < Im(G) and pk = iO(Enc′s). Output (pk, ẙ, Fs(ẙ) ⊕ mb).
F̊b: Sample random s, ẙ < Im(G) and p̊k = iO(E̊ncs̊). Output ( p̊k, ẙ, Fs(ẙ) ⊕ mb).
R: Sample random s, ẙ < Im(G), r and let p̊k be as in H̊b. Output ( p̊k, ẙ, r).

In the game F̊b, we set s̊ = Gen(s, ẙ), and E̊ncs̊(m; r) = (G(r), F̊ s̊(G(r)) ⊕ m).

Claim 3.8.9. Eb and Yb are (t − c, ε)-indistinguishable.

Proof: The claim follows from the pseudorandomness of G and from the fact that
iO is of size at most c. ut

Claim 3.8.10. Yb and Hb are (∞, 2−n)-indistinguishable.

Proof: The distribution Hb is Yb conditioned on ẙ not landing in the image of G.
By a union bound, the probability of this event is at most

Pr[ẙ ∈ Im(G)] ≤
∑

r

Pr[ẙ = G(r)] ≤ 2n · 2−2n = 2−n. (3.25)

ut

Claim 3.8.11. Hb and F̊b are (t, ε)-indistinguishable.

Proof: Fix s and ẙ to maximize the distinguishing advantage. After fixing, the
distributions reduce to iO(Enc′s) and iO(E̊ncs̊) (plus some fixed bits). Owing to the
assumption ẙ < Im(G), the circuits Enc′s and E̊ncs̊ are functionally equivalent, so
indistinguishability follows from the security of iO. ut

Claim 3.8.12. F̊b and R are (t − O(c), ε)-indistinguishable.

Proof: Fix ẙ to maximize the distinguishing advantage. By the security of punc-
turing, (s̊, Fs(ẙ)) and (s̊, r) are (t, ε)-indistinguishable. Then the distributions

(iO(E̊ncs̊), ẙ, Fs(ẙ) ⊕ mb) and (iO(E̊ncs̊), ẙ, r ⊕ mb)

are (t−O(c), ε)-indistinguishable. These are identical to F̊b and R, respectively. ut

The proposition follows by applying the triangle inequality to the sequence of
distributions E0,Y0,H0, F̊0,R, F̊1,H1,Y1, E1. ut

The proof generalizes to the stronger adaptive security notion in which the chal-
lenge messages m0 and m1 are chosen after observing the public key.

Constrained PRFs and witness PRFs. Constrained PRFs extend puncturable
PRFs in that they allow for more general constraints than mere puncturing [41, 84,
43]. A constrained PRF can be evaluated at any input x that satisfies some constraint
circuit C(x), but the constrained key reveals no information about the PRF values at
points that do not satisfy the constraint to a computationally bounded adversary.



Brakerski and Vaikutanatan [44] construct an LWE-based function of constraint
PRFs. Boneh and Waters [41] consider a more general definition in which security
holds even if the adversary is given multiple constrained keys derived from differ-
ent circuits. They give candidate constructions for restricted circuit classes whose
security is based on strong hardness assumptions related to multilinear maps.©?

An even more intriguing notion is that of a witness PRF [132], which can be
seen as a nondeterministic analogue of a constrained PRF. Here the constrained key
allows for evaluation of Fs(x), but only if the evaluator is also given a witness w
that satisfies the constraint circuit C(x,w). If no such w exists, the adversary obtains
no information about the value Fs(x). Witness PRFs are sufficient to realize some
of the most interesting applications of indistinguishability obfuscation. What makes
them intriguing is the possibility of constructing them from more standard hardness
assumptions than the ones currently used to construct obfuscation.©?

Open Questions

In the established physical sciences . . . a rich intellectual structure has
been uncovered that reveals at any time a wide range of unsolved prob-
lems or puzzles. Solutions to these provide increased understanding of the
field and further enrich the structure. As long as successful problem solv-
ing continues, progress is close to being guaranteed. The possibility of
almost routine progress of this nature appears to be a fundamental aspect
of science. Even if it is not the most celebrated aspect, it may be the most
characteristic one.

Leslie Valiant (Circuits of the Mind, 1999)
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Chapter 4
The Many Entropies in One-Way Functions

Iftach Haitner and Salil Vadhan

Abstract Computational analogues of information-theoretic notions have given rise
to some of the most interesting phenomena in the theory of computation. For exam-
ple, computational indistinguishability, Goldwasser and Micali [9], which is the
computational analogue of statistical distance, enabled the bypassing of Shannon’s
impossibility results on perfectly secure encryption, and provided the basis for the
computational theory of pseudorandomness. Pseudoentropy, Håstad, Impagliazzo,
Levin, and Luby [17], a computational analogue of entropy, was the key to the fun-
damental result establishing the equivalence of pseudorandom generators and one-
way functions, and has become a basic concept in complexity theory and cryptog-
raphy.
This tutorial discusses two rather recent computational notions of entropy, both of
which can be easily found in any one-way function, the most basic cryptographic
primitive. The first notion is next-block pseudoentropy, Haitner, Reingold, and Vad-
han [14], a refinement of pseudoentropy that enables simpler and more efficient con-
struction of pseudorandom generators. The second is inaccessible entropy, Haitner,
Reingold, Vadhan, and Wee [11], which relates to unforgeability and is used to con-
struct simpler and more efficient universal one-way hash functions and statistically
hiding commitments.
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4.1 Introduction
One-way functions (OWFs), functions that are easy to compute and hard to invert,
are the most basic, unstructured form of cryptographic hardness [22]. Yet, in a se-
quence of celebrated results, mostly in the 1980s and early 1990s, one-way functions
were shown to imply a rich collection of cryptographic schemes and protocols, such
as digital signatures and secret-key encryption schemes. At the basis of this beautiful
mathematical structure are a few constructions of basic primitives: pseudorandom
generators (Håstad et al. [17]), universal one-way hash functions (Naor and Yung
[26], Rompel [27]), and more recently, statistically hiding commitment schemes
(Haitner, Nguyen, Ong, Reingold, and Vadhan [10]). These powerful plausibility
results shape our understanding of hardness, secrecy, and unforgeability in cryptog-
raphy. For instance, the construction of pseudorandom generators provides strong
evidence that computationally secure encryption is much richer than information-
theoretically secure encryption, as it allows encrypting many more bits than the key
length, in contrast to Shannon’s impossibility result for information-theoretic secu-
rity [28]. The construction of universal one-way hash functions yields that some
“public-key” objects, such as signature schemes, can be built from “private-key”
primitives, like one-way functions. A recent line of results [11, 12, 14, 29] simpli-
fied and improved all of these constructions. The crux of each new construction is
defining the “right” notion of computational entropy and recovering this form of
entropy from one-way functions.

Computational entropy. Computational analogues of information-theoretic no-
tions have given rise to some of the most interesting phenomena in the theory of
computation. For example, computational indistinguishability, a computational ana-
logue of statistical indistinguishability introduced by Goldwasser and Micali [9],
enabled the bypassing of Shannon’s impossibility results on perfectly secure en-
cryption [28], and provided the basis for the computational theory of pseudoran-
domness [2, 32]. Pseudoentropy, a computational analogue of entropy introduced
by Håstad et al. [17], was the key to their fundamental result establishing the equiv-
alence of pseudorandom generators and one-way functions, and has become a basic
concept in complexity theory and cryptography. The above notions were further re-
fined in [14, 29], and new computational analogues of entropy to quantify unforge-
ability were introduced in [11, 12]. These new abstractions have led to much simpler
and more efficient constructions based on one-way functions, and to a novel equiva-
lence between (parallelizable) constant-round statistical zero-knowledge arguments
and constant-round statistically hiding commitments.

The purpose of this tutorial is to explain these computational notions of entropy
and their application in constructing cryptographic primitives. The utility of the
computational notions of entropy is to bridge between the very unstructured form of
hardness of the primitive we start with (e.g., one-wayness) and the typically much
more structured form of hardness that appears in the primitive we are trying to con-
struct. The benefit of using such computational notions of entropy is that there exists
well-developed machinery for manipulating information-theoretic entropy and mak-
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ing it more structured (e.g., through taking many independent copies and applying
hash functions and randomness extractors); with care, analogous tools can be ap-
plied to the computational notions. For example, in each of the two constructions
presented in this tutorial, the first step is to construct a “generator” with a noticeable
gap between its real output entropy and its computational entropy—entropy from the
point of view of a computationally bounded adversary. (For each construction, we
use a different notion computational entropy.) The next step is to increase the gap be-
tween real and computational entropy and to convert them into worst-case analogues
(e.g., min-entropy and max-entropy) using the standard information-theoretic tools
of taking many independent samples. Finally, hashing and randomness extractors
are used to obtain more structured randomness generators.

In the following, we discuss the two major types of computational entropy no-
tions that can be found in any one-way function: pseudoentropy, which comes to
quantify pseudorandomness and secrecy, and inaccessible entropy, which comes to
quantify unforgeability. We do that while focusing on next-block pseudoentropy, a
refinement of the traditional notion of pseudoentropy, and on the type of inaccessible
entropy that is related to, and used as an intermediate step to construct, statistically
hiding commitment schemes. In the main body of this tutorial, we discuss these two
notions further, and exemplify their usability with applications to one-way function
based primitives.

4.1.1 Pseudoentropy
A random variable X over {0, 1}n is pseudorandom if it is computationally indis-
tinguishable from Un.1 The most natural quantitative variant of pseudorandomness
is the so-called HILL pseudoentropy (stands for Håstad, Impagliazzo, Levin, and
Luby), or just pseudoentropy.

Definition 4.1.1 ((HILL) pseudoentropy, [17], informal). A random variable X is
said to have pseudoentropy (at least) k if there exists a random variable Y such
that:

1. X is computationally indistinguishable from Y.
2. H(Y) ≥ k, where H(·) denotes Shannon entropy.2

A function (i.e., a generator) G : {0, 1}n 7→ {0, 1}m(n) has pseudoentropy k if G(Un)
has pseudoentropy k. An efficiently computable G : {0, 1}n 7→ {0, 1}m(n) is a pseu-
doentropy generator if it has pseudoentropy (at least) H(G(Un))) + ∆(n) for some
∆(n) ≥ 1/ poly(n). We refer to ∆ as the entropy gap of G.3

1 I.e., |Pr [D(X) = 1] = Pr [D(Un) = 1]| = neg(n) for any polynomial-time distinguisher D, where
Un is uniformly distributed over {0, 1}n, and neg(n) is smaller than any inverse polynomial. See
Section 4.2 for the formal definitions.
2 The Shannon entropy of a random variable X is defined by H(X) = Ex←X

[
log 1

Pr[X=x]

]
.

3 Håstad et al. [17] refer to such a generator as a false entropy generator, and require a pseudoen-
tropy generator to have output pseudoentropy (at least) n + ∆(n), rather than just H(G(Un)) + ∆(n).
For the sake of this exposition, however, we ignore this distinction.
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Pseudoentropy plays a key role in the Håstad et al. [17] construction of pseudo-
random generators from one-way functions. A pseudorandom generator (PRG) is an
efficient length-extending function whose output distribution, over uniformly cho-
sen input, is pseudorandom. Note that every pseudorandom generator G : {0, 1}n 7→
{0, 1}m(n) is a pseudoentropy generator with entropy gap at least m(n) − n; take
Y = Um(n) and note that H(Y) = m(n), but H(G(Un)) ≤ H(Un) = n. Pseudoen-
tropy generators are weaker in that Y may be very far from uniform, and even with
H(Y) � n (as long as H(G(Un)) is even smaller). Yet, Håstad et al. [17] showed that
also the converse is true, using pseudoentropy generators to construct pseudorandom
generators. The first and key step of their main result (that one-way functions imply
pseudorandom generators) was to show that a simple modification of any one-way
function is a pseudoentropy generator with small but noticeable entropy gap, where
the rest of their construction is “purifying” this generator’s pseudoentropy into pseu-
dorandomness, and thus turning it into a PRG. This shows in a sense that (a simple
modification of) one-way functions have the computational notion of entropy that
pseudorandom generators take to the extreme.

Constructing pseudoentropy generator from an injective one-way function is
easy. Given such an injective function f : {0, 1}n 7→ {0, 1}∗, let G(x) = ( f (x), b(x)),
where b is an hardcore predicate of f .4 G’s pseudoentropy is n + 1, which is larger
by one bit than its output (and input) entropy. Similar constructions can be applied
to one-way functions that can be converted to (almost) injective one-way functions
(e.g., regular one-way functions), but generalizing it to arbitrary one-way function
is seemingly a much more challenging task. Yet, Håstad et al. [17] did manage to
get a pseudoentropy generator out of an arbitrary one-way function, alas with poor
parameters compared with what can easily be achieved from an injective one-way
function. Specifically, while its output pseudoentropy is larger than its real output
entropy, and thus it possesses a positive entropy gap, its entropy gap is tiny (i.e.,
log n/n), and its pseudoentropy is smaller than its input length. In addition, the
quantity of its pseudoentropy is not efficiently computable. These issues result in
a complicated and indirect PRG construction. Constructions that followed this ap-
proach ([13, 19]), while improving and simplifying the original construction, also
ended up being rather complicated and inefficient. To deal with this barrier, Haitner,
Reingold, and Vadhan [14] presented a relaxation of this notion called next-block
pseudoentropy, which can be easily obtained with strong parameters from any one-
way function, yet is still strong enough for construction of PRGs.

4.1.1.1 Next-Block Pseudoentropy

Next-block pseudoentropy is similar in spirit to the Blum and Micali [3] notion
of next-bit unpredictability, which was shown by Yao [32] to be equivalent to his
(now-standard) definition of pseudorandomness. This equivalence says that a ran-
dom variable X = (X1, . . . , Xm) is pseudorandom iff each bit of X is unpredictable

4 b is hardcore predicate of f if ( f (Un), b(Un)) is computationally indistinguishable from
( f (Un),U), for Un and U sampled, uniformly and independently, from {0, 1}n and {0, 1}, respec-
tively.
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from the previous bits. That is, Pr [P(X1, X2, . . . , Xi−1) = Xi] ≤ 1
2 +neg(n) for every i

and efficient predictor (i.e., algorithm) P. Equivalently, (X1, X2, . . . , Xi−1, Xi) is com-
putationally indistinguishable from (X1, X2, . . . , Xi−1,U) where U is a uniform bit.
It is thus natural to consider what happens if we relax the pseudorandomness of Xi

to pseudoentropy (capturing the idea that Xi is only somewhat unpredictable from
the previous bits). And more generally, we can allow the Xi’s to be blocks instead of
bits.

Definition 4.1.2 (Next-block pseudoentropy [14], informal). A random variable
X = (X1, . . . , Xm) is said to have next-block pseudoentropy (at least) k if there exists
a sequence of random variables Y = (Y1, . . . ,Ym), jointly distributed with X, such
that:

1. (X1, X2, . . . , Xi−1, Xi) is computationally indistinguishable from
(X1, X2, . . . , Xi−1,Yi), for every i.

2.
∑

i H(Yi|X1, . . . Xi−1) ≥ k.

A function G : {0, 1}n 7→ ({0, 1}`)m is said to have next-block pseudoentropy k if
(X1, . . . , Xm) = G(Un) has next-block pseudoentropy k. A next-block pseudoentropy
generator is a polynomial-time computable function G : {0, 1}n 7→ ({0, 1}`)m that
has next-block pseudoentropy (at least) H(G(Un))+∆(n) for some ∆(n) > 1/ poly(n),
where again ∆ is called the entropy gap.

That is, in total, the blocks of X “look like” they have k bits of entropy given the
previous ones. Note that the case k = m and blocks of size one (the Xi’s are bits)
amounts to the Yao [32] definition of unpredictability discussed above. The case
of one block (m = 1) amounts to Håstad et al. [17] definition of pseudoentropy
(Theorem 4.1.1). Also note that, when m > 1, allowing Y to be correlated with X
in this definition is essential: for example, if all the blocks of X are always equal
to each other (and have noticeable entropy), then there is no way to define Y that is
independent of X and satisfies the first condition.

Unlike the case of (HILL) pseudoentropy, it is known how to use any one-way
function to construct a next-block pseudoentropy generator with good parameters.

Constructing next-block pseudoentropy generators from one-way functions.
Given a one-way function f : {0, 1}n 7→ {0, 1}n, we construct a generator G as

G(x) = ( f (x), x1, . . . , xn). (4.1)

The above construction was proven to achieve next-block pseudoentropy by Vadhan
and Zheng [29]. The original construction of Haitner et al. [14] considered instead
G(x, h) = ( f (x), h(x)1, . . . , h(x)n), for an appropriate family of hash functions with
seed length O(n). In this tutorial, we will analyze the latter construction, using a
family of hash functions of seed length O(n2), as it has a simpler analysis.5

5 Interestingly, the construction we consider in this tutorial is similar to the pseudoentropy genera-
tor used by Håstad et al. [17], but here it is viewed as a next-block pseudoentropy generator.
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If we consider only the original notion of pseudoentropy (Theorem 4.1.1), the
above construction is problematic; the polynomial-time test T (y, x) that checks
whether y = f (x), distinguishes G(Un) from every random variable of entropy no-
ticeably larger than n (since T accepts only 2n strings). However, it turns out that
it does have next-block pseudoentropy at least n + log n. This has two advantages
compared with the pseudoentropy generator constructed by Håstad et al. [17]. First,
the entropy gap is now ∆ = log n instead of ∆ = log n/n. Second, the total amount
of pseudoentropy in the output (though not the amount contributed by the individual
blocks) is known. These two advantages together yield a simpler and more efficient
one-way function based PRG.

4.1.2 Inaccessible Entropy
Notions of pseudoentropy as above are only useful as a lower bound on the “com-
putational entropy” in a distribution. For instance, it can be shown that every distri-
bution on {0, 1}n is computationally indistinguishable from a distribution of entropy
at most polylog n. In this section we introduce another computational analogue of
entropy, which we call accessible entropy, which is useful as an upper bound on
computational entropy. We motivate the idea of accessible entropy with an exam-
ple. Let G be the following two-block generator:

Algorithm 4.1.3 (G)
Let m � n and let H = {h : {0, 1}n 7→ {0, 1}m} be a family of collision-resistant

hash functions.6

On public parameter h
R
←H.

1. Sample x
R
← {0, 1}n.

2. Output y = h(x).
3. Output x.

Now, information-theoretically, G’s second output block (namely x) has entropy
at least n − m ≥ 1 conditioned on h and its first output block y. This is since (h, y =

h(x)) reveals only m bits of information about x. The collision-resistance property
of h, however, implies that given the state of G after it outputs its first block y, there
is at most one consistent value of x that can be computed in polynomial time with
nonnegligible probability. (Otherwise, we would be able find two distinct messages
x , x′ such that h(x) = h(x′).) This holds even if G is replaced by any polynomial-
time cheating strategy G̃. Thus, there is “real entropy” in x (conditioned on h and
the first output of G), but it is “computationally inaccessible” to G̃, to whom x
effectively has entropy 0.

We generalize this basic idea to allow the upper bound on the “accessible en-
tropy” to be a parameter k, and to consider both the real and accessible entropy
accumulated over several blocks of a generator. In more detail, consider an m-block

6 Given h
R
←H, it is infeasible to find distinct x, x′ ∈ {0, 1}n with h(x) = h(x′).
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generator G : {0, 1}n 7→ ({0, 1}∗)m, and let (Y1, . . . ,Ym) be random variables denot-
ing the m output blocks generated by applying G over randomness Un (no public
parameters are given). We define the real entropy of G as H(G(Un)), the Shannon
entropy of G(Un), which is equal to∑

i∈[m]

H(Yi | Y1, . . . ,Yi−1),

where H(X | Y) = E
y

R
←Y

[H(X |Y=y)] is the standard notion of (Shannon) conditional
entropy.

To define accessible entropy, consider a probabilistic polynomial-time cheating
strategy G̃ that before outputting the i-th block, tosses some fresh random coins ri,
and uses them to output a string yi. We restrict out attention to G-consistent (ad-
versarial) generators—G̃’s output is always in the support of G (though it might
be distributed differently). Now, let (R1,Y1, . . . ,Ym,Rm) be random variables corre-
sponding to a random execution of G̃. We define the accessible entropy achieved by
G̃ to be ∑

i∈[m]

H(Yi | R1, . . . ,Ri−1).

The key point is that now we compute the entropy conditioned not just on the pre-
vious output blocks Y1, . . . ,Yi−1 (which are determined by R1, . . . ,Ri−1), as done
when computing the real entropy of G, but also on the local state of G̃ prior to
outputting the i-th block (which without loss of generality equal its coin tosses
R1, . . . ,Ri−1). We define the accessible entropy of G as the maximal accessible en-
tropy achieved by a G-consistent, polynomial-time generator G̃. We refer to the
difference (real entropy) − (accessible entropy) as the inaccessible entropy of the
generator G, and call G an inaccessible entropy generator if its inaccessible entropy
is noticeably greater than zero.

It is important to note that if we put no computational restrictions on the com-
putational power of a G-consistent G̃, then its accessible entropy can always be as
high as the real entropy of G; to generate its i-th block yi, G̃ samples x uniformly at
random from the set {x′ : G(x′)1 = y1, . . . ,G(x′)i−1 = yi−1}. This strategy, however,
is not always possible for a computationally bounded G̃.

The collision resistance example given earlier provides evidence that when al-
lowing public parameters, there are efficient generators whose computationally ac-
cessible entropy is much smaller than their real Shannon entropy. Indeed, the real
entropy of the generator we considered above is n (namely, the total entropy in x),
but its accessible entropy is at most m + neg(n) � n, where m is the output length
of the collision-resistant hash function.

As we shall see, we do not need collision resistance; any one-way function can be
used to construct an inaccessible entropy generator (without public parameters). An
application of this result is an alternative construction of statistically hiding commit-
ment schemes from arbitrary one-way functions. This construction is significantly
simpler and more efficient than the previous construction of Haitner et al. [10]. It
also conceptually unifies the construction of statistically hiding commitments from
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one-way functions with the construction of pseudorandom generators discussed in
the previous section: the first step of both constructions is to show that the one-
way function directly yields a generator with a gap between its real entropy and
“computational entropy” (pseudoentropy in the case of pseudorandom generators,
and accessible entropy in the case of statistically hiding commitments). This gap is
then amplified by repetitions and finally combined with various forms of hashing to
obtain the desired primitive.

Constructing an inaccessible entropy generator from one-way functions. For
a one-way function f : {0, 1}n 7→ {0, 1}n, consider the (n + 1)-block generator

G(x) = ( f (x)1, f (x)2, . . . , f (x)n, x).

Notice that this construction is the same as the construction of a next-block pseu-
doentropy generator from a one-way function (Construction 4.1), except that we
have broken f (x) into one-bit blocks rather than breaking x. Again, the real entropy
of G(Un) is n. It can be shown that the accessible entropy of G is at most n − log n,
so again we have an entropy gap of log n bit.

4.1.3 Rest of This Tutorial
Standard notations, definitions, and facts, are given in Section 4.2. An elaborated
discussion of next-block pseudoentropy, containing formal definitions, a construc-
tion from one-way functions, and its use in constricting pseudorandom generators,
is given in Section 4.3. An elaborated discussion of inaccessible entropy, with for-
mal definitions, a construction from one-way functions, and its use in constructing
statistically hiding commitment schemes, is given in Section 4.4. In both sections,
we have chosen simplicity and clarity over full generality and efficiency. For details
of the latter, see the Further Reading section below.

4.1.4 Related Work and Further Reading
Pseudoentropy. More details and improvements on the construction of pseudo-
random generator from one-way functions via next-block pseudoentropy can be
found in the works of Haitner et al. [14] and Vadhan and Zheng [29]. In particu-
lar, Vadhan and Zheng [29] also show how to save a factor of n in the seed-length
blow up in the reduction from next-block pseudoentropy generator to PRG, thereby
reducing the seed length from Õ(n4) to Õ(n3) (at the price of making adaptive calls
to the one-way function). Holenstein and Sinha [20] showed that any black-box
construction of a pseudorandom generator from a one-way function on n-bit inputs
must invoke the one-way function Ω(n/ log n) times. Their lower bound also ap-
plies to regular one-way functions (of unknown regularity), and is tight in this case
(due to the constructions of [8, 13]). The constructions of Haitner et al. [14] and of
Vadhan and Zheng [29] from arbitrary one-way functions invoke the one-way func-
tion Õ(n3) times. It remains open whether the super linear number of invocations
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or the super-linear seed length is necessary, or the constructions can be furthered
improved.

Several other computational analogues of entropy have been studied in the liter-
ature (cf. [1, 21]), all of which serve as ways of capturing the idea that a distribution
“behaves like” one of higher entropy.

Inaccessible entropy. The details of the construction of statistically hiding com-
mitments from one-way functions via inaccessible entropy can be found in the work
of Haitner et al. [16]. A preliminary version of that paper [11] uses a more general,
and more complicated, notion of accessible entropy which measures the accessible
entropy of protocols rather than generators. This latter notion is used in [11] to show
that, if NP has constant-round interactive proofs that are black-box zero knowledge
under parallel composition, then there exist constant-round statistically hiding com-
mitment schemes. A subsequent work of Haitner et al. [12] uses a simplified version
of accessible entropy to present a simpler and more efficient construction of uni-
versal one-way functions from any one-way function. One of the two inaccessible
entropy generators considered in [12], for constructing universal one-way functions,
is very similar to the constructionist next-block pseudoentropy and inaccessible en-
tropy generators discussed above (in Sections 4.1.1 and 4.1.2). Hence, all of these
three notions of computational entropy can be found in any one-way function using
very similar constructions, all simple variants of G(x) = ( f (x), x), where f is an
arbitrary one-way function.

The notion of inaccessible entropy, of the simpler variant appearing in [12], is in
a sense implicit in the work of Rompel [27], who first showed how to base universal
one-way functions on any one-way functions.

4.2 Preliminaries

4.2.1 Notation
We use calligraphic letters to denote sets, upper-case for random variables, lower-
case for values, bold-face for vectors. and sanserif for algorithms (i.e., Turing
machines). For n ∈ N, let [n] = {1, . . . , n}. For vector y = (y1, . . . , yn) and
J ⊆ [n], let yJ = (yi1 , . . . , yi|J | ), where i1 < . . . < i|J | are the elements of J .
Let y< j = y[ j−1] = (y1, . . . , y j−1) and y≤ j = y[ j] = (y1, . . . , y j). Both notations natu-
rally extend to an ordered list of elements that is embedded in a larger vector (i.e.,
given (a1, b1, . . . , an, bn), a<3 refers to the vector (a1, a2)). Let poly denote the set of
all positive polynomials, let pptNU stand for a nonuniform probabilistic polynomial-
time algorithm. A function ν : N 7→ [0, 1] is negligible, denoted ν(n) = neg(n), if
ν(n) < 1/p(n) for every p ∈ poly and large enough n. For a function f and a set S ,
let Im( f (S)) = { f (x) : x ∈ S}.
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4.2.2 Random Variables
Let X and Y be random variables taking values in a discrete universe U . We adopt
the convention that, when the same random variable appears multiple times in an
expression, all occurrences refer to the same instantiation. For example, Pr[X = X]
is 1. For an event E, we write X|E to denote the random variable X conditioned on
E. We let PrX|Y

[
x|y

]
stand for Pr

[
X = x | Y = y

]
. The support of a random variable

X, denoted Supp(X), is defined as {x : Pr[X = x] > 0}. The variable X is flat if it is
uniform on its support. Let Un denote a random variable that is uniform over {0, 1}n.
For t ∈ N, let X(t) = (X1, . . . , Xt), where X1, . . . , Xt are independent copies of X.

We write X ≡ Y to indicate that X and Y are identically distributed. We write
∆(X,Y) to denote the statistical difference (also known as variation distance) be-
tween X and Y , i.e.,

∆(X,Y) = max
T⊆U
|Pr[X ∈ T ] − Pr[Y ∈ T ]| .

If ∆(X,Y) ≤ ε [resp., ∆(X,Y) > ε], we say that X and Y are ε-close [resp.,
ε-far]. Two random variables X = X(n) and Y = Y(n) are statistically in-
distinguishable, denoted X ≈S Y , if for any unbounded algorithm D, it holds
that |Pr[D(1n, X(n)) = 1] − Pr[D(1n,Y(n)) = 1]| = neg(n).7 Similarly, X and Y
are nonuniformly computationally indistinguishable, denoted X ≈nu−C Y], if
|Pr[D(1n, X(n)) = 1] − Pr[D(1n,Y(n)) = 1]| = neg(n) for every pptNU D.

4.2.3 Entropy Measures
We refer to several measures of entropy. The relation and motivation of these mea-
sures is best understood by considering a notion that we will refer to as the sample-
entropy: for a random variable X and x ∈ Supp(X), the sample-entropy of x with
respect to X is the quantity

HX(x) := log 1
Pr[X=x] ,

letting HX(x) = ∞ for x < Supp(X), and 2−∞ = 0.
The sample-entropy measures the amount of “randomness” or “surprise” in the

specific sample x, assuming that x has been generated according to X. Using this
notion, we can define the Shannon entropy H(X) and min-entropy H∞(X) as follows:

H(X) := E
x

R
←X

[HX(x)],

H∞(X) := min
x∈Supp(X)

HX(x).

The collision probability of X is defined by CP(X) :=
∑

x∈Supp(X) PrX [x]2 =

Pr
(x,x′)

R
←X2

[x = x′], and its Rényi-entropy is defined by

H2(X) := − log CP(X).

7 This is equivalent to asking that ∆(X(n),Y(n)) = neg(n).
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We will also discuss the max-entropy H0(X) := log(1/|Supp(X)|). The term “max-
entropy” and its relation to the sample-entropy will be made apparent below.

It can be shown that H∞(X) ≤ H2(X) ≤ H(X) ≤ H0(X) with each inequality being
an equality if and only if X is flat. Thus, saying H∞(X) ≥ k is a strong way of saying
that X has “high entropy” and H0(X) ≤ k a strong way of saying that X as “low
entropy”.

The following fact quantifies the probability that the sample-entropy is larger
than the max-entropy.

Lemma 4.2.1. For random variable X it holds that

1. E
x

R
←X

[
2HX (x)

]
=

∣∣∣Supp(X)
∣∣∣.

2. Pr
x

R
←X

[
HX(x) > log 1

ε
+ H0(X)

]
< ε, for any ε > 0.

Proof: For the first item, compute

E
x

R
←X

[
2HX (x)

]
=

∑
x∈Supp(X)

2−HX (x) · 2HX (x)

=
∑

x∈Supp(X)

1

=
∣∣∣Supp(X)

∣∣∣ .
The second item follows by the first item and Markov inequality.

Pr
x

R
←X

[
HX(x) > log

1
ε

+ H0(X)
]

= Pr
x

R
←X

[
2HX (x) >

1
ε
·
∣∣∣Supp(X)

∣∣∣]
< ε.

�

Conditional entropies. We will also be interested in conditional versions of en-
tropy. For jointly distributed random variables (X,Y) and (x, y) ∈ Supp(X,Y), we de-
fine the conditional sample-entropy to be HX|Y (x|y) = log 1

PrX|Y[x|y] = log 1
Pr[X=x|Y=y] .

Then the standard conditional Shannon entropy can be written as

H(X | Y) = E
(x,y)

R
←(X,Y)

[
HX|Y (x | y)

]
= E

y
R
←Y

[
H(X|Y=y)

]
= H(X,Y) − H(Y).

The following known lemma states that conditioning on a “short” variable is
unlikely to change the sample-entropy by much.

Lemma 4.2.2. Let X and Y be random variables, let k = H∞(X), and let ` = H0(Y).
Then, for any t > 0, it holds that

Pr
(x,y)

R
←(X,Y)

[
HX|Y (x|y) < k − ` − t

]
< 2−t.
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Proof: For y ∈ Supp(Y), let Xy = {x ∈ Supp(X) : HX|Y (x|y) < k − ` − t}. We have∣∣∣Xy

∣∣∣ < 2k−`−t. Hence,
∣∣∣X =

⋃
y∈Supp(Y) Xy

∣∣∣ < 2` · 2k−`−t = 2k−t. It follows that

Pr
(x,y)

R
←(X,Y)

[
HX|Y (x|y) < k − ` − t

]
≤ Pr

(x,y)
R
←(X,Y)

[x ∈ X ] < 2−k · 2k−t = 2−t.

�

Smoothed entropies. The following lemma will allow us to think of a random
variable X whose sample-entropy is high with high probability as if it has high min-
entropy (i.e., as if its sample-entropy function is “smoother”, with no picks).

Lemma 4.2.3. Let X,Y be random variable and let ε > 0.

1. Suppose Pr
x

R
←X

[HX(x) ≥ k] ≥ 1 − ε, then X is ε-close to a random variable X′

with H∞(X′) ≥ k.
2. Suppose Pr

(x,y)
R
←(X,Y)

[
HX|Y (x|y) ≥ k

]
≥ 1 − ε, then (X,Y) is ε-close to a random

variable (X′,Y ′) with HX′ |Y ′ (x|y) ≥ k for any (x, y) ∈ Supp(X′,Y ′). Further, Y ′

and Y are identically distributed.

Proof Sketch. For the first item, we modify X on an ε fraction of the probability
space (corresponding to when X takes on a value x such that HX(x) ≥ k) to bring all
probabilities to be smaller than or equal to 2−k.

The second item is proved via similar means, while when changing (X,Y), we do
so without changing the “Y” coordinate.

Flattening Shannon entropy. It is well known that the Shannon entropy of a
random variable can be converted to min-entropy (up to small statistical distance)
by taking independent copies of this variable.

Lemma 4.2.4 ([31], Theorem 3.14). Let X be a random variables taking values in
a universe U , let t ∈ N, and let 0 < ε ≤ 1/e2. Then with probability at least 1 − ε
over x

R
← X(t),

HX(t) (x) − t · H(X) ≥ −O
(√

t · log 1
ε
· log(|U | · t)

)
.

We will make use of the following “conditional variant” of Theorem 4.2.4:

Lemma 4.2.5. Let X and Y be jointly distributed random variables where X takes
values in a universe U , let t ∈ N, and let 0 < ε ≤ 1/e2. Then with probability at
least 1 − ε over (x, y)← (X′,Y ′) = (X,Y)(t),

HX′ |Y ′ (x | y) − t · H(X | Y) ≥ −O
(√

t · log 1
ε
· log(|U | · t)

)
.

The proof of Theorem 4.2.5 follows the same line as the proof of Theorem 4.2.4, by
considering the random variable HX|Y (X|Y) instead of HX(X).
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Sub-additivity. The chain rule for Shannon entropy yields that

H(X = (X1, . . . , Xt)) =
∑

i

H(Xi|X1, . . . , Xi−1) ≤
∑

i

H(Xi).

The following lemma shows that a variant of the above also holds for sample-
entropy.

Lemma 4.2.6. For random variables X = (X1, . . . , Xt), it holds that

1. E
x

R
←X

[
2HX(x)−

∑
t HXi (xi)

]
≤ 1.

2. Pr
x

R
←X

[
HX(x) > log 1

ε
+

∑
i∈[t] HXi (xi)

]
< ε, for any ε > 0.

Proof: As in Theorem 4.2.1, the second part follows from the first by Markov’s
inequality. For the first part, compute

E
x

R
←X

[
2HX(x)−

∑
t HXi (xi)

]
=

∑
x∈Supp(X)

Pr [X = x] ·
∏

i∈[t] Pr [Xi = xi]
Pr [X = x]

=
∑

x∈Supp(X)

∏
i

Pr [Xi = xi]

≤ 1.

�
The following lemma generalizes Theorem 4.2.1 to settings that come up natu-

rally when upper bounding the accessible entropy of a generator (as we do in Sec-
tion 4.4):

Definition 4.2.7. For a t-tuple random variable X = (X1, . . . , Xt), x ∈ Supp(X) and
J ⊆ [t], let

HX,J (x) =
∑
i∈J

HXi |X<i (xi|x<i).

Lemma 4.2.8. Let X = (X1, . . . , Xt) be a sequence of random variables and let
J ⊆ [t]. Then,

1. E
x

R
←X

[
2HX,J (x)

]
≤

∣∣∣Supp(XJ )
∣∣∣.

2. Pr
x

R
←X

[
HX,J (x) > log 1

ε
+ H0(XJ )

]
< ε, for any ε > 0.

Proof: The second item follows from the first one as in the proof of Theorem 4.2.1.
We prove the first item by induction on t and |J|. The case t = 1 is immediate, so we
assume for all (t′,J ′) with (t′, |J ′|) < (t, |J |) and prove it for (t,J ). Assume that
1 ∈ J (the case 1 < J is analogous) and let X−1 = (X2, . . . , Xt) and J−1 = {i−1: i ∈
J \ {1}}. Compute
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E
x

R
←X

[
2HX,J (x)

]
=

∑
x1∈Supp(X1)

2−HX1 (x1) · 2HX1 (x1) · E
x

R
←X−1 |X1=x1

[
2HX−1 |X1=x1

,J−1 (x)]
≤

∑
x1∈Supp(X1)

1 ·
∣∣∣Supp((X−1)J−1 |X1=x1 )

∣∣∣
=

∑
x1∈Supp(X1)

∣∣∣Supp(XJ \{1}|X1=x1 )
∣∣∣

≤
∣∣∣Supp(XJ )

∣∣∣ .
�

4.2.4 Hashing
We will use two types of (combinatorial) “hash” functions.

4.2.4.1 Two-Universal Hashing

Definition 4.2.9 (Two-universal function family). A function family H = {h : D 7→
R} is two universal if ∀x , x′ ∈ D, it holds that Prh←H [h(x) = h(x′)] ≤ 1/ |R|.

An example of such a function family is the set Hs,t = {0, 1}s×t of Boolean matrices,
where for h ∈ Hs,t and x ∈ {0, 1}s, we let h(x) = h× x (i.e., the matrix vector product
over GF2). Another canonical example is Hs,t = {0, 1}s defined by h(x) := h · x over
GF(2s), truncated to its first t bits.

A useful application of two-universal hash functions is to convert a source of
high Rényi entropy into a (close to) uniform distribution.

Lemma 4.2.10 (Leftover hash lemma [24, 23]). Let X be a random variable over
{0, 1}n with H2(X) ≥ k, let H = {g : {0, 1}n 7→ {0, 1}m} be two-universal, and let
H

R
←H. Then SD((H,H(X)), (H,Um)) ≤ 1

2 · 2
(m−k)/2.

4.2.4.2 Many-wise Independent Hashing

Definition 4.2.11 (`-Wise independent function family). A function family H =

{h : D 7→ R} is `-wise independent if for any distinct x1, . . . , x` ∈ D, it holds that
(H(x1), . . . ,H(x`)) for H

R
←H is uniform over R`.

The canonical example of such an `-wise independent function family is Hs,t,` =

({0, 1}s)` defined by (h0, . . . , h`−i)(x) :=
∑

0≤i≤`−1 hi · xi over GF(2s), truncated to its
first t bits.

It is easy to see that, for ` > 1, an `-wise independent function family is two-
universal, but `-wise independent function families, in particular with larger value of
`, have stronger guarantees on their output distribution compared with two-universal
hashing. We will state, and use, one such guarantee in the construction of statisti-
cally hiding commitment schemes presented in Section 4.4.
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4.2.5 One-Way Functions
We recall the standard definition of one-way functions.

Definition 4.2.12 (One-way functions). A polynomial-time computable
f : {0, 1}n 7→ {0, 1}∗ is nonuniformly one way if for every pptNU A

Pry← f (Us(n))

[
A(1n, y) ∈ f −1(y)

]
= neg(n). (4.2)

Without loss of generality, cf. [13], it can be assumed that s(n) = n and f is
length-preserving (i.e., | f (x)| = |x|).

4.3 Next-Block Entropy and Pseudorandom Generators
In this section, we formally define the notion of next-block pseudoentropy, and use it
as intermediate tool to construct pseudorandom generators from one-way functions.
Preferring clarity over generality, we present a simplified version of the definitions
and constructions. For the full details see [14].

We start in Section 4.3.1, by presenting the formal definition of next-block pseu-
doentropy. In Section 4.3.2 we show that any one-way function can be used to
construct a generator with a useful amount of next-block pseudoentropy. In Sec-
tion 4.3.3 we develop means to manipulate next-block pseudoentropy. Finally, in
Section 4.3.4, we show how to convert generators of the type constructed in Sec-
tion 4.3.2 into pseudorandom generators, thus reproving the fundamental result that
pseudorandom generators can be based on any one-way function.

4.3.1 Next-Block Pseudoentropy
Recall from the introduction that the next-block pseudoentropy is of a similar spirit
to the Blum and Micali [3] notion of next-bit unpredictability; a random variable
X = (X1, . . . , Xm) is next-bit unpredictable if the bit Xi cannot be predicted with
nonnegligible advantage from X<i = (X1, X2, . . . , Xi−1), or alternatively, Xi is pseu-
dorandom given X<i. Next-block pseudoentropy relaxes this notion by only requir-
ing that Xi has some pseudoentropy given X<i.

We now formally define the notion of next-block pseudoentropy for the cases
of both Shannon entropy and min-entropy. The definition below differs from the
definition of [14], in that we require the indistinguishability to hold (also) against
nonuniform adversaries. This change simplifies the definitions and proofs (see The-
orem 4.3.3), but at the price that we can only construct such pseudoentropy genera-
tors from functions that are nonuniformly one-way (i.e., ones that are hard to invert
for such nonuniform adversaries). We start by recalling the more standard defini-
tions of pseudoentropy and pseudorandomness (to be consistent with the next-block
pseudoentropy definitions given below, we give the nonuniform version of these
definitions).

Definition 4.3.1 (Pseudoentropy and pseudorandomness). Let n be a security pa-
rameter and X = X(n) be a random variable distributed over strings of length
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`(n) ≤ poly(n). We say that X = X(n) has pseudoentropy (at least) k = k(n) if
there exists a random variable Y = Y(n), such that

1. H(Y) ≥ k, and
2. X and Y are nonuniformly computationally indistinguishable. I.e., for every

pptNU D, it holds that

Pr
[
D(1n, X) = 1

]
− Pr

[
D(1n,Y) = 1

]
= neg(n).

If H∞(Y) ≥ k, we say that X has pseudo-min-entropy (at least) k, where if
k = `(n), we say that X is pseudorandom (which is equivalent to asking that X is
computationally nonuniformly indistinguishable from U`).

Finally, a polynomial-time computable function G : {0, 1}n 7→ {0, 1}`(n) is a pseu-
dorandom generator if ` > n and G(Un) is pseudorandom.

That is, pseudoentropy is the computational analog of entropy. In construct, next-
block pseudoentropy is a computational analog of unpredictability.

Definition 4.3.2. (Next-block pseudoentropy) Let m = m(n) be an integer function.
A random variable X = X(n) = (X1, . . . , Xm) is said to have next-block (Shannon)
pseudoentropy (at least) k = k(n) if there exists a (jointly distributed) random
variable Y = Y(n) = (Y1, . . . ,Ym) such that

1.
∑m

i=1 H(Yi | X<i) ≥ k, and
2. Y is block-wise indistinguishable from X: for every pptNU D and i = i(n) ∈

[m(n)],
Pr

[
D(1n, X≤i) = 1

]
− Pr

[
D(1n, X<i,Yi) = 1

]
= neg(n).

Every block of X has next-block (Shannon) pseudoentropy at least α = α(n) if
condition 1 above is replaced with

1. H(Yi|X<i=x<i ) ≥ α, for every x ∈ Supp(X) and i ∈ [m].

Every block of X has next-block pseudo-min-entropy at least α if condition 1
above is replaced with

1. H∞(Yi|X<i=x<i ) ≥ α, for every x ∈ Supp(X) and i ∈ [m].

Finally, a generator G over {0, 1}∗ has next-block pseudoentropy at least k if
(the random variable) G(Un) has. Similarly, every block of G has next-block pseu-
doentropy [resp., pseudo-min-entropy] at least α if G(Un) has.

The above definitions naturally extend to generators that are only defined over some
input lengths (e.g., on inputs of length n2 + n for all n ∈ N). Our constructions
directly yield such input-restricted generators, but since the inputs on which they
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are defined are the image of a polynomial (such as n2 + n), they can be converted to
ones defined on all inputs in a standard way.8

Throughout, we often omit the parameter n when its value is clear from the con-
text.

Remark 4.3.3 (Uniform distinguishers). When working with a random variable
X with a certain guarantee about its pseudoentropy (here as a generic name for
the different types of pseudoentropy), one often likes to lower-bound the amount of
pseudoentropy several independent copies of X have (jointly). Such lower bounds
are used, for instance, in all constructions of pseudorandom generators from one-
way functions [13, 14, 17, 19, 29]. Proving such lower bounds, however, typically
requires the ability to sample efficiently from X, and also from a random variable Y
that realizes the pseudoentropy of X (cf. Theorem 4.3.1). While the X’s in consider-
ation are typically efficiently samplable, this is often not the case with respect to the
Y’s. Considering nonuniform distinguishers bypasses this issue; such distinguishers
can get the samples as a nonuniform advice. An alternative approach is to alter the
definition of pseudoentropy to require that the random variables in consideration
(i.e., X and Y) are computationally indistinguishable by (uniform) algorithms that
have access to an oracle that samples from the joint distribution of (X,Y). This is
the approach taken in [14], where the construction we present here is proven to
be secure in uniform settings (in order to construct pseudorandom generators se-
cure against uniform distinguishers, from one-way functions secure against uniform
inverters.

4.3.2 Next-Block Pseudoentropy Generators from One-Way
Functions

In this section, we show how to construct a next-block pseudoentropy generator G f
nb

out of a one-way function f : {0, 1}n 7→ {0, 1}n.

Notation 4.3.4 For n, ` ∈ N, let Hn,` be the family of ` × n Boolean matrices, and
let Hn = Hn,n. For h ∈ Hn,` and x ∈ {0, 1}n, let h(x) = hx (i.e., the matrix vector
product over GF(2)). Throughout, we denote by Hn the random variable that is
uniformly distributed over Hn.

Definition 4.3.5. On x ∈ {0, 1}n, h ∈ Hn, and f : {0, 1}n 7→ {0, 1}n, define
G f

nb : {0, 1}n ×Hn 7→ {0, 1}n ×Hn × {0, 1}n by

G f
nb(x, h) = ( f (x), h, h(x)).

Theorem 4.3.6. Let f : {0, 1}n 7→ {0, 1}n and let Gnb = G f
nb be according to Theo-

rem 4.3.5, viewed as a (t(n) = n2 + 2n)-block generator (i.e., each output bit forms

8 I.e., on input of arbitrary length, apply the input-restricted generator on the longest prefix of the
input that matches the restricted set of lengths, and append the unused suffix of the input to the
output.
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a separate block) over (s(n) = n2 + n)-bit strings. Assuming f is nonuniformly one-
way, then G f

nb has next-block pseudoentropy at least s(n) + c · log n, for any c > 0.

Namely, the next-block pseudoentropy of G f
nb is log n bits larger than its input en-

tropy.

Remark 4.3.7 (Tighter reductions). Haitner et al. [14] proved a variant of Theo-
rem 4.3.6 in which the family Hn is replaced by a more sophisticated function family
of description length Θ(n). As discussed in the introduction, Vadhan and Zheng [29]
took this a step further and proved a variant of this theorem without using any func-
tion family. That is, they proved that G f

nb(x) = ( f (x), x) has next-block pseudoen-
tropy n + log n. In both cases, the gap between the real entropy of the output and the
next-block pseudoentropy is log n, as in Theorem 4.3.6, but the input length is only
Θ(n) (versus Θ(n2) in Theorem 4.3.6). This better ratio between the entropy gap and
the input length yields a final pseudorandom generator of much shorter seed length
(see Theorem 4.3.18). Both constructions, and in particular that of [29], require a
more sophisticated analysis than the one we present here (also in their nonuniform
forms).

A key step towards proving Theorem 4.3.6 is analyzing the following (possibly
inefficient) function g f :

Definition 4.3.8. For f : {0, 1}n 7→ {0, 1}n, let Df(y) =⌈
log

∣∣∣ f −1(y) = {x ∈ {0, 1}n : f (x) = y}
∣∣∣⌉, and define g f over {0, 1}n ×Hn, by

g f (x, h) = ( f (x), h, h(x)1,...,Df( f (x))).

That is, g(x, h) outputs a prefix of Gnb(x, h) whose length depends on the “de-
generacy” of f (x). What makes g interesting is that it is both close to being injec-
tive and hard to invert. To see this, note that H∞(Un| f (Un)=y) = H0(Un| f (Un)=y) =

log
∣∣∣ f −1(y)

∣∣∣ ≈ Df(y). Hence, the two-universality of H implies that g(Un,Hn) deter-
mines Un with constant probability. In other words, g(Un,Hn) has a single preimage
with constant probability. But the two-universality of H also yields that, for ev-
ery k(Un) = Df( f (Un))−ω(log n), it holds that Hn(Un)1,...,k(Un) is statistically close to
uniform given ( f (Un),Hn). Hence, Hn(Un)1,...,Df( f (Un)) does not provide enough infor-
mation to enable an efficient inversion of f . (The extra O(log n) bits beyond k(Un)
can only increase the inversion probability by a poly(n) factor.)

The following claims state formally the two properties of g mentioned above.
The first claim states that the collision probability of g is small,9 yielding that g has
high entropy.

Claim 4.3.9. Let f : {0, 1}n 7→ {0, 1}n and let g = g f as in Theorem 4.3.8. Then
CP(g(Un,Hn)) ≤ 3

|Hn×{0,1}n |
.

9 Recall that the collision probability of a random variable X is defined as CP(X) =

Pr
(x,x′)

R
←X2

[x = x′], and that its Rényi entropy defined by H2(X) = − log CP(X) lower-bounds its
Shannon entropy.
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Definition 4.3.10 (Hard-to-invert functions). A function q : {0, 1}n 7→ {0, 1}∗ is
(nonuniformly) hard to invert if Pr

y
R
←q(Un)

[
A(1n, y) ∈ q−1(y)

]
= neg(n) for every

pptNU A.

Namely, an hard-to-invert function is a one-way function without the efficient com-
putability requirement.

Claim 4.3.11. Let f : {0, 1}n 7→ {0, 1}n and let g = g f be according to Theo-
rem 4.3.8. Assuming f is nonuniformly one-way, g is hard to invert.

The proof of the above claims is given below, but first let us use it for proving
Theorem 4.3.6. We will also use the Goldreich–Levin hardcore lemma.

Lemma 4.3.12 (Goldreich–Levin hardcore lemma, [7]). Let q : {0, 1}n 7→ {0, 1}∗

be a hard-to-invert function and let ` = `(n) ∈ O(log n), then (q(Un),Hn,`,Hn,`(Un))
is nonuniform computationally indistinguishable from (q(Un),Hn,`,U′`).

10

Proving Theorem 4.3.6. Proof: [Proof of Theorem 4.3.6] Let s(n) = n2 + n be
Gnb’s input length, and let Df and g = g f be as in Theorem 4.3.8. We prove that Gnb’s
next-block pseudoentropy is at least s(n) + log n− 2, where the proof that it is larger
than s(n) + c · log n for any c > 0 follows along similar lines. Let ` = `(n) = 2 log n
and assume for simplicity that log n ∈ N. The one-wayness of f guarantees that
Df( f (x)) ≤ n − ` for all sufficiently large n and every x ∈ {0, 1}n; otherwise, the
trivial inverter that returns a uniform element in {0, 1}n inverts f with nonnegligible
probability.

Define g′ over {0, 1}n×Hn,n−`, by g′(x, h) = ( f (x), h, h(x)1,...,Df( f (x))) (i.e., we have
removed the last ` rows from the matrix defining the hash function h). The above
observation about f yields that g′ is well defined, and the hardness to invert of g
(Theorem 4.3.9) yields by a simple reduction that g′ is also hard to invert.

Since g′ is hard to invert, Theorem 4.3.12 yields that

( f (Un),Hn,n−`,Hn,n−`(Un)1,...,Df( f (Un)),H′n,`,H
′
n,`(Un)) ≡ (g′(Un,Hn,n−`),H′n,`,H

′
n,`(U

′
`))

≈nu−C (g′(Un,Hn,n−`),H′n,`,U
′
`),

where Un and U′` are uniformly and independently distributed over {0, 1}n and
{0, 1}`, respectively, and Hn−` and H′n, ` are uniformly and independently dis-
tributed over Hn,n−` and Hn,`, respectively. Changing the order in the above and
noting that Hn ≡ (Hn,n−`,Hn,`), yields that

( f (Un),Hn,Hn(Un)1,...,Df( f (Un))+`) ≈nu−C ( f (Un),Hn,Hn(Un)1,...,Df( f (Un),U′`). (4.3)

Let t(n) = 2n + n2 = s(n) + n = Gnb’s output length. Let X = X(n) = Gnb(Un,Hn),
let J = J(n) = s(n) + Df( f (Un)), and let Y = Y(n) = (Y1, . . . ,Ym) be defined by Yi =

Xi if i < [J + 1, J + `], and Yi is set to a uniform bit otherwise (i.e., i ∈ [J + 1, J + `]).

10 [7] states that Hn,`(n)(Un) is computationally unpredictable from (v(Un),Hn,`(n)), but since∣∣∣Hn,`(n)(Un)
∣∣∣ ∈ O(log n), the reduction to the above statement is standard.
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Equation (4.3) yields that XJ+1,...,J+` is computationally indistinguishable from U`

given X1,...,J and J, yielding that

(J, X≤J+r) ≈nu−C (J, X<J+r,U) (4.4)

for every r ∈ [`], where U is a uniform bit. It follows that, for every pptNU D and
i ∈ [m], it holds that

Pr
[
D(1n, X≤i) = 1

]
− Pr

[
D(1n, X<i,Yi) = 1

]
(4.5)

= Pr
[
D(1n, X≤i) = 1 ∧ i < [J, J + `]

]
− Pr

[
D(1n, X<i,Yi) = 1 ∧ i < [J, J + `]

]
+

∑̀
r=1

(
Pr

[
D(1n, X≤i) = 1 ∧ i = J + r

]
− Pr

[
D(1n, X<i,Yi) = 1 ∧ i = J + r

])
= 0 +

∑̀
r=1

(
Pr

[
D(1n, X≤i) = 1 ∧ i = J + r

]
− Pr

[
D(1n, X<i,Yi) = 1 ∧ i = J + r

])
≤ 0 + ` · neg(n)
= neg(n).

The second equality holds since Yi = Xi for i < [J, J +`]. The inequality holds since,
if Pr [D(1n, X≤i) = 1 ∧ i = J + r] − Pr [D(1n, X<i,Yi) = 1 ∧ i = J + r] > neg(n) for
some i and r, then the nonuniform distinguisher D′ that on input ( j, x) returns D(x)
if j = i + r, and a uniform bit otherwise, contradicts Equation (4.4).

It is left to prove that Y has high entropy given the blocks of X. We compute

m∑
i=1

H(Yi | X<i) ≥
m∑

i=1

H(Yi | X<i, J)

= E
j

R
←J

 m∑
i=1

H(Yi | X<i, J = j)


≥ E

j
R
←J

 j∑
i=1

H(Yi | X<i, J = j) +

j+∑̀
i= j+1

H(Yi | X<i, J = j)


= E

j
R
←J

 j∑
i=1

H(Xi | X<i, J = j) +

j+∑̀
i= j+1

1


= E

j
R
←J

[
H(X≤ j|J = j)

]
+ `

= H(X≤J |J) + `.

It follows that
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m∑
i=1

H(Yi | X<i) ≥ ` + H(X≤J) − H(J)

≥ ` + H(X≤J) − log n

≥ ` + s(n) − 2 − log n

= s(n) + log n − 2.

The penultimate inequality follows by Theorem 4.3.9 (since H(X≤J) ≥ H2(X≤J) =

log(1/CP(X≤J)) ≥ s(n) − 2). We conclude that Y realizes the claimed next-block
pseudoentropy of Gnb. �

Proving Theorem 4.3.9. Proof: [Proof of Theorem 4.3.9] Let (U′n,H
′
n) be an

independent copy of (Un,Hn). Then

CP(g(Un,Hn))
= Pr

[
g(U′n,H

′
n) = g(Un,Hn)

]
= Pr

[
( f (U′n),H′n,H

′
n(U′n)1,...,Df( f (U′n))) = ( f (Un),Hn,Hn(Un)1,...,Df( f (Un)))

]
= E

y
R
← f (Un)

[
Pr

[
f (U′n)=y

]
·Pr

[
H′n = Hn

]
·Pr

[
Hn(U′n)1,...,Df(y) = Hn(Un)1,...,Df(y) | f (U′n)=y

]]
≤ E

y
R
← f (Un)

[
2Df(y)

2n ·
1
|Hn|

· (
1

2Df(y)−1 +
1

2Df(y) )
]

≤
3

|{0, 1}n ×Hn|
.

The first inequality holds since Pr
[
Hn(U′n)1,...,Df(y) = Hn(Un)1,...,Df(y) | f (U′n) = y

]
is

upper bounded by Pr
[
U′n = U′n | f (U′n) = y

]
+ Pr

[
Hn(x)1,...,Df(y) = Hn(x′)1,...,Df(y)

]
for

some x , x′. �

Proving Theorem 4.3.11. Proof: [Proof of Theorem 4.3.11] This fact was first
proven in [17] using the leftover hash lemma (Theorem 4.2.10). Here, we present a
different proof that is inspired by Rackoff’s proof of the Leftover Hash Lemma, and
uses the high collision probability of g directly.

Let Invg be a nonuniform polynomial-time algorithm that inverts g(Un,Hn) with
probability δ = δ(n). We show that there exists an inverter Inv that inverts f with
probability at least roughly δ2/n, from which the claim follows.

Fix n ∈ N, and let L ⊆ Im(g({0, 1}n × Hn)) be the set of outputs where Invg
inverts g correctly (without loss of generality Invg is deterministic). By assumption,
Pr

[
g(Un,Hn) ∈ L

]
= δ. Since the collision probability of a distribution is at least

the reciprocal of its support size, it follows that
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CP(g(Un,Hn)) = Pr
[
g(Un,Hn) = g(U′n,H

′
n)
]

≥ Pr
[
g(Un,Hn), g(U′n,H

′
n) ∈ L

]
/ |L|

= δ2/ |L| .

By Theorem 4.3.9, CP(g(Un,Hn)) ≤ 3 · 1
|Hn |
· 1

2n , and therefore

3 · |L|
|Hn| · 2n ≥ δ

2. (4.6)

Now for y ∈ Im( f ({0, 1}n)), let Ly = {(h, z) : (y, h, z) ∈ L}. It follows that

Pr
[
( f (Un),Hn,U′Df( f (Un))) ∈ L

]
= E

y
R
← f (Un)

[
Pr

[
(Hn,U′Df(y)) ∈ Ly

]]
(4.7)

= E
y

R
← f (Un)


∣∣∣Ly

∣∣∣
|Hn| × 2Df(y)


=

∑
y∈Im( f )

∣∣∣ f −1(y)
∣∣∣

2n ·

∣∣∣Ly

∣∣∣
|Hn| × 2Df(y)

≥
∑

y∈Im( f )

2Df(y)−1

2n ·

∣∣∣Ly

∣∣∣
|Hn| × 2Df(y)

=
1

|Hn| · 2n+1 ·
∑

y

∣∣∣Ly

∣∣∣
=

1
|Hn| · 2n+1 · |L|

≥ δ2/6.

Consider the following (randomized) inverter for f :

Algorithm 4.3.13 (Inv)

Oracle: Invg
Input: y ∈ {0, 1}n

1. Let h
R
←Hn, i

R
← [n], and z

R
← {0, 1}i.

2. Let (x, h′) = Invg(y, h, z).
3. Return x.

Let I be the random variable corresponding to the value of i
R
← [y] in the execution

of Inv(y). Compute
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Pr
[
Inv( f (Un)) ∈ f −1( f (Un))

]
≥ Pr

[
I = Df( f (Un))

]
· Pr

[
Inv( f (Un)) ∈ f −1( f (Un)) | I = Df( f (Un))

]
=

1
n
· Pr

[
Invg( f (Un),Hn,UDf( f (Un))) ∈ g−1( f (Un),Hn,UDf( f (Un)))

]
≥

1
n
· δ2/4 = δ2/6n.

The first inequality holds since I is independent of y, and the second inequality is by
Equation (4.7). It follows that there exists a nonuniform polynomial-time algorithm
that inverts f with probability at least δ(n)2/6n, implying that that δ(n) = neg(n).

�

4.3.3 Manipulating Next-Block Pseudoentropy
In this section we develop tools to manipulate next-block pseudoentropy. These
tools are later used in Section 4.3.4 to convert the next-block pseudoentropy con-
structed in Section 4.3.2 into a pseudorandom generator.

The tools considered below are rather standard “entropy manipulations”: entropy
equalization (i.e., picking a random variable at random from a set of random vari-
ables to get a new random variable whose entropy is the average entropy), parallel
repetition, and extraction from high-min-entropy sources, and their effect on the real
entropy of random variables is clear. Fortunately, these manipulations have essen-
tially the same effect also on the next-block pseudoentropy of a random variable.
In Section 4.4.2, we show that these manipulations also have the desired effect on
the accessible entropy of a random variable, a similarity that implies the similarity
between the pseudorandom generator construction presented in this section, and the
construction of statistically hiding commitment scheme, presented in Section 4.4.2.

4.3.3.1 Entropy Equalization via Truncated Sequential Repetition

This manipulation takes independent copies of an m-block random variable with
next-block pseudoentropy at least k and concatenates them. It then truncates, at ran-
dom, some of the first and final output blocks of the concatenated variable. The
effect of this manipulation is that each block of the resulting variable has next-block
pseudoentropy at least k/m. This per-block knowledge of the next-block pseudoen-
tropy becomes very handy for constructing pseudorandom generators.

The price of this manipulation is that we “give away” some next-block pseudoen-
tropy, but when taking enough copies, this loss is not significant.

Definition 4.3.14. For z = (z1, . . . , zt) and 1 ≤ j ≤ m ≤ t, let Equalizerm( j, z) :=
z j, . . . , zt+ j−m−1.

That is, Equalizerm( j, z) removes the first ( j − 1) and last (m − j + 1) elements from
z.
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Lemma 4.3.15. Let m = m(n) be a power of 2,11 assume X = X(n) = (X1, . . . , Xm)
has next-block pseudoentropy (at least) k = k(n), and let w = w(n) ≥ 2 be a polyno-
mially bounded integer function. Let X[w] = X[w](n) be the (m · (w − 1))-block ran-
dom variable defined by X[w](n) = Equalizerm(J, X(w)), where J = J(n) is uniformly
distributed over [m(n)], and X(w) = X(w)(n) = (X1, . . . , Xw), for X1, . . . , Xw being
independent copies of X(n). Then every block of X[w] has next-block pseudoentropy
(at least) k/m.

Namely, the next-block pseudoentropy of each block of X[w] is the average next-
block pseudoentropy of the blocks of X.
Proof: Let Y = Y(n) = (Y1, . . . ,Ym) be a random variable that realizes the
next-block pseudoentropy of X, and let Y (w) = Y (w)(n) = (Y1, . . . ,Yw) be jointly
distributed with X(w) = (X1, . . . , Xw) in the natural way—Y j is jointly distributed
with X j according to the joint distribution (X,Y). We prove that Y [w] = Y [w](n) =

Equalizerm(J,Y (w)) realizes the claimed per-block next-block pseudoentropy of X[w].
In the following we let m̃ = m̃(n) = (w − 1) · m.

We start by proving that each block of Y [w] has high entropy given the previous
blocks of Y [w]. Fix n ∈ N and omit that from the notation, and fix i ∈ [m̃]. By chain
rule for Shannon entropy, it holds that

H(Y [w]
i | X[w]

<i ) ≥ H(Y (w)
i+J−1 | X

(w)
<i+J−1, J) (4.8)

= H(Yi+J−1 mod m | X<i+J−1 mod m),

letting m mod m be m (rather than 0). The equality follows from the fact that, for
any t ∈ [mw], (Y (w)

t , X(w)
t−1, . . . , X

(w)
t′=bt/mc·m+1) is independent of X(w)

<t′ , and is identically
distributed to (Yt mod m, X<t mod m).

Since (i + J − 1 mod m) is uniformly distributed in [m], it follows that

H(Yi+J−1 mod m | X<i+J−1 mod m, J) = E
i′

R
←[m]

[H(Yi′ | X<i′ )] (4.9)

=
1
m
·

∑
i′

R
←[m]

H(Yi′ | X<i′ )

≥ k/m,

and we conclude that H(Y [w]
i | X[w]

<i ) ≥ k/m for every i ∈ [m̃].
For the second part, let D be a pptNU, let i = i(n) ∈ [m̃(n)], and let

εD(n) := Pr
[
D(1n, X[w](n)≤i) = 1

]
− Pr

[
D(1n, X[w](n)<i,Y [w](n)i) = 1

]
(4.10)

In the following we omit n whenever clear from the context. A similar argument to
that used in the first part yields that

11 Any other restriction that allows an efficient sampling from [m(n)] will do.
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εD(n) = Pr
[
D(X[w]

≤i ) = 1
]
− Pr

[
D(X[w]

<i ,Y
[w]
i ) = 1

]
(4.11)

= Pr
[
D(Xw

J,...,i+J−1) = 1
]
− Pr

[
D(Xw

J,...,i+J−2,Y
w
...,i+J−1) = 1

]
= Pr

[
D(Xw−1

J,...,(w−1)m, X≤i+J−1 mod m) = 1
]

(4.12)

− Pr
[
D(Xw−1

J,...,(w−1)m, X<i+J−1 mod m,Yi+J−1 mod m) = 1
]

≤ Pr
[
D(x, X≤i+ j−1 mod m) = 1

]
− Pr

[
D(x, X<i+ j−1 mod m,Yi+ j′ mod m) = 1

]
for some fixing of j ∈ [m] and x ∈ Supp(Xw−1

j,...,(w−1)m). Hence, there exists a pptNU D′

such that

εD′ (n) := Pr
[
D′(X≤i′ ) = 1

]
− Pr

[
D′(X<i′ ,Yi′ ) = 1

]
≥ εD(n) (4.13)

for some i′ = i′(n) ∈ [m(n)]. Since Y is block-wise indistinguishable from X, it
follows that εD′ (n) = neg(n) and therefore εD(n) = neg(n). Hence, Y [w] is block-
wise indistinguishable from X[w]. �

4.3.3.2 Parallel Repetition

This manipulation, which simply takes parallel repetition (i.e., direct product) of a
random variable, has a twofold effect. The first is that the overall next-block pseu-
doentropy a t-fold parallel repetition of a random variable X is t times the next-block
pseudoentropy of X. Hence, if X’s next-block pseudoentropy is larger than the num-
ber of bits it takes to sample it, this gap gets multiplied by t in the resulting random
variable. The second effect of taking such a product is turn next-block pseudoen-
tropy into next-block pseudo-min-entropy.

Lemma 4.3.16. Let m = m(n) and ` = `(n) be integer functions, assume every block
of X = X(n) = (X1, . . . , Xm) is of length `(n) and has next-block pseudoentropy
(at least) α = α(n), and let t = t(n) be polynomially bounded integer function.
Let X〈t〉 = X〈t〉(n) be the m-block random variable defined by X〈t〉 = X〈t〉(n) =((

X1
1 , . . . , X

t
1
)
, . . . ,

(
X1

m, . . . , X
t
m
))

, for X1, . . . , Xt being independent copies of X. Then
every block of X〈t〉 has next-block pseudo-min-entropy (at least) α′(n) = t · α −
O(log n · (` + log n) ·

√
t).

Notice that the t · α term in the above statements is the largest we could hope for
the pseudoentropy—getting α bits of pseudoentropy per copy. However, since we
wish to move from a pseudo-form of Shannon entropy (measuring randomness on
average) to a pseudo-form of min-entropy (measuring randomness with high prob-
ability), we may have a deviation that grows like

√
t. By taking t large enough, this

deviation becomes insignificant. For instance, consider the case that X has next-
block pseudoentropy at least α and ` = 1 (i.e., X is a sequence of bits), and that we
would like to deduce that X〈t〉 has next-block pseudo-min-entropy α′ = t · (α− δ) for
some δ > 0. Theorem 4.3.16 guarantees that this happens for t = polylog(n)/δ2.

Proof: Let Y = Y(n) = (Y1, . . . ,Ym) be a random variable that real-
izes the per-block next-block pseudoentropy of X, and let Y 〈t〉 = Y 〈t〉(n) =
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Y1

1 , . . . ,Y
t
1
)
, . . . ,

(
Y1

m, . . . ,Y
t
m
))

be jointly distributed with X〈t〉 in the natural way—
Y j is jointly distributed with X j according to the joint distribution (X,Y). Since Y
is block-wise indistinguishable from X, and since t(n) ≤ poly(n), a straightforward
hybrid argument yields that Y 〈t〉 is block-wise indistinguishable from X〈t〉.

Since H(Yi | X<i) ≥ α for every i ∈ [m], applying Theorems 4.2.3 and 4.2.5 with
ε = 2− log2 n yields that there exists a random variable W = W(n) = (W1, . . . ,Wm)
jointly distributed with X〈t〉, such that the following hold for every i = i(n) ∈ [m(n)]:

1. ∆((X〈t〉<i ,Y
〈t〉
i ), (X〈t〉<i ,Wi)) = neg(n), and

2. H∞(Wi|X〈t〉<i =x<i
) ≥ α − O((log n + `) · log n ·

√
t), for every x ∈ Supp(X〈t〉<i ).

Item 1 and the previous observation yield that W is block-wise indistinguishable
from X〈t〉, and by item 2 we conclude that W realizes the claimed next-block pseudo-
min-entropy of X〈t〉. �

4.3.3.3 Block-wise Extraction

The tool applies a randomness extractor separately to each of the random variable
blocks, to convert per-block next-block pseudo-min-entropy into pseudorandom-
ness. The result is a sufficiently long pseudorandom sequence. This is a computa-
tional analogue of block-source extraction in literature on randomness extractors
[5, 33]. The price of this manipulation is that the length, and thus the amount of
pseudorandomness, of the resulting variable is shorter than the overall pseudoen-
tropy of the original variable, due to inherent entropy loss in randomness extraction.

Lemma 4.3.17. Let m = m(n) and ` = `(n) be integer functions, and assume that
every block of X = X(n) = (X1, . . . , Xm) over ({0, 1}`)m has next-block pseudoentropy
(at least) α = α(n) ≥

⌈
log2 n

⌉
. Then there exists a polynomial-time computable

Ext : {0, 1}`×({0, 1}`)m 7→
(
{0, 1}bαc−dlog2 ne

)m
such that (R,Ext(R, X)), for R = R(n)

R
←

{0, 1}`, is pseudorandom.

Proof: Let β = β(n) = bαc−
⌈
log2 n

⌉
. For r, x ∈ {0, 1}`, let hr(x) := r · x over GF(2`),

truncated to the first β bits. Note that {hr : r ∈ {0, 1}`} is a two-universal hash family
over {0, 1}`. For x = (x1, . . . , xk) ∈ ({0, 1}`)k, let Ext(r, x) = (hr(x1), . . . , hr(xk)). Let
DPRG be pptNU, and assume that

ε(n) := Pr
[
DPRG(1n,R,Ext(X,R)) = 1

]
− Pr

[
DPRG(1n,R,Um·β) = 1

]
, neg(n).

(4.14)

In the following we omit n whenever clear from the context. A hybrid argument
yields that there exists i ∈ [m] and pptNU D such that

Pr [D(R,Ext(R, X≤i)) = 1] − Pr
[
D(R,Ext(R, X<i),Uβ) = 1

]
≥ ε/m.

Let Y = Y(n) be a random variable that realizes the per-block next-block pseudo-
min-entropy of X. Since H∞(Yi|X<i = x<i) ≥ α for every x ∈ Supp(X), and since
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{hr : r ∈ {0, 1}`} is a two-universal hash family, the leftover hash lemma (Theo-
rem 4.2.10) yields that

SD((R, hR(Yi|X<i = x<i)), (R,Uβ)) ≤ 2− log2 n

for every x ∈ Supp(X). It follows that

SD(R,Ext(R, X<i,Yi), (R,Ext(R, X<i),Uβ)) ≤ 2− log2 n

and therefore

Pr [D(R,Ext(R, X≤i)) = 1] − Pr [D(R,Ext(R, X<i,Yi)) = 1] (4.15)

≥ ε/` − 2− log2 n , neg

For n ∈ N, let rn ∈ Supp(R) be the string that maximizes the above gap, and consider
the distinguisher D′ that on input (1n, z), returns D(1n, rn,Ext(rn, z)). Equation (4.15)
yields that

Pr
[
D′(X≤i) = 1

]
− Pr

[
D′(X<i,Yi) = 1

]
, neg

Hence, the pptNU D′ contradicts the assumed block-wise indistinguishability of Y
from X. �

4.3.4 Putting It Together: One-Way Functions to Pseudorandom
Generators

In this section we use the results of previous sections to construct pseudorandom
generators from next-block pseudoentropy generators.

It is clear that a pseudorandom generator from n bits to m(n) > n has next-block
pseudoentropy m(n), hence, it is a next-block entropy generator with entropy gap
(m(n)−n)—its next-block pseudoentropy is larger than its real entropy by (m(n)−n).
The following theorem provides the converse direction.

Theorem 4.3.18 (Next-block pseudoentropy to pseudorandom generator). For
any polynomial-time computable and polynomially bounded integer function s =

s(n) and polynomial-time computable function ∆ = ∆(n) ≤ 2, there exists a
polynomial-time computable integer function s′ = s′(n) = Θ(s · ∆−3 · polylog(n))
such that the following holds: Assuming there exists a polynomial-time generator
Gnb : {0, 1}s 7→ {0, 1}2s with next-block pseudoentropy s(1 + ∆), then there exists a
pseudorandom generator G : {0, 1}s

′

7→ {0, 1}s
′·(1+Θ(∆). Furthermore, G uses Gnb as

an oracle (i.e., black box) and on inputs of length s′, all calls of G to Gnb are on
inputs of length s.

Proof: The proof is done by manipulating the next-block pseudoentropy of Gnb
using the tools described in Section 4.3.3.
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Let X = X(n) = Gnb(Us). We assume without loss of generality that, for every n,
the number m(n) = 2s(n) of output blocks (=bits) of Gnb is a power of 2 (by padding
with zeros if necessary). By assumption, X has next-block pseudoentropy s(1 + ∆).

Truncated sequential repetition: pseudoentropy equalization. The first step is
to use X to define a random variable X[w] that each of whose blocks has the same
amount of next-block pseudoentropy— the average of the next-block pseudoentropy
of the blocks of X. The entropy gap of X[w], in relative terms, is essentially the same
as that of X.

For w = w(n) = d8/∆e, let X[w] = X[w](n) be the truncated sequential repetition
of X according to Theorem 4.3.15. Namely, X[w] consists of w independent copies
of X, omitting the first (J − 1) blocks of the first copy and the last (m − J + 1)
blocks of the last copy, for J

R
← [m]. Note that X[w] can be generated efficiently using

s′ = s′(n) = log(m) + w · s random bits, and has m′ = m′(n) = m(w − 1) blocks.
By Theorem 4.3.15, each block of X[w] has next-block pseudoentropy α = α(n) =

s(1 + ∆)/m = 1
2 + ∆/2.

Parallel repetition: converting Shannon pseudoentropy to pseudo-min-entropy
and gap amplification. In this step X[w] is used to construct a random variable
(X[w])〈t〉 that each of whose blocks has the same amount of pseudo-min-entropy—
about t time the per-block pseudoentropy of X[w].

For t = t(n) =
⌈
log5 n · ∆−2

⌉
, let (X[w])〈t〉 = (X[w])〈t〉(n) be the t-fold parallel rep-

etition of X[w] (see Theorem 4.3.16). That is, the i-th block of (X[w])〈t〉, contains the
i-th blocks of the t independent copies of X[w]. Note that (X[w])〈t〉 can be generated
efficiently using s′′ = s′′(n) = t · s′ bits, and has m′ blocks.

By Theorem 4.3.16, each block of (X[w])〈t〉 has next-block pseudo-min-entropy
α′ = α′(n) = t ·α−O(log2 n ·

√
t), which is larger than t · ( 1

2 +∆/4) for large enough
n.

Randomness extraction: converting pseudo-min-entropy to pseudorandom-
ness. In the final step, pseudorandom bits are extracted from (X[w])〈t〉, by applying
a randomness extractor on each of its blocks.

Theorem 4.3.17 yields that there exists an efficient Ext : {0, 1}t(n) × ({0, 1}t)m′ 7→(
{0, 1}α

′−dlog2 ne
)m′

such that XPRG = XPRG(n) = (R,Ext(R, (X[w])〈t〉), for R = R(n)
R
←

{0, 1}t, is pseudorandom. We remind the reader that Ext(r, x = (x1, . . . , xm)) merely
applies (the same) two-universal function hr on each of x’s blocks. Note that it takes
s′′′ bits to efficiently sample XPRG, for

s′′′ = s′′′(n) = t + s′′ = t(`s + Θ(log n)) = Θ(s∆−3 · polylog(n)).

It follows that, for large enough n, the length of XPRG(n) is at least
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m′(α′ −
⌈
log2 n

⌉
) ≥ m′(tα − O(log3 n ·

√
t))

> m′(t(
1
2

+ ∆/2) − O(log3 n ·
√

t))

> m′t(
1
2

+ ∆/4)

= s(` − 1)t(1 + ∆/2)
≥ s`t(1 + ∆/4)
≥ s′′′(1 + ∆/8).

Hence,
∣∣∣XPRG

∣∣∣ = s′′′(1 +Ω(∆)), and since all the above manipulations were efficient,
the proof of the theorem follows. �

Remark 4.3.19 (Tighter reduction). Vadhan and Zheng [29] noticed that, by mod-
ifying the construction used in the proof of Theorem 4.3.18, one can construct an
efficient generator G and a random variable Z = Z(n) such that the following hold:

1. It takes s′(n) = Θ(s(n) · ∆(n)−2 · polylog(n)) bits to efficiently sample Z, i.e., a
factor of ∆−1 shorter than the input length of the pseudorandom generator in
Theorem 4.3.18.

2. G(Z) is computationally indistinguishable from (Z,U), where U is a random
string of length Ω(s(n)∆/n).

Then, by iterating G on its output (in a similar manner to the Blum–Micali pseudo-
random generator length extending approach), without investing new randomness,
they get a pseudorandom generator of seed length s(n).

Combining the above Theorem 4.3.18 with Theorem 4.3.6 from the previous
subsection yields the following result:

Theorem 4.3.20 (One-way function to pseudorandom generator). There exists a
polynomial-time computable function s = s(n) = Θ(n7 · polylog n) such that the
following holds: Let f : {0, 1}n 7→ {0, 1}n be nonuniformly one-way function, then
there exists a pseudorandom generator G : {0, 1}s 7→ {0, 1}s·(1+Ω(1/n2)). Furthermore,
G uses f as an oracle (i.e., black box) and on inputs of length s(n), all calls of G to
f are on inputs of length n.

Proof: Pad the output of the next-block pseudoentropy generator guaranteed by
Theorem 4.3.6 to make it length doubling (it is easy to see that this does not change
its next-block pseudoentropy) and apply Theorem 4.3.18. �

Remark 4.3.21 (Tighter reduction, take 2). Plugging into Theorem 4.3.18 the
next-block generators of Haitner et al. [14] or of Vadhan and Zheng [29], both
with s = Θ(n) and ∆ = Θ(log(n)/n), yields a pseudorandom generator of seed
length Θ(n4 · polylog n). If the latter generators are used with the tighter reduction
of Vadhan and Zheng [29] mentioned above, the resulting generator has seed length
Θ(n3 · polylog n), which is the best we know how to achieve today.
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4.4 Inaccessible Entropy and Statistically Hiding
Commitment

In this section, we formally define the notion of inaccessible entropy and use it as
intermediate tool to construct statistically hiding commitment from one-way func-
tions.

We start, Section 4.4.1, by presenting the formal definition of inaccessible en-
tropy. In Section 4.4.2, we show that any one-way function can be used to construct
inaccessible entropy generator. In Section 4.4.3, we develop means to manipulate
inaccessible entropy. Finally, in Section 4.4.4 we give a simplified version of the
(still rather complicated) construction of statistically hiding commitments from in-
accessible entropy generators.

4.4.1 Inaccessible Entropy Generators
We begin by informally recalling the definition from the introduction. Let
G : {0, 1}n 7→ ({0, 1}∗)m be an m-block generator over {0, 1}n and let G(1n) =

(Y1, . . . ,Ym) denote the output of G over a uniformly random input. The real en-
tropy of G is the (Shannon) entropy in G’s output blocks, where for each block Yi,
we take its entropy conditioned on the previous blocks Y<i = (Y1, . . . ,Yi−i). The
accessible entropy of an arbitrary, adversarial m-block generator G̃, with the same
block structure as of G, is the entropy of the block of G̃ conditioned not only on
the previous blocks but also on the coins used by G̃ to generate the previous blocks.
The generator G̃ is allowed to flip fresh random coins to generate its next block, and
this is indeed the source of entropy in the block (everything else is fixed). We insist
that the messages of G̃ will be consistent with G: the support of G̃’s messages is
contained in that of G.

Moving to the formal definitions, we first define an m-block generator and then
define the real and accessible entropy of such a generator.

Definition 4.4.1 (Block generators). Let n be a security parameter, and let m =

m(n) and s = s(n). An m-block generator is a function G : {0, 1}s 7→ ({0, 1}∗)m. The
generator G is efficient if its running time on input of length s(n) is polynomial in n.

We call parameter n the security parameter, s the seed length, m the number
of blocks, and `(n) = maxx∈{0,1}s(n),i∈[m(n)] |G(x)i| the maximal block length of G.

4.4.1.1 Real Entropy

Recall that we are interested in lower bounds on the real entropy of a block gen-
erator. We define two variants of real entropy: real Shannon entropy and real min-
entropy. We connect these two notions through the notion of real sample-entropy. In
other words, for a fixed m-tuple output of the generator, we ask how surprising were
the blocks output by G in this tuple. We then get real Shannon entropy by taking the
expectation of this quantity over a random execution and the min-entropy by taking
the minimum (up to negligible statistical distance). An alternative approach would
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be to define the notions through the sum of conditional entropies (as we do in the
intuitive description in the introduction). This approach would yield closely related
definitions, and in fact exactly the same definition in the case of Shannon entropy
(see Theorem 4.4.4).

Definition 4.4.2 (Real sample-entropy). Let n be a security parameter, and let G
be an m-block generator over {0, 1}s, for m = m(n) and s = s(n). For i ∈ [m], define
the real sample-entropy of y ∈ Supp((Y1, . . . ,Yi) = G(Us)1,...,i) as

RealHG(y) =
∑
j∈[i]

RealH j
G(y)

for
RealH j

G(y) := HY j |Y< j (y j|y< j)

Definition 4.4.3 (Real entropy). Let n be a security parameter, and let G be an m-
block generator over {0, 1}s, for m = m(n) and s = s(n). We say that an m-block
generator G has real entropy at least k = k(n), if

E
y

R
←G(Us)

[
RealHG(y)

]
≥ k

for every n ∈ N.
The generator G has real min-entropy at least k in its i-th block, where i = i(n) ∈

[m(n)], if
Pr

y
R
←G(Us)

[
RealHi

G(y) < k
]

= neg(n).

We observe that the real Shannon entropy simply amounts to measuring the stan-
dard conditional Shannon entropy of G’s output blocks.

Lemma 4.4.4. For an m-block generator G over {0, 1}s, it holds that

E
y

R
←G(Us)

[
RealHG(y)

]
= H(G(Us)).

Proof: Let (Y1, . . . ,Ym) = G(Us), and compute

E
y

R
←G(Us)

[
RealHG(y)

]
:= E

y
R
←G(Us)

∑
i∈[m]

HYi |Y<i (yi | y<i)


=

∑
i∈[m]

E
y

R
←G(Us)

[
HYi |Y<i (yi | y<i)

]
=

∑
i∈[m]

H(Yi|Y<i)

= H(G(Us)).

�
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4.4.1.2 Accessible Entropy

Recall that we are interested in upper bounds on the accessible entropy of a block
generator. We will define two variants of accessible entropy: accessible Shannon
entropy and accessible max-entropy. While the Shannon variant is in a sense more
intuitive, working with the max-entropy variant, as done in Sections 4.4.2 and 4.4.4,
yields simpler and more efficient applications. As in the case of real entropy, we
connect these two notions through the notion of accessible sample-entropy. For a
fixed execution of the adversary G̃, we ask how surprising were the messages sent
by G̃. We then get accessible Shannon entropy by taking the expectation of this
quantity over a random execution and the max-entropy by taking the maximum
(up to negligible statistical distance). Here too, the definitions obtained are closely
related to the definitions one would obtain by considering a sum of conditional
entropies (as we did in the intuitive description earlier). For the Shannon entropy,
the definitions would again be identical. (See Theorem 4.4.7.)

The definition below differs from the definition of [16], in that we require the
bound on the accessible entropy to hold (also) against nonuniform adversarial gen-
erators. This change simplifies the definitions and proofs, but at the price that we can
only construct such inaccessible entropy pseudoentropy generators from functions
that are nonuniformly one-way.

Definition 4.4.5 (Online block generator). Let n be a security parameter, and let
m = m(n). An m-block online generator is a function G̃ : ({0, 1}v)m 7→ ({0, 1}∗)m

for some v = v(n), such that the i-th output block of G̃ is a function of (only) its
first i input blocks. We denote the transcript of G̃ over random input by TG̃(1n) =

(R1,Y1, . . . ,Rm,Ym), for (R1, . . . ,Rm)
R
← ({0, 1}v)m and (Y1, . . . ,Ym) = G̃(R1, . . . ,Ri).

That is, an online block generator is a special type of block generator that tosses
fresh random coins before outputting each new block. In the following we let
G̃(r1, . . . , ri)i stand for G̃(r1, . . . , ri, x∗)i for arbitrary x∗ ∈ ({0, 1}v)m−i (note that the
choice of x∗ has no effect on the value of G̃(r1, . . . , ri, x∗)i).

Definition 4.4.6 (Accessible sample-entropy). Let n be a security parameter, let
m = m(n), let i = i(n) ∈ [m], and let G̃ be an online m-block online generator.
The accessible sample-entropy of t = (r1, y1, . . . , ri, yi) ∈ Supp(R1,Y1 . . . ,Ri,Yi) =

TG̃(1n)1,...,2i is defined as
AccHG̃(t) :=

∑
j∈[i]

AccH j
G̃

(t)

for AccH j
G̃

(t) := HY j |R< j (y j|r< j).

The expected accessible entropy of a random transcript can be expressed in terms
of the standard conditional Shannon entropy.

Lemma 4.4.7. Let G̃ be an online m = m(n)-block generator and let
(R1,Y1, . . . ,Rm,Ym) = TG̃(1n) be its transcript. Then,

E
t

R
←TG̃(1n)

∑
i∈[m]

AccHi
G̃

(t)

 =
∑
i∈[m]

H(Yi|R<i).
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The proof of Theorem 4.4.7 is similar to that of Theorem 4.4.4.
The above definition is only interesting when putting restrictions on the genera-

tor’s actions with respect to the underlying generator G. (Otherwise, the accessible
entropy of G̃ can be arbitrarily large by outputting arbitrarily long strings.) In this
work, we focus on efficient generators that are consistent with respect to G. That is,
the support of their output is contained in that of G.12

Definition 4.4.8 (Consistent generators). Let G be a block generator over {0, 1}s(n).
A block (possible online) generator G′ over {0, 1}s

′(n) is G consistent if, for every
n ∈ N, it holds that Supp(G′(Us′(n))) ⊆ Supp(G(Us(n))).

Definition 4.4.9 (Accessible entropy). A block generator G has accessible entropy
at most k = k(n) if, for every efficient, nonuniform, G-consistent, online generator
G̃ and all large enough n,

E
t

R
←TG̃(1n)

[
AccHG̃(t)

]
≤ k.

The generator G has accessible max-entropy at most k if

Pr
t

R
←TG̃(1n)

[AccHG̃(t) > k] = neg(n),

for every such G̃.

In Section 4.4.2, we prove the existence of one-way functions implies that of
an inaccessible max-entropy entropy generator: an efficient block generator whose
accessible entropy is noticeably larger than its accessible entropy. The converse di-
rection is also true.

Lemma 4.4.10. Let G be an efficient block generator with real entropy k(n), and
assume that G has accessible entropy, or accessible max-entropy, at most k(n) −
1/p(n), for some p ∈ poly. Then one-way functions exist.13

Proof: Omitted. �

4.4.2 Inaccessible Entropy Generator from One-way Functions
In this section, we show how to build an inaccessible entropy generator from any
one-way function. In particular, we prove the following theorem:

12 In the more complicated notion of accessible entropy considered in [11], the “generator” needs
to prove that its output blocks are in the support of G, by providing an input of G that would have
generated the same blocks. It is also allowed there for a generator to fail to prove the latter with
some probability, which requires a measure of accessible entropy that discounts entropy that may
come from failing.
13 Specifically, one can show that a variant of f (x, i) = G(x)1,...,i is a “distributional” one-way
function.
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Construction 4.4.11 For f : {0, 1}n 7→ {0, 1}n, define the (n + 1) block generator G f

over {0, 1}n by
G f (x) = ( f (x)1, . . . , f (x)n, x)

Namely, the first n blocks of G f (x) are the bits of f (x), and its final block is x.

Theorem 4.4.12 (Inaccessible entropy generators from one-way functions). If
f : {0, 1}n 7→ {0, 1}n is nonuniformly one-way, then the efficient block generator G =

G f defined in Construction 4.4.11 has accessible max-entropy at most n −ω(log n).

Remark 4.4.13 (Tighter reduction). [16] prove an analog theorem for the
O(n/ log n)-block generator that groups each consecutive log n bits of f (n) into a
single block.

Proof: Suppose on the contrary that there exists an efficient, nonuniform, G-
consistent online block generator G̃ such that

Pr
t

R
←TG̃(1n)

[
AccHG̃(t) > n − c · log n

]
> ε(n) (4.16)

for some constant c > 0, ε(n) = 1/ poly(n), and infinitely many n’s. In the following
we fix n ∈ N for which the above equation holds, and omit it from the notation when
its value is clear from the context. Let m = n + 1 and let v be abound on the number
of bits used by G̃ in each round. The inverter Inv for f is defined as follows:

Algorithm 4.4.14 (Inverter Inv for f from the accessible entropy generator G̃)

Input: z ∈ {0, 1}n

Operation:

1. For i = 1 to n,

a. Sample ri
R
← {0, 1}v and let yi = G̃(r1, . . . , ri)i.

b. If yi = zi, move to next value of i.
c. Abort after n2/ε failed attempts for sampling good ri.

2. Sample rm
R
← {0, 1}v and output G̃(r1, . . . , rm)m.

Namely, Inv(y) does the only natural thing one can do with G̃; it tries to make, via
rewinding, G̃’s first n output blocks equal to y, knowing that, if this happens then
since G̃ is G-consistent, G̃’s m-th output block is a preimage of y.

It is clear that Inv runs in polynomial time, so we will finish the proof by showing
that

Pr
y

R
← f (Un)

[
Inv(y) ∈ f −1(y)

]
≥ ε2/16n.

We prove the above by relating the transcript distribution induced by the stan-
dalone execution of G̃(1n) to that induced by the embedded execution of G̃ in
Inv( f (Un)). In more detail, we show that high-accessible-entropy transcripts with
respect to the standalone execution of G, i.e., AccHG̃(t) > n − c · log n, happen with
not much smaller probability also in the emulated execution. Since whenever Inv
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does not abort it is guaranteed to invert y, it follows that the success probability of
Inv is lower bounded by the probability that G̃(1n) outputs a high-accessible-entropy
transcript, and thus is nonnegligible.

For intuition about why the above statement about high-accessible-entropy tran-
scripts is true, consider the case of a one-way permutation f . By definition, high-
accessible-entropy transcripts in the stand alone execution of G̃ happen with prob-
ability at most poly(n)/2n. On the other hand, the probability that a “typical” tran-
script is produced by the emulated execution of G̃ is about 2−n—the probability that
random output of f equals the transcript’s first n output blocks.

Proving the above formally for arbitrary one-way functions is the subject of the
following proof:

Standalone execution G̃(1n). Let T̃ = TG̃, and recall that T̃ = (R̃1, Ỹ1, . . . , R̃m, Ỹm)
is associated with a random execution of G̃ on security parameter n by

• R̃i – the random coins of G̃ in the i-th round, and
• Ỹi – G̃’s i-th output block.

Recall that, for t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃ ), we have defined

AccHG̃(t) :=
∑
i∈[m]

HY j |R< j (y j|r< j).

Compute

PrT̃ [t] =

m∏
i=1

PrỸi |R̃<i

[
yi|r<i

]
· PrR̃i |R̃<i,Ỹi

[
ri|r<i, yi

]
(4.17)

= 2−
∑m

i=1 HỸi |R̃<i
(yi |r<i) ·

m∏
i=1

PrR̃i |R̃<i,Ỹi

[
ri|r<i, yi

]
= 2−AccHG̃(t) · R(t)

for

R(t) :=
m∏

i=1

PrR̃i |R̃<i,Ỹi

[
ri|r<i, yi

]
. (4.18)

Execution embedded in Invg( f (Un)). Let T̂ = (R̂1, Ŷ1, . . . , R̂m, Ŷm) denote the
value of G̃’s coins and output blocks, of the execution done in step 2 of a random
execution of the unbounded version of Inv (i.e., step 1.(c) is removed) on input
Z = (Z1, . . . ,Zm−1) = f (Un). (This unboundedness change is only an intermediate
step in the proof that does not significantly change the inversion probability of Inv,
as shown below.)

Since G̃ is G-consistent, it holds that (y1, . . . , ym−1) ∈ Supp( f (Un)) for every
(r1, y1, . . . , rm, ym) ∈ Supp(T̃ ). It follows that every t ∈ Supp(T̃ ) can be “pro-
duced” by the unbounded version of Inv, and therefore Supp(T̃ ) ⊆ Supp(T̂ ). For
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t ∈ Supp(T̃ ), we compute

PrT̂ [t] =

m∏
i=1

PrŶi |R̂<i

[
yi|r<i

]
· PrR̂i |R̂<i,Ŷi

[
ri|r<i, yi

]
(4.19)

=

m−1∏
i=1

PrZi |Ŷ<i

[
yi|y<i

]
· PrŶi |R̂<i,Zi

[
yi|r<i, yi

]
· PrŶm |R̂<m

[
ym|r<m

]
·

m∏
i=1

PrR̂i |R̂<i,Ŷi

[
ri|r<i, yi

]
=

m−1∏
i=1

PrZi |Ŷ<i

[
yi|y<i

]
· 1

 · PrŶm |R̂<m

[
ym|r<m

]
·

m∏
i=1

PrR̂i |R̂<i,Ŷi

[
ri|r<i, yi

]
= Pr f (Un)

[
y<m

]
· PrŶm |R̂<m

[
ym|r<m

]
· R(t)

= Pr f (Un)
[
y<m

]
· PrỸm |R̃<m

[
ym|r<m

]
· R(t).

Note that in the last line we moved from conditioning on R̂<m to conditioning on
R̃<m. The third equality holds since t ∈ Supp(T̃ ) and Inv is unbounded.

Relating the two distributions. Combining Equations (4.17) and (4.19) yields
that, for t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃ ), it holds that

PrT̂ [t] = PrT̃ [t] ·
(
Pr f (Un)

[
y<m

]
· PrỸm |R̃<m

[
ym|r<m

]
· 2AccHG̃(t)

)
. (4.20)

In particular, if AccHG̃(t) ≥ n − c log n, then

PrT̂ [t] ≥ PrT̃ [t] ·
2n · Pr f (Un)

[
y<m

]
nc · PrỸm |R̃<m

[
ym|r<m

]
(4.21)

= PrT̃ [t] ·

∣∣∣ f −1(y<m)
∣∣∣

nc · PrỸm |R̃<m

[
ym|r<m

]
.

If it is also the case that HỸm |R̃<m
(ym|r<m) ≤ log

∣∣∣ f −1(y<m)
∣∣∣ + k for some k > 0, then

PrT̂ [t] ≥ PrT̃ [t] ·

∣∣∣ f −1(y<m)
∣∣∣

nc ·
2−k∣∣∣ f −1(y<m)

∣∣∣ =
PrT̃ [t]
2knc (4.22)

Lower bounding the inversion probability of Inv. We conclude the proof by
showing that Equation (4.22) implies the existence of a large set of transcripts that
(the bounded version of) Inv performs well upon.

Let S denote the set of transcripts t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃ ) with

1. AccHG̃(t) ≥ n − c log n,
2. HỸm |R̃<m

(ym|r<m) ≤ log
∣∣∣ f −1(y<m)

∣∣∣ + log(4/ε), and
3. HỸi |Ỹ<i

(yi|y<i) ≤ log(4n/ε) for all i ∈ [m − 1].
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The first two properties will allow us to use Equations (4.21) and (4.22) to argue
that, if S happens with significant probability with respect to T̃ , then this holds also
with respect to T̂ . The last property will allow us to show that this happens also
with respect to the bounded version of Inv. We start by showing that S happens with
significant probability with respect to T̃ , then show that this holds also with respect
to T̂ , and finally use it to lowerbound the success probability of Inv.

By Theorem 4.2.1,

Pr
(r1,y1,...,rm,ym)

R
←T̃

[
HỸm |R̃<m

(ym|r<m) > log
∣∣∣ f −1(y<m)

∣∣∣ + k
]
< 2−k (4.23)

for any k > 0, where since
∣∣∣Supp(Ỹi)

∣∣∣ = 1 for all i ∈ [m − 1], it holds that

Pr
(y1,...,ym)

R
←(Ỹ1,...,Ỹm)

[
∃i ∈ [m − 1] : HỸi |Ỹ<i

(yi|y<i) > v
]
< (m − 1) · 2−v (4.24)

for any v > 0.
Applying Equations (4.23) and (4.24) with k = log(4/ε) and v = log(4n/ε) ,

respectively, and recalling that, by assumption, Pr
t

R
←T̃

[
AccHG̃(t) ≥ n − c log n

]
≥ ε,

yields that

PrT̃ [S] ≥ ε −
ε

4
−
ε

4
= ε/2 (4.25)

By Equation (4.22) and the first two properties of S, we have that

PrT̂ [S] ≥
ε

4nc · PrT̃ [S] ≥
ε2

8nc . (4.26)

Finally, let T̂ ′ denote the final value of G̃’s coins and output blocks, induced by the
bounded version of Inv (set to ⊥ if Inv aborts). The third property of S yields that

PrT̂ ′ [t] ≥ PrT̂ [t] ·
(
1 − (m − 1) · (1 − ε

4n )n2/ε
)
≥ PrT̂ [t] · (1 − O(m · 2−n)) ≥ PrT̂ [t] /2

(4.27)

for every t ∈ S. We conclude that

Pr
z

R
← f (Un)

[
Inv(z) ∈ f −1(z)

]
= Pr

z
R
← f (Un)

[Inv(z) does not abort]

≥ PrT̂ ′ [S]

≥
1
2
· PrT̂ [S]

≥
ε2

16nc .

�
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4.4.3 Manipulating Real and Accessible Entropy
Following are two tools to manipulate the real and accessible entropy of a block
generator. Since we are dealing with the more complex accessible entropy notion,
the statements and proofs of the following lemmas are more complicated than those
of Section 4.3.3 (given for the next-block entropy notion). Yet, the bottom line of
the lemmas is essentially the same.

4.4.3.1 Entropy Equalization via Truncated Sequential Repetition

Similarly to what happens in Section 4.3, this tool concatenates several independent
executions of an m-block generator, and then truncates, at random, some of the
first and final output blocks of the concatenated string. Assuming that the (overall)
real entropy of the original generator is at least kreal, then the real entropy of each
block of the resulting generator is at least kreal/m. This per-block knowledge of the
real entropy, is very handy when considering applications of inaccessible entropy
generators, and in particular for constructions of statistically hiding commitment.

The price of this manipulation is that we “give away” some real entropy (as
we do not output all blocks), while we cannot claim that the same happens to the
accessible entropy. Hence, the additive gap between the real and accessible entropy
of the resulting generator gets smaller. Yet, if we do enough repetition, this loss is
insignificant.

Definition 4.4.15. For security parameter n, let m = m(n), let s = s(n), w = w(n),
and let s′ = s′(n) = log(m(n)) + w(n) · s(n). Given an m-block generator G over
{0, 1}s, define the ((w − 1) · m)-block generator G[w] over [m] × ({0, 1}s)w as fol-
lows: on input ( j, (x1, . . . , xw)) ∈ [m] × ({0, 1}s)w, it sets y = (y1, . . . , ywm) =

(G(x1), . . . ,G(xw)), and outputs (( j, y j), y j1 , . . . , y(w−1)m+ j−1).

That is, G[w] truncates the first j − 1 and last m + 1 − j blocks of y, and outputs the
remaining (w − 1) · m blocks one by one, while appending j to each block it out-
puts. (Using the terminology of Section 4.3, G[w] outputs Equalizerm( j, y1, . . . , ywm),
where Equalizer is according to Theorem 4.3.14, while appending j to the first
block.)

Lemma 4.4.16. For security parameter n, let m = m(n) be a power of 2, let s = s(n)
and let G be an efficient m-block generator over {0, 1}s, and let w = w(n) be a poly-
nomially computable and bounded integer function. Then, G[w] defined according
to Theorem 4.4.15 is an efficient,14 ((w − 1) · m)-block generator that satisfies the
following properties:

Real entropy: If G has real entropy at least kreal = kreal(n), then each block of G[w]

has real entropy at least kreal/m.

14 Since m is a power of 2, changing the input domain of G[w] to {0, 1}s
′

for some polynomial-
bounded and polynomial-time computable s′, to make it an efficient block generator according to
Theorem 4.4.1, can be done by standard techniques.
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Accessible max-entropy: The following holds for any d = d(n) ∈ ω(log n). If G has
accessible max-entropy at most kacc = kacc(n), then G[w] has accessible max-
entropy at most

k′acc := (w − 2) · kacc + 2 · H0(G(Us)) + log(m) + d.

Roughly, each of the (w − 2) non-truncated executions of G embedded in G[w] con-
tributes its accessible entropy to the overall accessible entropy of G[w]. In addition,
we pay the max-entropy of the two truncated executions of G embedded in G[w].
Proof: To avoid notational clutter let G = G[w].

Real entropy. The proof of this part is very similar to the proof of the first
part of Theorem 4.3.15. Fix n ∈ N and omit it from the notation when clear
from the context. Let m̃ = (w − 1)m, let Ỹ = G(Us′ = (J, X1, . . . , Xw)), let
Y (w) = (G(X1), . . . ,G(Xw)), and finally for i ∈ [wm], let Y (w)′

i = (J,Y (w)
i ) if J = i, and

Y (w)
i otherwise. For i ∈ [m̃], compute

H(Ỹi | Ỹ<i) = H(Y (w)′
i+J−1 | Y

(w)′
J,...,i+J−2)

≥ H(Y (w)
i+J−1 | Y

(w)
J,...,i+J−2, J).

The proof continues as the first part of the proof of Theorem 4.3.15.

Accessible entropy. To establish the statement on the accessible entropy, let G̃ be
an efficient G-consistent generator, and let

ε = ε(n) := Pr
t

R
←T̃

[
AccHG̃(t) > k′acc

]
(4.28)

for T̃ = TG̃(1n). Our goal is to show that ε is negligible in n. We do that by finding
a subtranscript of T̃ that, with high probability, contributes more than kacc bits of
accessible entropy, if the overall accessible entropy of T̃ is more than k′acc. We then
use this observation to construct a cheating generator for G that achieves accessible
entropy greater than kacc with probability that is negligibly close to ε.

Let (R1,Y1, . . . ,Rm̃,Ym̃) = T̃ and let J be the first part of Y1 (recall that Y1 is of
the form ( j, ·)). Fix j ∈ [m], and let (R j

1,Y
j

1 , . . . ,R
j
m̃,Y

j
m̃) = T̃ j = T̃|J= j. Let I = I( j)

be the indices of the blocks coming from the truncated executions of G in G (i.e.,
{1, . . . ,m + 1− j} ∪ {m̃ + 2− j, . . . , m̃}). Our first step is to show that these blocks do
not contribute much more entropy than the max-entropy of G(Un). Specifically, by
Theorem 4.2.8, letting X = (Y j

1 ,R
j
1, . . . ,Y

j
m̃,R

j
m̃) and J = I, it holds that

Pr
t=(r1,y1,...,rm̃,ym̃)

R
←T̃ j

∑
i∈I

HY j
i |R

j
<i

(yi|r<i) > 2 · H0(G(Us)) + d/2

 ≤ 2 · 2−d/2 = neg(n).

(4.29)
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Namely, with save but negligible probability, the blocks that relate to the truncated
executions of G in G, do not contribute much more than their support size to the
overall accessible entropy.

Our next step is to remove the conditioning on J = j (that we have introduced
to have the indices of interest fixed, which enabled us to use Theorem 4.2.8). By
Theorem 4.2.1, it holds that

Pr
j

R
←J

[
HJ( j) > log(m) + d/2

]
≤ 2−d/2 = neg(n). (4.30)

Since for every i > 1 and (r1, y1 = ( j, ·), . . . , rm̃, ym̃) ∈ Supp(T̃), it holds that
HYi |R<i (yi|r<i) = HY j

i |R
j
<i

(yi|r<i), and for i = 1, it holds that HY1 (y1) = HJ( j) + HY j
1
(y1),

the above yields that

Pr
t=(r1,y1,...,rm̃,ym̃)

R
←T̃

 ∑
i∈[m̃]\I(J)

HYi |R<i (yi|r<i) > (w − 2) · kacc

 ≥ ε − neg(n). (4.31)

Let F( j) = {km + 2 − j : k ∈ [w − 2]}, i.e., the indices of the first blocks of the
non-truncated executions of G in G, when the first block of G is ( j, ·). It follows
that,

Pr
t=(r1,y1,...,rm̃,ym̃)

R
←T̃

∃ f ∈ F(J) :
f +m−1∑

i= f

HYi |R<i (yi|r<i) > kacc

 ≥ ε − neg (4.32)

In particular, there exist j∗ ∈ [m], f ∗ ∈ F( j∗), and r∗ ∈ Supp(R< f ∗ |J= j∗ ) such that

Pr
t=(r1,y1,...,rm̃,ym̃)

R
←T̃

 f ∗+m−1∑
i= f ∗

HYi |R<i (yi|r<i) > kacc | r< f ∗ = r∗
 ≥ (ε − neg)/m. (4.33)

Consider the efficient, nonuniform, G-consistent generator G̃ that acts as follows:
it starts a random execution of G̃ with its first ( f ∗−1) randomness blocks fixed to r∗,
and outputs the blocks indexed by { f ∗, . . . , f ∗ + m − 1}. Let (R′1,Y

′
1, . . . ,R

′
m,Y

′
m) =

TG̃ be the transcript of G̃. It is easy to verify that, for every (r1, y1, . . . , rm, ym) ∈
Supp(TG̃) and 1 < i ≤ m, it holds that

HY ′i |R
′
<i

(yi|r<i) = HY f +i |R< f +i (yi|(r∗, r<i)). (4.34)

Thus, Equation (4.33) yields that

Pr
t

R
←TG̃

[
AccHG̃(t) > kacc

]
> (ε − neg(n))/m.

Hence, the assumption about the inaccessible entropy of G yields that ε is a
negligible function of n, and the proof of the lemma follows. �
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4.4.3.2 Parallel Repetition

This manipulation simply takes parallel repetition of a generator. The effect of this
manipulation is twofold. The first effect is that the overall real entropy of a v-fold
parallel repetition of a generator G is v times the real entropy of G. Hence, if G
real entropy is larger than its accessible entropy, this gap get multiplied by v in the
resulting variable. The second effect of such repetition is turning per-block real en-
tropy into per-block min-entropy. The price of this manipulation is a slight decrease
in the per block min-entropy of the resulting generator, compared to the sum of the
per block real entropies of the independent copies of the generators used to generate
it. (This loss is due to the move from Shannon entropy to min-entropy, rather than
from the parallel repetition itself.) But when taking enough copies, this loss can be
ignored.

Definition 4.4.17. Let m = m(n), s = s(n), and v = v(n). Given an m-block gener-
ator G over {0, 1}s, define the m-block generator G〈v〉 over ({0, 1}s)v as follows: on
input (x1, . . . , xv) ∈ ({0, 1}s)v, the i-th block of G〈v〉 is (G(x1)i, . . . ,G(xv)i).

Lemma 4.4.18. For security parameter n, let m = m(n), let v = v(n) be polynomial-
time polynomially computable and bounded integer functions, and let G be an ef-
ficient,15 m-block generator. Then G〈v〉, defined according to Theorem 4.4.17, is an
efficient m-block generator that satisfies the following properties:

Real entropy: If each block of G has real min-entropy at least kreal = kreal(n), then
each block of G〈v〉 has real min-entropy at least k′real(n) = v · kreal − O((log n +

`) · log n ·
√

v), for ` = `(n) being the maximal block length of G.
Accessible max-entropy: The following holds for every d = d(n) ∈ ω(log n). If G

has accessible max-entropy at most kacc = kacc(n), then G〈v〉 has accessible
max-entropy at most k′acc(n) = v · kacc + d · m.

Proof: The bound on real entropy follows readily from Theorem 4.2.5 by taking
ε = 2− log2 n, and noting that the support size of each block of G is at most ` · 2`.
Therefore, we focus on establishing the bound on accessible max-entropy. Let G =

G〈v〉, let G̃ be an efficient, nonuniform, G-consistent generator, and let

ε = ε(n) := Pr
t

R
←T̃

[
AccHG̃(t) > k′acc

]
(4.35)

for T̃ = TG̃(1n). Our goal is to show that ε is negligible in n.
Let (R1,Y1, . . . ,Rm,Ym) = T̃. By definition, for t = (r1, y1, . . . , rm, ym) ∈ Supp(T̃),

AccHG̃(t) =
∑
i∈[m]

HYi |R<i (yi | r<i). (4.36)

15 Changing the input domain of G to {0, 1}s
′(n) for some polynomial-bounded and polynomial-time

computable s′, to make it an efficient block generator according to Theorem 4.4.1, can be done by
standard techniques.
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Since G̃ is G-consistent, each Yi is of the form (Yi,1, . . . ,Yi,v). Theorem 4.2.6, taking
X = Yi|R<i=r<i , yields that

Pr
t=(r1,y1,...,rm,ym)

R
←T̃

HYi |R<i (yi|r<i) > d +

v∑
j=1

HYi, j |R<i (yi, j|r<i)

 ≤ 2−d = neg(n) (4.37)

for every i ∈ [m]. Summing over all i ∈ [m], we get that

Pr
t=(r1,y1,...,rm,ym)

R
←T̃

∑
i∈[m]

HYi |R<i (yi|r<i) > md +
∑
i∈[m]

∑
j∈[v]

HYi, j |R<i (yi, j|r<i)

 = neg(n)

(4.38)

and therefore

Pr
t=(r1,y1,...,rm,ym)

R
←T̃

∑
i∈[m]

∑
j∈[v]

HYi, j |R<i (yi, j|r<i) ≥ k′acc − m · d

 ≥ ε − neg(n). (4.39)

In particular, there exist j∗ ∈ [v] such that

Pr
t=(r1,y1,...,rm,ym)

R
←T̃

∑
i∈[m]

HYi, j∗ |R<i (yi, j∗ |r<i) > kacc = (k′acc − m · d)/v

 ≥ ε − neg(n)

(4.40)

Consider the following efficient, nonuniform, G-consistent generator G̃. This
generator starts a random execution of G̃, and outputs yi, j∗ as its i-th block, for yi =

(yi,1, . . . , yi,v) being the i-th block (locally) output by G̃. Let (R′1,Y
′
1, . . . ,R

′
m,Y

′
m) =

TG̃. It is easy to verify that, for every (r1, y1, . . . , rm, ym) ∈ Supp(TG̃) and 1 < i ≤ m,
it holds that

HY ′i |R
′
<i

(yi| j, r<i) = HYi, j∗ |R<i (yi|r<i). (4.41)

Thus, Equation (4.40) yields that

Pr
t

R
←TG̃

[
AccHG̃(t) > kacc

]
≥ ε − neg(n).

The assumption about the inaccessible entropy of G yields that ε is negligible in n,
and the proof of the lemma follows. �

4.4.4 Inaccessible Entropy Generator to Statistically Hiding
Commitment

In this section we prove a simplified version of the construction of statistically hid-
ing commitments from inaccessible entropy generators. Specifically, we only prove
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a weaker version of Theorem 4.4.23, stated below, which is the main lemma in this
reduction. But first, we recall the definition of such commitment schemes.

Statistically hiding commitment schemes. A commitment scheme is the cryp-
tographic analogue of a safe. It is a two-party protocol between a sender S and a
receiver R that consists of two stages. The commit stage corresponds to putting an
object in a safe and locking it; the sender “commits” to a private message m. The
reveal stage corresponds to unlocking and opening the safe; the sender “reveals”
the message m and “proves” that it was the value committed to in the commit stage
(without loss of generality by revealing coin tosses consistent with m and the tran-
script of the commit stage).

Definition 4.4.19. A (bit) commitment scheme16 is an efficient two-party protocol
Com = (S,R) consisting of two stages. Throughout, both parties receive the security
parameter 1n as input.

Commit. The sender S has a private input b ∈ {0, 1}, which she wishes to commit to the
receiver R, and a sequence of coin tosses σ. At the end of this stage, both parties receive as
common output a commitment z.

Reveal. Both parties receive as input a commitment z. S also receives the private input b
and coin tosses σ used in the commit stage. After the interaction of (S(b, r),R)(z), R either
outputs a bit, or the reject symbol ⊥.

The commitment is public-coin if the messages the receiver sends are merely the
coins it flips at each round.

For the sake of this tutorial, we focus on commitment schemes with a generic
reveal scheme: the commitment z is simply the transcript of the commit stage, and
in the noninteractive reveal stage, S sends (b, σ) to R, and R outputs b if S, on input
b and randomness σ, would have acted as the sender did in z; otherwise, it outputs
⊥.

Commitment schemes have two security properties. The hiding property infor-
mally says that, at the end of the commit stage, an adversarial receiver has learned
nothing about the message m, except with negligible probability. The binding prop-
erty says that, after the commit stage, an adversarial sender cannot produce valid
openings for two distinct messages (i.e., to both 0 and 1), except with negligible
probability. Both of these security properties come in two flavors—statistical, where
we require security even against a computationally unbounded adversary, and com-
putational, where we only require security against feasible (e.g., polynomial-time)
adversaries.

Statistical security is preferable to computational security, but it is impossible to
have commitment schemes that are both statistically hiding and statistically bind-
ing. In this tutorial, we focus on statistically hiding (and computationally binding)
schemes, which are closely connected with the notion of inaccessible entropy gen-
erators.
16 We present the definition for bit commitment. To commit to multiple bits, we may simply run a
bit commitment scheme in parallel.
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Definition 4.4.20. A commitment scheme Com = (S,R) is statistically hiding if

Completeness. If both parties are honest, then for any bit b ∈ {0, 1} that S gets as private
input, R accepts and outputs b at the end of the reveal stage.

Statistical Hiding. For every unbounded strategy R̃, the distributions viewR̃((S(0), R̃)(1n))
and viewR̃((S(1), R̃)(1n)) are statistically indistinguishable, where viewR̃(e) denotes the col-
lection of all messages exchanged and the coin tosses of R̃ in e.

Computational Binding. A ppt S̃ succeeds in the following game (breaks the commitment)
only with negligible probability in n:

• S̃ = S̃(1n) interacts with an honest R = R(1n) in the commit stage, on security param-
eter 1n, which yields a commitment z.

• S̃ outputs two messages τ0, τ1 such that R(z, τb) outputs b, for both b ∈ {0, 1}.

Com is δ-binding if no ppt S̃ wins the above game with probability larger than δ(n)+neg(n).

We now discuss the intriguing connection between statistically hiding commit-
ment and inaccessible entropy generators. Consider a statistically hiding commit-
ment scheme in which the sender commits to a message of length k, and suppose we
run the protocol with the message m chosen uniformly at random in {0, 1}k. Then,
by the statistical hiding property, the real entropy of the message m after the commit
stage is k − neg(n). On the other hand, the computational binding property says that
the accessible entropy of m after the commit stage is at most neg(n). This is only
an intuitive connection, since we have not discussed real and accessible entropy for
protocols, but only for generators. Such definitions can be found in [11], and for
them it can be proven that statistical hiding commitments imply protocols in which
the real entropy is much larger than the accessible entropy. Here our goal is to estab-
lish the converse, namely that a generator with a gap between its real and accessible
entropy implies a statistical hiding commitment scheme. The extension of this fact
for protocols can be found in [11].

Theorem 4.4.21 (Inaccessible entropy to statistically hiding commitment). Let
k = k(n), s = s(n), and δ = δ(n) be polynomial-time computable functions. Let G be
an efficient m = m(n)-block generator over {0, 1}s. Assume that G’s real Shannon
entropy is at least k, that its accessible max-entropy is at most (1 − δ) · k, and that
kδ ∈ ω(log n/n). Then for any polynomial-time computable g = g(n) ∈ ω(log n) with
g ≥ H0(G(Us)), there exists an O(m · g/δk)-round, public-coin, statistically hiding
and computationally binding commitment scheme. Furthermore, the construction is
black box, and on security parameter 1n, the commitment invokes G on inputs of
length s.17

Combining the above theorem with Theorem 4.4.12 reproves the following fun-
damental result:

17 Given a, per n, polynomial-size advice, the commitment round complexity can be reduced to
O(m). See Theorem 4.4.25 for details.
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Theorem 4.4.22 (One-way functions to statistically hiding commitment). As-
sume there exists a nonuniformly one-way function f : {0, 1}n 7→ {0, 1}n, then there
exists an O(n2/ log n)-round, public-coin statistically hiding and computationally
binding commitment scheme. Furthermore, the construction is black box, and on
security parameter 1n, the commitment invokes f on inputs of length n.18

The heart of the proof of Theorem 4.4.21 lies in the following lemma.

Lemma 4.4.23. Let k = k(n) ≥ 3n be a polynomial-time computable function, let
m = m(n), s = s(n), and let G be an efficient m-block generator over {0, 1}s. Then
there exists a polynomial-time, O(m)-round, public-coin, commitment scheme Com
with the following properties:

Hiding: If each block of G has real min-entropy at least k, then Com is statistically
hiding.

Binding: If the accessible max-entropy of G is at most m(k − 3n), then Com is com-
putationally binding.

Furthermore, on security parameter 1n, the protocol invokes G on inputs of length s.

We prove a weak version of Theorem 4.4.23 in Section 4.4.4.1, but we first use it
for proving Theorem 4.4.21.

Proving Theorem 4.4.21. Proof: We prove Theorem 4.4.21 by manipulating the
real and accessible entropy of G using the tools described in Section 4.4.3, and then
applying Theorem 4.4.23 on the resulting generator.

Truncated sequential repetition: real entropy equalization. In this step we use
G to define a generator G[v] whose each block has the same amount of real entropy—
the average of the real entropy of the blocks of G. In relative terms, the entropy gap
of G[v] is essentially that of G. We assume without loss of generality that m(n) is a
power of two.19 We apply truncated sequential repetition (see Theorem 4.4.15) on
G with parameter w = w(n) = max{4, d16g/δke} ≤ poly(n). Theorem 4.4.16, taking
d = g, yields an efficient m′ = m′(n) = (w − 1) · m)-block generator G[w] such that
the following holds:

• Each block of G[w] has real entropy at least k = k′(n) = k/m.
• The accessible max-entropy of G[w] is at most

18 Applying Theorem 4.4.21 with the O(n/ log n)-block mentioned in Theorem 4.4.13 yields an
O(n2/ log2 n)-round commitment. This is the best such commitment scheme we know how to build
from one-way functions and it is still far from the (n/ log n) lower bound of [15], which we only
know how to achieve via nonuniform protocol (see Theorem 4.4.25).
19 Adding 2dlog m(n)e−m(n) final blocks of constant value transforms a block generator to one whose
block complexity is a power of two, while maintaining the same amount of real and accessible
entropy.
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a′ = a′(n) = (w − 2) · ((1 − δ) · k + log m + 2g + g

≤ (w − 2) · (1 − δ) · k + 4g

≤ (w − 2) · (1 − δ/2) · k − (w − 2) · k · δ/2 + 4g

≤ (w − 2) · (1 − δ/2) · k − w · k · δ/4 + 4g

≤ (w − 2) · (1 − δ/2) · k
< m′ · (1 − δ/2) · k′.

Parallel repetition: converting real entropy to min-entropy and gap amplifica-
tion. In this step we use G[w] to define a generator (G[w])〈v〉 whose each block
has the same amount of min-entropy—about v times the per-block entropy of
G[w]. The accessible entropy of (G[w])〈v〉 is also about v times that of G[w]. Let
` = `(n) ∈ Ω(log n) be a polynomial-time computable function that bounds the
maximal block length of G. We apply the gap amplification transformation (see
Theorem 4.4.17) on G[w] with v = v(n) = max{24mn/kδ,

⌈
c ·

(
log n · `)/k′δ

)2
⌉
}, for

c > 0 to be determined by the analysis. Theorem 4.4.18 yields an efficient m′-block
generator (G[w])〈v〉 with the following properties:

• Each block of (G[w])〈v〉 has real min-entropy at least k′′ = k′′(n) = v · k′ −
O

(
log(n) · ` ·

√
v
)
.

• The accessible max-entropy of (G[w])〈v〉 is at most a′′ = a′′(n) = v · a′ + d · m′,
for d = d(n) = n/8kδ.

Hence for large enough n, it holds that

m′ · k′′ − a′′ ≥ m′ ·
(
v · k′ − O

(
log(n) · ` ·

√
v
))
−

(
v · a′ + d · m′

)
> m′ ·

(
v · k′ − O

(
log(n) · ` ·

√
v
))
−

(
v · (m′ · (1 − δ/2) · k′) + d · m′

)
= v · m′ ·

(
k′δ/2 − O(log(n) · `/

√
v) − d/v

)
≥ v · m′ ·

(
k′δ/2 − O(k′δ/

√
c) − d/mn

)
≥ v · m′ ·

(
k′δ/4 − d/mn

)
(4.42)

= v · (w − 1) · (kδ/4 − d/n)
= v · (w − 1) · kδ/8
≥ 3m′n.

Inequality (4.42) holds by taking a large enough value of c in the definition of v.
Namely, the overall real entropy of (G[w])〈v〉 is larger than its accessible max-

entropy by at least 3m′n. Hence, by applying Theorem 4.4.23 with (G[w])〈v〉 and
k = k′′, we get the claimed (m′ = m · (w − 1) = O(m · g/δk))-round, public-coin,
statistically hiding and computationally binding commitment. �

Remark 4.4.24 (Comparison with the construction of next-block pseudoen-
tropy generators to pseudorandom generators). It is interesting to see the similar-
ity between the manipulations we apply above on the inaccessible entropy generator
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G to construct statistically hiding commitment, and those applied in Section 4.3.4
on the next-block pseudoentropy generator to construct a pseudorandom genera-
tor. The manipulations applied in both constructions are essentially the same and
achieve similar goals: from real entropy to per-block min-entropy whose overall sum
is significantly larger than the accessible entropy in the above, and from next-block
pseudoentropy to per-block pseudo-min-entropy whose overall sum is significantly
larger than the real entropy in Section 4.3.4. Combining this fact with the similar-
ity in the initial steps of constructing the above generators from one-way functions
(inaccessible entropy generator above and next-block pseudoentropy generator in
Section 4.3.4) yields that the structures of the constructions of statistically hiding
commitment schemes and pseudorandom generators from one-way functions are
surprisingly similar.

Remark 4.4.25 (Constant-round and nonuniform commitments). If the genera-
tor’s number of blocks is constant, one might skip the first “entropy equalizing” step
in the proof of Theorem 4.4.21 above, and rather apply parallel repetition directly
on G, to get a generator as G[w] above, but for which we do not know the value of the
(possibly different) min-entropies of each block. Since G and thus G[w] have constant
number of blocks, applying a variant of Theorem 4.4.23 on G[w] for polynomially
many possible values for the min-entropies (up to some 1/ poly additive accuracy
level) yields polynomially many commitments that are all binding and at least one
of them is hiding. Such commitments can then be combined in a standard way to get
a single scheme that is statistically hiding and computationally binding.20

The equalization step can also be skipped if the amount of real entropy of each
block of the m-block generator G is efficiently computable, yielding an Θ(m)-round
commitment scheme (rather than the O(m ·max{log n, g/δk})-round we know how to
achieve without this additional property). This argument also yields an Θ(m)-round,
nonuniform (the parties use a nonuniform polynomial-size advice per security pa-
rameter) commitment scheme, with no additional assumptions on the generator G.
Combining with Theorem 4.4.12, the latter yields a Θ(n/ log n)-round nonuniform
commitment statistically hiding scheme from any one-way function, matching the
lower bound of [15].21

4.4.4.1 Proving a Weaker Variant of Theorem 4.4.23

We prove the following weaker variant of Theorem 4.4.23.

Lemma 4.4.26 (Weaker variant of Theorem 4.4.23). Let k = k(n) ≥ 3n be a
polynomial-time computable function, let m = m(n), s = s(n), and let G be an
efficient m-block generator over {0, 1}s. Then there exists a polynomial-time, O(m)-
round, public-coin, commitment scheme Com with the following properties:

20 [11] used a similar approach to transform a constant-round zero-knowledge proof system for
NP that remains secure under parallel composition into a constant-round statistically hiding and
computationally binding commitment.
21 The bound of [15] is stated for uniform commitment schemes, but the same bound for nonuni-
form commitment schemes readily follows from their proof.
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Hiding (unchanged): If each block of G has real min-entropy at least k, then Com
is statistically hiding.

Binding: If for every efficient, G-consistent generator G̃ there exists i = i(n) ∈ [m]
such that

Pr
t

R
←TG̃(1n)

[AccHi
G̃

(t) > k − 2n] = neg(n),

then Com is computationally binding.

Furthermore, on security parameter 1n, the protocol invokes G on inputs of length
s(n).

That is, rather than requiring the overall accessible entropy of G to be signifi-
cantly smaller than its real entropy, we require that, for every efficient, G-consistent
generator G̃, there exists a block in which its accessible entropy is significantly
smaller than the real entropy of this block. We do know how to construct such a
generator from one-way functions, and moreover, as we show below, such a genera-
tor implies an Θ(1)-round statistically hiding commitment, which by [15] cannot be
constructed black-boxly from one-way functions. Yet, the proof of Theorem 4.4.26
given below does capture some of the main ideas of the proof of Theorem 4.4.23. In
Section 4.4.4.2, we give more ideas about the proof of Theorem 4.4.23.

To keep notation simple, we take the simplifying assumption that G’s input length
on security parameter n is n, and assume without loss of generality that all its output
blocks are of the same length ` = `(n).22 We omit n from the notation whenever
clear from the context.

On the very high level, to prove Theorem 4.4.26 we use a random block of G to
mask the committed bit. The guarantee about the real entropy of G yields that the
resulting commitment is hiding, where the guarantee about G’s accessible entropy,
yields that the commitment is weakly (i.e., Θ(1/m)) binding. This commitment is
then amplified via parallel repetition, into a full-fledged computationally binding
and statistically hiding commitment.

In more detail, the construction of the aforementioned weakly binding commit-
ment scheme goes as follows: The receiver R sends uniformly chosen i∗ ∈ [m] to
S. The sender S starts (privately) computing a random execution of G, and sends
the first i − 1 output blocks to R. Then the parties interact in a (constant round)
“interactive hashing” subprotocol in which S’s input is the i-th block yi of G. This
subprotocol has the following properties:

• After seeing y1, . . . , yi−1 and the hash value of yi (i.e., the transcript of the hash-
ing protocol), the (real) min-entropy of yi is still high (e.g., Ω(n)), and

• If the accessible max-entropy of G in the i-th block is lower than k − 2n (i.e.,
given an adversarial generator view, the support size of yi is smaller than 2k−2n),
then yi is determined from the point of view of (even a cheating) S after sending
the hash value.

22 Using the padding technique one can transform a block generator to one whose all blocks are of
the same length, without changing its real and its accessible entropy.
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Next, S “commits” to its secret bit b by masking it (via XORing) with a bit extracted
(via an inner product with a random string) from yi, and the commit stage halts.

The hiding of the above scheme follows from the guarantee about the min-
entropy of G’s blocks. The 1/m-binding of the scheme follows since the bound
on the accessible max-entropy of G yields that the accessible entropy of at least one
of G’s blocks is low, and thus the sender is bounded to a single bit if the receiver has
chosen this block to use for the commitment.

The aforementioned hashing protocol is defined and analyzed in Sec-
tion 4.4.4.1.1, the weakly binding commitment is defined in Section 4.4.4.1.2, and
in Section 4.4.4.1.3 we put it all together to prove the lemma.

4.4.4.1.1 The Interactive Hashing Protocol

The hashing protocol is the interactive hashing protocol of Ding et al. [6]. (This very
protocol is used as the first step of the computational interactive hashing protocol
used in the commitment constructed in the proof of Theorem 4.4.23.)

Let H1 : {0, 1}` 7→ {0, 1}` and H2 : {0, 1}` 7→ {0, 1}n be function families.

Protocol 4.4.27 (Two-round interactive hashing protocol (SIH,RIH)H1,H2 )
SIH’s private input: x ∈ {0, 1}`

1. RIH sends h1 R
←H1 to SIH.

2. SIH sends y1 = h1(x) back to RIH.
3. RIH sends h2 R

←H2 to SIH.
4. SIH sends y2 = h2(x) back to RIH.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We will use two properties of the above protocol. The first, which we will use for
“hiding”, is that SIH sends only ` + n bits to RIH. Thus, if SIH’s input x comes from
a distribution of min-entropy significantly larger than ` + n, it will still have high
min-entropy conditioned on RIH’s view of the protocol (with high probability). On
the other hand, the following “binding” property says that, if x has max-entropy
smaller than ` (i.e., is restricted to come from a set of size at most 2`) and H1 and
H2 are “sufficiently” independent, then after the interaction ends, x will be uniquely
determined, except with exponentially small probability.

The following proposition readily follows from the proof of [6, Theorem 5.6]:

Proposition 4.4.28 ([6], “statistical binding” property of (SIH,RIH)). Let
H1 : {0, 1}` 7→ {0, 1}` and H2 : {0, 1}` 7→ {0, 1}n be `-wise and 2-wise independent
hash function families, respectively, and let L ⊆ {0, 1}` be a set of size at most 2`.
Let S∗IH be an (unbounded) adversary playing the role of SIH in (SIH,RIH) that, fol-
lowing the protocol’s interaction, outputs two strings x0 and x1. Then, the following
holds with respect to a random execution of (SIH,RIH)H

1,H2
:

Pr[x0 , x1 ∈ L ∧ ∀ j ∈ {0, 1} : h1(x j) = y1 ∧ h2(x j) = y2] < 2−Ω(n).
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4.4.4.1.2 Constructing Weakly Binding Commitment

Let H1 = {H1
n = {h1 : {0, 1}`(n) 7→ {0, 1}k(n)−2n}}n∈N and H2 = {h2

n = {h2 : {0, 1}`(n) 7→

{0, 1}n}}n∈N be function families. Let G : {0, 1}n 7→ ({0, 1}`(n))m(n) be an m-block gen-
erator. The weakly binding commitment is defined as follows:

Protocol 4.4.29 (Weakly binding commitment scheme Com = (S,R))

Common input: security parameter 1n

S’s private input: b ∈ {0, 1}
Commit stage:

1. R sends i∗
R
← [m(n)] to S.

2. S starts an execution of G(r) for r
R
← {0, 1}n, and sends (y1, . . . , yi∗−1) =

G(r)1,...,i∗−1 to R.
3. The two parties interact in (SIH(yi∗ = G(r)i∗ ),RIH)H

1
n,H2

n , with S and R tak-
ing the roles of SIH and RIH, respectively.

4. S samples u
R
←{0, 1}`(n) and sends (〈u, yi∗〉2⊕b, u) to R, for 〈·, ·〉2 being inner

product modulo 2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is clear that, if H1, H2 and G are efficiently computable, then so is Com. We next
prove the hiding and binding properties of Com.

Claim 4.4.30 (Hiding). If each block of G has real min-entropy at least k, then Com
is statistically hiding.

Proof: We fix n ∈ N and omit it from the notation. For i ∈ [m], let Yi denote the i-th
block of G(Un). By assumption, Pr

y
R
←Y1,...,i

[
HYi∗ |Y<i (yi∗ |y<i) < k

]
= neg(n). It follows

(by Theorem 4.2.3) that there exists a distribution (Y<i,Y ′i ) that is statistically indis-
tinguishable from (Y<i,Yi), and Yi |Y<i=y has min-entropy at least k for every value
y ∈ Supp(Y<i).

Let R̃ be an arbitrary algorithm playing the role of R in Com, let i∗ ∈ [m] be
its first message and let V R̃

i∗ be R̃’s view in a random execution of (S, R̃), right after
S sends the first (i∗ − 1) output blocks of G. Since V R̃

i∗ is a probabilistic function
of the first (i∗ − 1) output blocks of G, the distribution of (V R̃

i∗ ,Yi∗ ) is statistically
indistinguishable from (V R̃

i∗ ,Y
′
i∗ ), and Y ′i∗ |V R̃

i∗=vR̃
i∗

has min-entropy at least k for every

vR̃
i∗ ∈ Supp(V R̃

i∗ ).
Let V be the messages sent by S in embedded execution of the interactive hashing

(S, R̃). Since |V | = k − 2n, it follows (by Theorems 4.2.2 and 4.2.3) that (V R̃
i∗ ,V,Yi∗ )

is (neg(n) + 2−Ω(n))-close to a distribution (V R̃
i∗ ,V,Y

′′
i∗ ), for which Y ′′i∗ |(V R̃

i∗ ,Hi∗ )=(vR̃
i∗ ,ai∗ )

has min-entropy at least n for every value (vR̃
i∗ , ai∗ ) ∈ Supp(V R̃

i∗ ,V). Finally, by
the leftover hash lemma (Theorem 4.2.10) and the two-universality of the family
{hu(y) = 〈u, y〉2 : u ∈ {0, 1}n}, it holds that viewR̃(S(0), R̃) and viewR̃(S(1), R̃) are of
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statistical distance at most neg(n) + 2−Ω(n), for viewR̃(S(b), R̃) stands for R̃’s view at
the end, the commit stage interaction (S(b), R̃). �

Claim 4.4.31 (Weak binding). Assume that H1, H2 anf G are efficiently com-
putable,23 that H1 and H2 are `-wise and 2-wise independent, respectively, and
that, for every efficient G-consistent generator G̃, exists i = i(n) ∈ [m(n)] such that
Pr

t
R
←TG̃(1n)

[
AccHi

G̃
(t) > k(n) − 2n

]
= neg(n), then Com is (1 − 1/3m(n))-binding.

The proof of Theorem 4.4.31 immediately follows from the next two claims.

Definition 4.4.32 (Non-failing senders). A sender S̃ is called non-failing with re-
spect to a commitment scheme (S,R), if the following holds. Let Z be the transcript
of the commit stage of (S̃,R)(1n), and let Σ be the first decommitment string that S̃
outputs in the (generic) reveal stage, then Pr [R(Z, Σ) =⊥] = 0.

That is, a non-failing sender never fails to justify its actions in the commit stage.

Claim 4.4.33 (Weak binding against non-failing senders). Let H1, H2 and G
be as in Theorem 4.4.31, then Com is (1 − 1/2m(n))-binding against non-failing
senders.

Claim 4.4.34. Assume a public-coin commitment scheme is α-binding against non-
failing senders, then it is (α + neg)-binding.

Proving Theorem 4.4.33. Proof: Assume toward a contradiction that there exists
a non-failing ppt sender S̃ that breaks the (1 − 1/2m(n))-binding of Com. We use S̃
to construct an efficient adversarial non-failing generator G̃, such that, for infinitely
many n’s,

Pr
(r1,y1,w1,...)

R
←TG̃(1n)

[
HYi |R<i (y j|r<i) > k(n) − 2n

]
= Ω(1) (4.43)

for every i ∈ [m(n)].
In the following we fix n ∈ N on which S̃ breaks the binding with probability at

least 1 − 1/2m(n), and omit n from the notation when clear from the context. We
assume for ease of notation that S̃ is deterministic. The following generator samples
i

R
← [m], and then uses the ability of S̃ for breaking the binding of the embedded

hashing protocol at this round, to output a high-sample-entropy block.

23 Sampling and evaluation time are polynomial in n.
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Algorithm 4.4.35 (G̃—Adversarial cheating generator from cheating sender)
Security parameter: 1n

Operation:

1. Let i
R
← [m].

2. Emulate a random execution of (S̃,R)(1n) for the first two steps, with i∗ = i. Let
(y1, . . . , yi−1) be S̃’s message in this emulation.

3. Output y1, . . . , yi−1 as the first i − 1 output block.
4. Continue the emulation of (S̃,R) till its end. Let z be the transcript of the commit

stage, and let σ0 = (·, r0, ·) and σ1 = (·, r1, ·) be the two strings output by S̃ at
the end of this execution.

5. If R(σ1, z) , ⊥, let r
R
← {r0, r1}. Otherwise, set r = r0.

6. Output G(r)i, . . . ,G(r)m as the last m + 1 − i output block.

The efficiency of G̃ is clear, and since S̃ is non-failing, it is also clear that G̃ is G-
consistent. In the rest of the proof we show that G̃ violates the assumed bounds
on the (maximal) accessible entropy of G̃. Specifically, that, for every i ∈ [m],
the sample-entropy of G̃’s i-th output blocks is larger than k − 2n with probabil-
ity Ω(1/m). For ease of notation we prove it for i = 1.

Let T̃ = (R1,Y1, . . . ,Rm,Ym) = TG̃(1n), i.e., a random transcript of G̃ on security
parameter n. Let Y be the set of all low-entropy first blocks of G̃. That is,

Y := {y : HY1 (y) ≤ k − 2n}.

Let Z, Σ0 = (·,R0, ·), and Σ1 = (·,R1, ·), be the value of the strings z, σ0 and σ1,
respectively, set in Step 4 of G̃ in the execution described by T̃ |i=1. For j ∈ {0, 1},
let Y j = G(R j)1 if R(Z, Σ j) , ⊥, and ⊥ otherwise. Since S̃ (also in the emulated
execution done in G̃) interacts in a random execution of (SIH,RIH), Theorem 4.4.28
yields that

Pr
[
{Y0,Y1} ⊆ Y ∧ Y0 , Y1

]
< 2−Ω(n). (4.44)

In addition, since S̃ breaks the binding with probability 1 − 1/2m, it does so with
probability at least 1/2 when conditioning on i∗ = 1. This yields that

Pr
[
⊥ < {Y0,Y1} ∧ Y0 , Y1

]
≥ 1/2. (4.45)

We conclude that

Pr [Y1 < Y] ≥ Pr [i = 1] · 1/2 · Pr
[
⊥ < {Y0,Y1} ∧ {Y0,Y1} * Y

]
≥ 1/2m · Pr

[
⊥ < {Y0,Y1} ∧ {Y0,Y1} * Y ∧ Y0 , Y1

]
≥ 1/2m · ( 1

2 − 2−Ω(n)) ≥ Ω(1/m).
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Namely, with probability Ω(1/m), the accessible entropy of G̃’s first block is larger
than k − 2n. Since this holds for any of the blocks, it contradicts the assumption
about the accessible entropy of G. �

Proving Theorem 4.4.34. Proof: The proof follows a standard argument. Let
Com = (S,R) be a public-coin commitment scheme, and assume there exists an
efficient cheating sender S̃ that breaks the binding of Com with probability at least
α(n) + 1/p(n), for some p ∈ poly and infinitely many n’s. We construct an efficient
non-failing sender Ŝ that breaks the binding of Com with probability α(n)+1/2p(n),
for infinitely many n’s. It follows that if Com is α(n)-binding for non-failing senders,
then it is

(
α(n) + neg(n)

)
-binding.

We assume for simplicity that S̃ is deterministic, and define the non-failing
sender Ŝ as follows: Ŝ starts acting as S̃, but before forwarding the i-th message
yi from S̃ to R, it first makes sure it will be able to “justify” this message — to
output an input for S that is consistent with yi, and the message y1, . . . , yi−i it sent
in the previous rounds. To find such a justification string, Ŝ continues, in its head,
the interaction between the emulated S̃ and R till its end, using fresh coins for the
receiver’s messages. Since the receiver is public-coin, this efficient random contin-
uation has the same distribution as a (real) random continuation of (S̃,R) has. The
sender Ŝ applies such random continuations polynomially many times, and if fol-
lowing one of them S̃ outputs a valid decommitment string (which by definition is a
valid justification string), it keeps it for future use, and outputs yi as its i-th message.
Otherwise (i.e., it failed to find a justification string for yi), Ŝ continues as the honest
S whose coins and input bit are set to the justification string Ŝ found in the previous
round.

Since Ŝ maintains the invariant that it can always justify its messages, it can
also do that at the very end of the commitment stage, and thus outputting this string
makes it a non-failing sender. In addition, note that Ŝ only fails to find a justification
string if S̃ has a very low probability to open the commitment at the end of the cur-
rent interaction, and thus very low probability to cheat. Hence, deviating from S̃ on
such transcripts will only slightly decrease the cheating probability of Ŝ compared
with that of S̃.

Assume for concreteness that R sends the first message in Com. The non-failing
sender Ŝ is defined as follows:

Algorithm 4.4.36 (Non-failing sender Ŝ from failing sender S̃)
Input: 1n

Operation:

1. Set w = (0s(n), 0), for s(n) being a bound on the number of coins used by S, and
set Fail = false.

2. Start an execution of S̃(1n).
3. Upon getting the i-th message qi from R, do:

a. If Fail = false,
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i. Forward qi to S̃, and continue the execution of S̃ till it sends its i-th
message.

ii. // Try and get a justification string for this i-th message.

Do the following for 3np(n) times:
A. Continue the execution of (S̃,R) till its end, using uniform random

messages for R.

B. Let z′ and w′ be the transcript and first message output by S̃, re-
spectively, at the end of this execution.

C. Rewind S̃ to its state right after sending its i-th message.

D. // Update the justification string.

If R(z′,w′) ,⊥. Set w = w′ and break the loop.

iii. If the maximal number of attempts has been reached, set Fail = true.
b. // Send the i-th message to R. If Fail = false, this will be the message

sent by S̃ in Step 3(a). Otherwise, the string will be computed according
to the justification string found in a previous round.

Send ai to R, for ai being the i-th message that S(1n,w) sends to R upon
getting the first i messages sent by R.

4. If Fail = false, output the same value that S̃ does at the end of the execution.
Otherwise, output w.

It is clear that Ŝ is non-failing and runs in polynomial time. It is left to argue about
its success probability in breaking the binding of Com. We do that by coupling a
random execution of (Ŝ,R) with that of (S̃,R), by letting R send the same, uniformly
chosen, messages in both executions. We will show that the probability that S̃ breaks
the binding, but Ŝ fails to do so, is at most 1/3p(n) + m · 2−n, for m being the round
complexity of Com. If follows that, for infinitely many n’s, Ŝ breaks the binding of
Com with probability α(n) + 1/2p(n).

Let δi denote the probability of S̃ to break the binding after sending its i-th mes-
sage, where the probability is over the messages to be sent by R in the next rounds.
By definition of Ŝ, the probability that δi ≥ 1/3p(n) for all i ∈ [m], and yet Ŝ set
Fail = true, is at most m ·2−n. We conclude that the probability that Ŝ does not break
the commitment, and yet S̃ does, is at most 1/2p(n) + m · 2−n. �

4.4.4.1.3 Putting It Together

Given the above, we prove Theorem 4.4.26 as follows:
Proof: [Proof of Theorem 4.4.26] Recall that we assume without loss of generality
that G’s blocks are all of the same length `. We use efficient `-wise function family
H1 = {H1

n = {h1 : {0, 1}`(n) 7→ {0, 1}k(n)−2n}}n∈N and 2-wise function family H2 =

{h2
n = {h2 : {0, 1}`(n) 7→ {0, 1}n}}n∈N (see [4, 30] for constructions of such families).
Theorems 4.4.30 and 4.4.31 yield that the invocation of Protocol 4.4.29 with the

generator G and the above function families is an O(m)-round, public-coin commit-
ment scheme Com that is statistically hiding if the real entropy of G is sufficiently
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large, and is (1−Θ(1/m))-binding if the generator max accessible entropy in one of
the blocks is sufficiently small. Let Com〈m

2〉 = (S〈m
2〉,R〈m

2〉) be the m2 parallel rep-
etition of Com: an execution of (S〈m

2〉(b),R〈m
2〉)(1n) consists of m(n)2-fold parallel

and independent executions of (S(b),R)(1n). It is easy to see that Com〈m
2〉 is sta-

tistically hiding since Com is statistically hiding, and by [18] it is computationally
binding since Com is (1 − Θ(1/m))-binding. �

4.4.4.2 About Proving Theorem 4.4.23
Recall that the weak binding of Protocol 4.4.29 is only guaranteed to hold if the un-
derlying generator G has the following property: any non-failing cheating generator
has a round in which its accessible entropy is much smaller than the real entropy
G has in this round. However, as we mentioned before, building a generator with
this property from one-way functions is beyond the reach of our current techniques,
and is impossible to do in a black-box manner. Rather, the type of generators we
do know how to build from arbitrary one-way functions are the ones assumed in
the statement of the Theorem 4.4.23: the sum of accessible max-entropy achieved
by a cheating non-failing generator is smaller than the sum of real entropies (of G).
For the latter type of generators, a cheating generator might have high accessible
entropy, i.e., as high as the real entropy of G, in any of the rounds (though not in
all of them simultaneously). In particular, knowing i∗, the sender can put a lot of
entropy in i∗’s block. To address this issue, we change the protocol so that the re-
ceiver reveals the value of i∗ only after the interactive hashing protocol. Our hope is
that, for at least one value of i, the sender must use a “low-entropy” value yi in the
interactive hashing, and thus we get a binding commitment with probability at least
1/m. Specifically, consider the following protocol:

Protocol 4.4.37 (Commitment scheme Com = (S,R), hidden i∗)
Common input: security parameter 1n

S’s private input: b ∈ {0, 1}
Commit stage:

1. R samples i∗
R
← [m(n)].

2. S starts (internally) an execution of G(r) for r
R
← {0, 1}n.

3. For i = 1 to m(n)
a. The two parties interact in (SIH(yi = G(r)i),RIH)H

1
n,H2

n , with S and R
taking the roles of SIH and RIH, respectively.

b. R informs S whether i∗ = i.24

c. If informed that i , i∗, S sends yi to R.
Otherwise,

i. S samples u
R
← {0, 1}`(n) and sends (〈u, yi〉2 ⊕ b, u) to R.

ii. The parties end the execution.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24 As defined, R is not public-coin. This, however, is easy to change, without harming the protocol’s
security, by letting R choose the value of i∗ during the execution of the protocol using public coins.
I.e., if not set before, at round i it sets i∗ to be i with probability 1/(m + 1 − i).
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Unfortunately, the basic interactive hashing protocol does not force the sender to
decide whether yi is a low-entropy string or not during the execution of the inter-
active hashing protocol, and a cheating sender can decide about that after it finds
out that i∗ = i. In more detail, given y<i = (y1, . . . , yi−1), let Yy<i be the set of low-
entropy values for yi conditioned on y<i. (This is defined with respect to a particular
cheating sender strategy S̃). Since there are not too many high probability distinct
strings, the set Yy<i is “small”. Hence, the interactive hashing guarantees that the
probability that the sender can produce two distinct elements of Yy<i that are con-
sistent with the protocol is negligible. However, it does allow the possibility that
the sender can run the interactive hashing protocol consistently with some yi ∈ Yy<i

and afterwards produce a different string yi that is not in Yy<i , but is consistent with
the interactive hashing protocol. This enables a sender to break the binding of the
above as follows: consider a cheating sender that runs the generator honestly to ob-
tain (y1, . . . , ym) and uses yi in the interactive hashing in round i. (Many of these
will be low-entropy strings, since the sender is not using any fresh randomness to
generate each block.) Upon finding out that the yi will be used for the commitment,
the sender finds another string y′i (not in Yy<i ) that is consistent with the transcript
of the interactive hashing protocol. With these two strings, the sender can now pro-
duce a commitment that can be opened in two ways. (Namely, choose u so that
〈u, yi〉2 , 〈u, y′i〉2, and send (〈u, yi〉2, u), which also equals (〈u, y′i〉2 ⊕ 1, u) to the
receiver.)

This problem can be solved by using a different interactive hashing protocol that
makes it infeasible for the receiver to produce two distinct strings consistent with the
protocol where even just one of the strings is in a small set L. The new protocol is
simply the interactive hashing protocol used above, followed by the sender sending
f (yi) to the receiver, for f being a random member of a universal one-way hash func-
tion [26] chosen by the receiver. By Rompel [27] (see also [25, 12]) such universal
one-way hash functions can be constructed, in a black-box way, from any one-way
function, and thus by Theorem 4.4.10, they can be constructed from G. The bind-
ing of the new interactive hashing protocol is only computational (i.e., unbounded
sender can find a collision), compared with the information-theoretic security of the
previous interactive hashing protocol, but since the guarantee on the inaccessible
entropy of G holds only against computationally bounded entities, this change does
not matter to us. The full details of the aforementioned computationally secure inter-
active hashing protocol and the security proof of the resulting commitment scheme
can be found in [16].
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Chapter 5
Homomorphic Encryption

Shai Halevi

Abstract Fully homomorphic encryption (FHE) has been called the “Swiss Army
knife of cryptography”, since it provides a single tool that can be uniformly applied
to many cryptographic applications. In this tutorial we study FHE and describe its
different properties, relations with other concepts in cryptography, and construc-
tions. We briefly discuss the three generations of FHE constructions since Gentry’s
breakthrough result in 2009, and cover in detail the third-generation scheme of Gen-
try, Sahai, and Waters (GSW).

5.1 Computing on Encrypted Data
Secure multiparty computation epitomizes the promise of cryptography, performing
the seemingly impossible magic trick of processing data without having access to it.
One simple example features a client holding an input x and a server holding a func-
tion f , the client wishing to learn f (x) without giving away information about its
input. Similarly, the server may want to hide information about the function f from
the client (except, of course, the value f (x)). This situation arises in many practi-
cal scenarios, most notably in the context of secure cloud computing; For example,
the client may want to get driving directions without revealing their location to the
server.

Cryptographers have devised multiple solutions to this problem over the last 40
years, but none simpler (conceptually) than the paradigm of computing on encrypted
data. This paradigm was suggested by Rivest et al. [81] in the very early days of
public-key cryptography, under the name “privacy homomorphisms”: The client
simply encrypts its input x and sends the ciphertext to the server, who can “evaluate
the function f on the encrypted input”. The server returns the evaluated ciphertext
to the client, who decrypts it and recovers the result. Of course, it takes a special
encryption method to allow such processing of encrypted data; for example, Rivest
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et al. observed in [81] that “raw RSA” (where x is encrypted as xe mod N) enables
multiplication of encrypted values. They asked whether it was possible to compute
more general functions on encrypted data, and what one can do with an encryption
scheme that enables such computations.

Following [81], encryption schemes that support computation on encrypted data
came to be known as homomorphic encryption (HE). In addition to the usual en-
cryption and decryption procedures, these schemes have an evaluation procedure
that takes ciphertexts encrypting x and a description of a function f , and returns an
“evaluated ciphertext” that can be decrypted to obtain the value f (x). A salient non-
triviality property of such scheme is compactness, requiring that the complexity of
decrypting an evaluated ciphertext does not depend on the function f that was used
in the evaluation. Another desirable security property is function-privacy, requiring
that the evaluated ciphertext does not reveal the function f , even to the owner of the
secret key.

Many cryptosystems that support computation of some functions on encrypted
data have been proposed over the years, but it seemed much harder to construct a
compact fully homomorphic encryption (FHE), namely a compact scheme that can
evaluate all (efficient) functions. It was not until 2009 that the watershed work of
Gentry [47] established for the first time a blueprint for constructing such schemes
and described a viable candidate. That work was followed by a sequence of rapid
advancements, resulting in much more efficient FHE schemes under well estab-
lished hardness assumptions, and better understanding of the relations between FHE
and other branches of secure computation. The goal of this tutorial is to present an
overview of that line of work.

A “paradox” and its resolution. The ability to compute on encrypted data may
seem paradoxical at first glance. Consider a simple example of outsourced storage:
The client stores multiple encrypted files at the server, and later wants to retrieve one
of them without the server learning which one was retrieved. The client can send an
encrypted index to the server, and the server will perform the computation on the
encrypted index and files, resulting in an encryption of only the file that needs to be
retrieved.

But the server can still see the encrypted versions of all the stored files, and now it
has the encrypted version of the file that the client wants to retrieve. Can’t the server
just “see” which of the stored encrypted files is the one being retrieved? The reso-
lution, of course, is that we require the encryption to be semantically secure [52],
and in particular it must be randomized. Hence there are many different encrypted
versions of each file, and the encrypted file that the server returns is different from
and “seemingly unrelated” to the stored encrypted files.

5.1.1 Applications of Homomorphic Encryption
Fully homomorphic encryption has been called the “Swiss Army knife of cryptogra-
phy” [6], since it provides a single tool that can be uniformly applied in a wide host
of applications. Even when we have other solutions to a cryptographic problem, the
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FHE-based ones are often conceptually simpler and easier to explain. Below we list
a few example applications that demonstrate the power of FHE.

Outsourcing storage and computations. Perhaps the most direct application of ho-
momorphic encryption is for outsourcing storage and computation without reveal-
ing sensitive information. Consider a small company trying to move its computing
facilities to the cloud, but that is wary of the cloud provider having access to the
company’s confidential information. An easy solution is to encrypt the confidential
information before storing it in the cloud, but how can the company use that in-
formation without shipping it back on-premises for every operation (which would
defeat the purpose of outsourcing it)? Homomorphic encryption provides an elegant
solution to this conundrum. The company can keep the information in the cloud in
encrypted form, and the cloud provider can process the information in this form and
send only the processed result back to the company to be decrypted.

PIR and other private queries. Another direct application of homomorphic en-
cryption is to enable private queries to a database or a search engine. The simplest
such example is private information retrieval [24], where a server is holding a large
database (e.g., the US patent database), and a client wants to retrieve one record of
this database without the server learning which record was retrieved. Homomorphic
encryption lets the user encrypt the index of the record that it wants to retrieve. The
server can evaluate the function fdb(i) = db[i] on the encrypted index,1 returning the
encrypted result to the client, who can decrypt it and obtain the plaintext record.

The same solution applies also to the more complex settings of an SQL query to
a database or a free-form query to a search engine. In both cases the server has some
procedure for handling queries, which can be formalized as a function gdb(query) =

answer. The client can therefore encrypt its query before sending it to the server,
and the server can evaluate gdb on the encrypted query and return the encrypted
answer.

General two-party computations. The examples above are special cases of (two-
party) secure computation, where two mutually suspicious parties want to compute
a common function on their joint input. Specifically we have Alice with input x and
Bob with input y, and we want Alice to learn F(x, y) (and nothing more), for some
agreed-upon function F, and Bob should learn nothing. In the semi-honest adver-
sarial model (where both parties are assumed to follow the prescribed protocol), this
can be achieved by Alice encrypting her input x under her own key, and Bob evalu-
ating the function Fy(x) = F(x, y) on that encrypted input. By the semantic security
of the encryption scheme, we know that Bob does not learn anything about Alice’s
input from the encryption that he sees. Also, if we use a homomorphic scheme that
hides the evaluated function, then Alice does not learn anything other than the value
of F(x, y). (Converting this protocol to the more general malicious-adversary model
can be done using standard techniques [50].)

1 The function fdb has the database db hard wired in its description, and on input i it outputs the
i-th record.



222 Shai Halevi

We note that all the examples so far can use secret-key homomorphic encryption.
However, as we will see later in Section 5.2.2.6, for homomorphic encryption the
distinction between public-key and secret-key encryption is immaterial.

Zero-knowledge. Homomorphic encryption can also be used in a very simple zero-
knowledge proof protocol for every language L in NP. Let RL(x,w) be an NP relation
defining the language L = {x : ∃w s.t. RL(x,w) = 1}, and we sketch a protocol (taken
from [6]) by which Bob who knows w can prove to Alice that x ∈ L.

Toward a protocol, let Bob encrypt its witness w and send it to Alice, who can
evaluate on the encrypted witness the function rx(w) = RL(x,w). But Alice only
has the encrypted result; she still needs Bob’s help in determining the bit which is
encrypted there. Of course Alice cannot just send that encryption to Bob to be de-
crypted, since Bob cannot be trusted to return the right answer. Instead, she chooses
a random bit b, and sends the evaluated ciphertext to Bob only when b = 1, oth-
erwise sending him a fresh encryption of zero. Alice finally accepts if Bob replies
with the bit b; otherwise she rejects.

The soundness of this protocol follows from the fact that, for x < L, both ci-
phertexts will be encryptions of zero. As long as Bob cannot distinguish fresh from
evaluated encryption of zero, he cannot convince Alice with probability better than
1/2. Of course we should consider what happens when the initial ciphertext sent
by Bob is not a valid encryption at all, but this can be handled by simple cut-and-
choose: First, Bob generates two public keys and Alice asks him to open one of
them to show that it was generated correctly. Then, using the other unopened key,
Bob encrypts two random strings whose XOR is the witness w, and Alice asks that
he opens one set and prove that it was encrypted correctly. It is not hard to show that
the resulting protocol is sound, in that for x < L no cheating strategy can convince
Alice with probability much better than 7/8.

This protocol as described is only honest-verifier zero knowledge, since a cheat-
ing Alice can send to Bob (say) the first bit of the encrypted witness, rather than the
result of evaluating rx(·). This can be fixed by using a standard commitment tech-
nique, where Bob sends to Alice not the decrypted bit itself but rather a commitment
to that bit. Then Alice reveals her randomness, demonstrating to Bob that she ran
the computation as needed, and only then does Bob open its commitment.

5.1.2 Beyond Homomorphic Encryption
Versatile as it is, homomorphic encryption of course does not solve every problem
in cryptography. Some limitations of homomorphic encryption are listed below, and
are discussed in more detail in Section 5.5.4.

• The output is encrypted. Although we can evaluate arbitrary functions on en-
crypted data, the outcome of such computation is itself a ciphertext, and no
one can make sense of it without the secret key. In contrast, obfuscation and
functional encryption allow some forms of encrypted computation in which the
output is obtained in the clear; see Section 5.5.4.3.
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• All inputs must be encrypted under the same key. To be able to compute
on encrypted data, all of that data must be encrypted under the same key. Ex-
tensions of homomorphic encryption that can process together encrypted data
under multiple keys are discussed in Section 5.5.4.1.

• No integrity guarantees. While homomorphic encryption enables computing
on encrypted data, it does not offer any way of checking that the computation
was indeed carried out as expected. Typically there is no way to tell if a given
ciphertext is indeed the result of running some computation or just a fresh en-
cryption of the same value. See Section 5.5.4.2 for more discussion.

5.1.3 Abridged History
Techniques that enable non-compact fully homomorphic encryption (where the size
of the ciphertext grows with the complexity of the evaluated function) go back to
the early 1980s. In particular, as we explain in Section 5.2.2.4, such schemes can
be constructed using secure computation techniques such as Yao’s garbled circuits
[90]. Also known since the 1980s are compact additively homomorphic or multi-
plicatively homomorphic schemes, i.e., compact schemes that support only addi-
tion or only multiplication on encrypted data. Examples of such schemes include
Goldwasser–Micali [52] and ElGamal [33].

Going beyond one-operation homomorphism took longer. Boneh, Goh, and Nis-
sim described in 2005 a cryptosystem that permitted an arbitrary number of addi-
tions and one multiplication, without growing the ciphertext size [10]. The security
of that scheme was based on the hardness of the subgroup-membership problem in
composite-order groups that admit bilinear maps. A scheme with similar character-
istics was described by Gentry et al. under the learning-with-errors assumption [47].
In 2007, Ishai and Paskin described a compact scheme that can evaluate branching
programs [62], with security under the N-th residuosity assumption [77]. Also Mel-
chor et al. [69] described a template for constructing encryption schemes that can
evaluate shallow circuits, where the ciphertext size grows exponentially with the
multiplication depth but additions are supported without increasing the size, and
realizations of that template are known from various lattice hardness assumptions
[47, 69].

5.1.3.1 Three Generations of FHE

The first plausible construction of FHE was given by Gentry in 2009 [47]. The devel-
opment of FHE since that result can be roughly partitioned into three “generations”.
The first generation includes Gentry’s original scheme using ideal lattices [47], and
the somewhat simpler scheme of van Dijk et al. that uses only integer arithmetic
[88]. Both these schemes suffered from a problem of rapidly growing noise, which
affected both efficiency and security (see below). The second generation began in
2011 with the works of Brakerski–Vaikuntanathan [19] and Brakerski et al. [16], and
was characterized by much better techniques for controlling the noise, resulting in
improved efficiency while at the same time basing security on well-established hard-
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ness assumptions. These techniques were accompanied by methods for improving
the plaintext-to-ciphertext expansion ratio, further improving efficiency. The third
generation began with the scheme of Gentry et al. [48], exhibiting a somewhat dif-
ferent noise development pattern. The third-generation schemes are in general some-
what less efficient than second-generation ones, but they can be based on somewhat
weaker hardness assumptions. Below we briefly sketch these three generations, and
in Sections 5.3 and 5.4 we describe in detail the third-generation GSW scheme from
[48].

Gentry’s blueprint. In his celebrated work from 2009 [47], Gentry gave a blueprint
for realizing fully homomorphic encryption and described a concrete realization of
this blueprint. Gentry’s realization employed ideal lattices and assumed the hard-
ness of the “ideal coset problem” in such lattices. In his PhD thesis [37], Gentry
also sketched a simpler construction (due to van Dijk) using integer arithmetic; that
construction was later completed and analyzed by van Dijk, Gentry, Halevi and
Vaikuntanathan in [88]. Here we use the van Dijk et al. construction (viewed as a
secret-key encryption scheme) to illustrate the ideas in Gentry’s blueprint.

The secret key of the integer-based scheme is a secret large odd integer p, and
ciphertexts are integers that are close to a multiple of p. An encryption of a bit
b ∈ {0, 1} is an integer whose residue modulo p has the same parity as the plaintext
bit b. Namely, c = pq + 2r + b, where the integers q, r are random and |r| � p.
To decrypt such a ciphertext, first reduce it modulo p into the symmetric interval
[−p/2, p/2) and then output the parity of the result, b = (c mod p) mod 2.

Consider what happens when you add or multiply two such ciphertexts. Let ci =

qi p + 2ri + bi for i = 1, 2, and denote c+ = c1 + c2 and c× = c1 · c2. Then both c+ and
c× have similar structure to the original one, namely

c+ = (q1 + q2)p + 2(r1 + r2) + (b1 + b2) = q′p + 2r′ + (b1 ⊕ b2)
and c× = (q1c2 + c1q2)p + 2(b1r2 + r1b2 + 2r1r2) + b1b2 = q′′p + 2r′′ + b1b2

for some q′, q′′, r′, r′′ (where r′ ≈ r1 + r2 and r′′ ≈ 2r1r2). If the initial noise quanti-
ties r1, r2 were small enough relative to p then the new c+ and c× are still decryptable
to the right values. More generally it is possible to compute low-degree polynomials
on ciphertexts, which will be decrypted to the evaluation of the same polynomials
(over Z2) applied to the plaintext bits. It was proved in [88] that this scheme is se-
cure if the approximate-GCD problem is hard (which is essentially the problem of
finding p), and we believe that approximate-GCD is indeed hard for appropriate
parameters.

As described, the scheme above is not compact since the bit size of the ciphertext
grows with the degree of the evaluated polynomial, but van Dijk et al. described in
[88] a way of fixing it by publishing many near multiples of p of various sizes and
using modular reduction. A more severe problem, however, is that the homomorphic
capacity of the scheme is limited to low-degree polynomials (i.e., these are the only
functions that it can evaluate). The reason is that the noise magnitude grows rapidly
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with the degree, until it becomes larger than p/2 and then decryption fails. The
same noise development problem occurs also in Gentry’s construction from [47],
and indeed in every FHE construction since.

Bootstrapping. Gentry solved the problem of limited homomorphic capacity by
introducing bootstrapping. He observed that any homomorphic scheme which is
capable of evaluating its own decryption circuit (plus a single NAND gate) can be
turned into a fully homomorphic scheme. Specifically, for every two ciphertexts
c1, c2, consider the function

D∗c1,c2
(sk)

de f
= NAND

(
Decrypt(sk, c1),Decrypt(sk, c2)

)
.

Namely, this function takes as input an alleged secret key, uses it to decrypt the
two fixed ciphertexts c1, c2, and outputs the NAND of the two resulting bits. If the
homomorphic capacity of the scheme suffices to evaluate the functions D∗c1,c2

(sk)
for every two ciphertexts c1, c2, then the scheme is called bootstrappable, and it can
be transformed into an FHE scheme, as follows: Publishing an encryption of the
secret key sk under the public key, we can homomorphically compute the NAND
of any two ciphertexts by evaluating the function D∗c1,c2

on the publicly available
encryption of sk.

Importantly, the homomorphic computation is only applied to the fresh encryp-
tion of sk; the ciphertexts c1, c2 are only used to define the function D∗c1,c2

that we
need to evaluate. We have the guarantees that, as long as c1, c2 are decryptable then
so is the result of the homomorphic NAND, and the process can be repeated as many
times as needed. Thus, we obtain a compact fully homomorphic encryption.

The first generation of FHE schemes. The first generation of FHE constructions
included the schemes from [47, 88] and some variations [85, 41, 27, 40]. The main
problem with those schemes was the very rapid growth of noise, which severely lim-
ited their homomorphic capacity. Specifically, starting from fresh encryptions with
noise magnitude ρ, evaluating a degree-d polynomial resulted in noise magnitude
of roughly ρd. Although these schemes feature a shallow NC1 decryption, still the
rapid noise growth prevents them from evaluating their own decryption procedure,
and additional complex transformations (involving ad hoc hardness assumptions)
are needed to enable bootstrapping.

Second-generation FHE. In 2011, a sequence of works by Brakerski et al. [19,
16, 14] developed new techniques for better noise control. These techniques (some
of which we describe in Section 5.3.1.4) slowed the growth of noise dramatically,
roughly from linear to logarithmic in the degree of the evaluated function. This re-
sulted in “leveled” schemes that can evaluate circuits of any fixed polynomial depth,
as well as in bootstrappable schemes that can be made fully homomorphic. More-
over, the security of these new schemes could be based on more standard hardness
assumptions such as learning with errors (which we describe in Section 5.3.1.1).
Some other second-generation schemes (based on the NTRU hardness assumption)
were described in [67, 13].
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Other techniques were developed for improving the efficiency of homomorphic
evaluation, such as “packing” many plaintext bits in a single ciphertext [86, 17, 44]
and various bootstrapping optimizations [43, 2, 57]. These optimizations resulted in
schemes whose asymptotic overhead (versus computing in the clear) is only poly-
logarithmic in the security parameter, and with vastly improved practical perfor-
mance [45, 56]. Second-generation schemes and their optimizations are not covered
in detail in this tutorial, but we briefly touch on the optimizations in Section 5.5.1.

The GSW scheme and third-generation FHE. In 2013, Gentry et al. described
in [48] yet another homomorphic encryption scheme, which has somewhat different
flavor than the second-generation schemes above (and is arguably conceptually sim-
pler). In particular, that scheme had asymmetric multiplication, in the sense that the
homomorphic multiplication c1⊗c2 results in a different ciphertext than c2⊗c1 (both
of which encrypt the same product b1 · b2). More importantly, the noise growth is
also asymmetric: the noise in the left multiplicand has greater influence on the result
than the noise in the right multiplicand.

Brakerski and Vaikuntanathan observed in [20] that this asymmetry can be used
to obtain even slower rates of noise growth, by designing circuits in which the left
multiplicand always has small noise. This observation enabled further reduction of
parameters and quantitative relaxation of the underlying hardness assumption. How-
ever, this technique is not compatible with some of the performance optimizations
in second-generation schemes, and third-generation schemes have higher overhead
than their second-generation counterparts.

In this tutorial we cover the GSW scheme in detail, starting in Section 5.3 from
the basic leveled scheme, then showing in Section 5.4 how to use bootstrapping
to turn it into a fully homomorphic scheme, and how to use the asymmetric noise
development to improve parameters and relax the hardness assumption.

5.1.4 Organization of This Tutorial
In Section 5.2, we define homomorphic encryption and its properties and discuss the
relations between these properties and connections with secure computation proto-
cols. In Sections 5.3 and 5.4, we describe the GSW construction in detail, and in
Section 5.5, we briefly go over many related topics, and in Section 5.6 we suggest
further reading.

5.2 Defining Homomorphic Encryption

5.2.1 Notations and Basic Definitions
For an integer q ∈ N, we identify the quotient group Zq with its representatives
in the symmetric interval [− q

2 ,
q
2 ) (except Z2 which is identified with {0, 1}). For a

real number x ∈ R, we denote by [x]q the reduction of x modulo q into the same
symmetric interval. dxc is the rounding of x to the nearest integer, and bxc , dxe are
the floor and ceiling functions. All these notations extend naturally to vectors and
matrices element-wise. The inner product of two vectors u, v is denoted 〈u, v〉.
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For a random process such as running a probabilistic Turing machine M on in-
put x, we write M(x) or y ← M(X) to describe a random variable which is drawn
from the output space of that process. We sometimes write y := M(x; r) to separate
the randomness used and the deterministic processing of that randomness. We often
use the same notation for a distribution and its support set, so y ∈ M(x) means that
y is a string which is output by M(x) with non-zero probability. Conversely, if S is
a set, then x ← S is a random variable uniformly distributed in S . The `1 statistical
distance between two distributions D1,D2 is denoted S D(D1,D2).

We denote the output distribution of a multistep process, or the probability of an
event over that distribution, using the syntax

Distribution =
{
output : Process

}
, or Pr[event : Process].

For example, the distribution of encryptions of zero in some cryptosystem can
be written as {c : (pk, sk)← KeyGen(1λ), c← Encrypt(pk, 0)}, and the probabil-
ity of an adversary outputting 1 on a ciphertext from this distribution is denoted
Pr

[
A(c) = 1 : (pk, sk)← KeyGen(1λ), c← Encrypt(pk, 0)

]
.

5.2.1.1 Homomorphic Encryption

To define computation on encrypted data, we must fix some model of computation.
In this tutorial we always use binary circuits with fan-in-2 gates to describe the
functions that we want to compute on encrypted data.2 For a binary circuit Π , we
denote its size (i.e., number of gates) by size(Π), its depth by depth(Π) (i.e., longest
input-to-output path), and the number of inputs by inpLen(Π). We briefly discuss
homomorphic encryption relative to other models of computation in Section 5.5.3.
On the other hand, we use somewhat informal terms such as algorithm/procedure
(or adversary) when referring to computations that manipulate ciphertexts and keys.
Unless stated otherwise, all the algorithms/procedures/adversaries below are (uni-
form) probabilistic polynomial time (PPT).

A homomorphic public-key encryption scheme (for plaintext space M = {0, 1})
has four PPT procedures: the usual KeyGen, Encrypt, and Decrypt, and also an
Evaluate procedure for computing on encrypted data. We slightly extend the stan-
dard syntax of key generation, allowing it to depend not only on the security param-
eter λ but also on a second “functionality parameter” τ. Throughout this tutorial,
some schemes will make use of that parameter while others will not.

Definition 5.2.1 (Syntax). A homomorphic encryption scheme consists of four pro-
cedures, E = (KeyGen,Encrypt,Decrypt,Evaluate):

• (sk, pk)← KeyGen(1λ, 1τ). Takes the security parameter λ and another param-
eter τ and outputs a secret/public key-pair.3

2 Fixing circuits with binary input also means that we consider bit-encryption schemes, where the
plaintext space is M = {0, 1}.
3 We assume that the size of the public and secret keys is set deterministically by λ and τ; i.e., it
does not vary with the randomness of the key generation procedure.



228 Shai Halevi

• c ← Encrypt(pk, b). Given the public key and a plaintext bit, outputs a cipher-
text.
• b ← Decrypt(sk, c). Given the secret key and a ciphertext, outputs a plaintext

bit.
• c′ ← Evaluate(pk, Π, c). Takes a public key pk, a circuit Π , a vector of cipher-

texts c = 〈c1, . . . , ct〉, one for every input bit of Π , and outputs another vector of
ciphertexts c′, one for every output bit of Π .

The syntax from Definition 5.2.1 is naturally extended to vectors of plaintexts
and ciphertexts. Namely, we write c ← Encrypt(pk,b), where b = (b1, . . . , bt)
and c = (c1, . . . , ct), to denote ci ← Encrypt(pk, bi) for all i. Similarly, we write
b← Decrypt(sk, c) to denote bi ← Decrypt(sk, ci) for all i.

We sometimes refer to ciphertexts output by Encrypt as “fresh ciphertexts”, and
those output by Evaluate are “evaluated ciphertexts”. The correctness condition be-
low refers to both.

Definition 5.2.2 (Correctness). Let E = (KeyGen,Encrypt,Decrypt,Evaluate) be
a homomorphic encryption scheme and C = {Cτ}τ∈N be some circuit family. E is
(perfectly) correct for C if it correctly decrypts both fresh and evaluated ciphertexts.
Namely, for all λ, τ ∈ N, the following two conditions hold:

• For any b ∈ {0, 1},

Pr
[
Decrypt(sk, c) = b : (sk, pk)← KeyGen(1λ, 1τ), c← Encrypt(pk, b)

]
= 1;

• For every Π ∈ Cτ and plaintext bits b = (b1, . . . , bt) ∈ {0, 1}t, one for every input
bit of Π ,

Pr
[
Decrypt(sk, c′)=Π(b) :

(sk, pk)← KeyGen(1λ, 1τ),
c← Encrypt(pk,b), c′ ← Evaluate(pk, Π, c)

]
= 1.

We sometimes refer informally to the largest family C for which E is correct
as the homomorphic capacity of E . Definition 5.2.2 can be weakened by allowing
a negligible error probability, but it is more convenient to work with the stronger
condition (and the constructions that we describe later can be made to meet this
stronger condition). Some examples of homomorphism relative to interesting circuit
families include the following:

Fully homomorphic encryption. We say that E is fully homomorphic if it is cor-
rect for a family C such that C1 by itself already contains all Boolean circuits.
In this case we can ignore the parameter τ in KeyGen; i.e., we can always run
it with τ = 1. (Note that the size of the circuit does not figure into the secu-
rity requirement, and Evaluate always runs in time polynomial in the circuit
description, so considering circuits of superpolynomial size in λ does not cause
any problems.)

Leveled/somewhat homomorphic encryption. We say that E is a leveled homo-
morphic encryption scheme if it is correct for a family C such that, for all τ, Cτ
contains all Boolean circuits of depth up to τ.
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More generally, we may refer to a scheme informally as somewhat homomor-
phic if it is correct for a family C where the complexity of the circuits in Cτ
grows with τ. A common example that was used in the first-generation schemes
starting with Gentry’s original blueprint (e.g., [47, 88, 85, 41]) is when Cτ con-
tains circuits computing multivariate polynomials of total degree up to τ and up
to 2τ monomials.

Additively homomorphic encryption. E is additively homomorphic if it is correct
for a family C such that C1 contains all Boolean circuits made up of only XOR
gates. Here too we ignore the parameter τ in KeyGen. One example of additive
homomorphism is the Goldwasser–Micali scheme [52].
A weaker version of additive homomorphism (which is realized by most lattice-
based encryption schemes) does not support unlimited number of addition op-
erations, but only (say) at most exponential in τ. Namely, E is almost additively
homomorphic if it is correct for a family C where, for all τ, Cτ contains all the
sums (mod 2) of up to 2τ variables.

The semantic security of a homomorphic encryption scheme is defined in the
usual way [52], without reference to the Evaluate algorithm; indeed Evaluate is
a public algorithm with no secrets. Namely, we require that a PPT adversary can-
not distinguish between encryptions of 0 and encryptions of 1, even if it knows the
public key. Definition 5.2.3 below handles the “functionality parameter” τ by con-
sidering it an adversarial quantity (that the adversary must output in unary to ensure
that it is polynomially bounded).

Definition 5.2.3 (Semantic security). Let E = (KeyGen,Encrypt,Decrypt,Evaluate)
be a homomorphic encryption scheme, and let A be an adversary. The advantage
of A w.r.t. E is defined as

AdvEA(λ)
de f
=

∣∣∣∣∣∣Pr
[
A(pk, c) = 1 :

1τ ← A(1λ), (sk, pk)← KeyGen(1λ, 1τ),
c← Encrypt(pk, 1)

]
− Pr

[
A(pk, c) = 1 :

1τ ← A(1λ), (sk, pk)← KeyGen(1λ, 1τ),
c← Encrypt(pk, 0)

]∣∣∣∣∣∣ .
The scheme E is semantically secure if, for every PPT adversary A, the advantage
AdvEA(λ) is negligible in λ.

In the rest of this tutorial we only consider semantically secure schemes, often
without mentioning this requirement.

5.2.1.2 Secret-Key Homomorphic Encryption

It is sometimes convenient to consider secret-key variants of the definitions above,
especially since it was shown by Rothblum [82] that these notions are essentially
equivalent for homomorphic encryption (see Theorem 5.2.19). The syntax and cor-
rectness conditions for secret-key homomorphic encryption are similar to those in
Definitions 5.2.1 and 5.2.2 except that KeyGen only outputs the secret key sk rather
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than the pair (sk, pk), the Encrypt procedure uses sk rather than pk for encryption,
and the Evaluate procedure gets as input only Π and c but not pk.

The security definition is also similar, except that, in lieu of the public key, the
adversary is given a sequence of ciphertexts (rather than just one), encrypting bits
of one of two sequences of its choosing, and it needs to guess which of the two
sequences was encrypted.

Definition 5.2.4 (Semantic security, secret-key encryption). Let E = (KeyGen,
Encrypt,Decrypt,Evaluate) be a secret-key homomorphic encryption scheme, and
let A be an adversary. The advantage of A w.r.t. E is defined as

S KAdvEA(λ)
de f
=

∣∣∣∣∣∣Pr
[
|b0| = |b1| &
A(pk, c) = 1 :

(1τ,b0,b1)← A(1λ), sk← KeyGen(1λ, 1τ),
c← Encrypt(sk,b1)

]
− Pr

[
|b0| = |b1| &
A(pk, c) = 1 :

(1τ,b0,b1)← A(1λ), sk← KeyGen(1λ, 1τ),
c← Encrypt(sk,b0)

]∣∣∣∣∣∣ .
The scheme E is semantically secure if, for every PPT adversary A, the advantage
S KAdvEA(λ) is negligible in λ.

5.2.2 Properties of Homomorphic Encryption Schemes

Property Description Defined in Comments

Secret-key variant Same key to Def. 5.2.4 Equivalent to public
encrypt, decrypt key variant, Theorem 5.2.19

Strong homomorphism Evaluated ctxts Defs. 5.2.5,5.2.6 Implies strong compactness,
∼
= fresh ctxts function privacy, and multi-hop

Compactness Evaluated ctxts Defs. 5.2.8,5.2.9 Strong & weak variants
are short

Function privacy Evaluated ctxts Def. 5.2.10 Implied by secure 2PC,
hide function Theorem 5.2.13

Multi-hop Can reprocess Def. 5.2.14 Orthogonal to compactness
evaluated ctxts and function privacy

Table 5.1: Properties of homomorphic encryption

By themselves, the correctness and security properties from above are not enough
to rule out uninteresting realizations. Specifically, any secure encryption scheme can
be made “homomorphic” by an Evaluate procedure that simply attaches a descrip-
tion of the circuit Π to the ciphertext tuple c, and a Decrypt procedure that first
decrypts all the ciphertexts and then evaluates Π on the corresponding plaintext
bits.

Such uninteresting realizations are ruled out by the additional requirements that
we define below. We begin with the simplest and strongest condition, which we
call strong homomorphism, as well as three weaker (but still useful) conditions,
namely compactness, circuit hiding, and multi-hop homomorphism. We also state
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and prove some lemmas about the relations between these notions. A summary of
the definitions and results in this section is given in Table 5.1.

5.2.2.1 Strong Homomorphism

Strong homomorphism requires evaluated ciphertexts to look the same (i.e., have
the same distribution) as fresh ciphertexts.

Definition 5.2.5 (Strong homomorphism). Scheme E = (KeyGen,Encrypt,Decrypt,
Evaluate) is strongly homomorphic for a circuit family C = {Cτ}τ∈N if, for all τ ∈ N
and every Π ∈ Cτ and plaintext bits b = (b1, . . . , bt) ∈ {0, 1}t, one for every input bit
of Π , the two distribution ensembles below are statistically close up to a distance
negligible in λ:

FreshΠ,b(λ)
de f
=

{
(pk, c, c′) : (sk, pk)← KeyGen(1λ, 1τ),

c← Encrypt(pk,b), c′ ← Encrypt(pk, Π(b))
}
,

EvalΠ,b(λ)
de f
=

{
(pk, c, c′) : (sk, pk)← KeyGen(1λ, 1τ),

c← Encrypt(pk,b), c′ ← Evaluate(pk, Π, c)
}
.

Definition 5.2.5 can be relaxed to require only computational indistinguishabil-
ity rather than statistical closeness, but some care must be taken when defining it.
Specifically, for some applications we require that even the party that generated the
keys cannot distinguish between these two distributions, hence we need them to be
indistinguishable even given the randomness that was used by KeyGen.

Definition 5.2.6 (Computationally strong homomorphism). Scheme E = (KeyGen,
Encrypt,Decrypt,Evaluate) is computationally strongly homomorphic for a cir-
cuit family C = {Cτ}τ∈N if, for all τ ∈ N and every Π ∈ Cτ and plaintext bits
b = (b1, . . . , bt) ∈ {0, 1}t, one for every input bit ofΠ , the two distribution ensembles
below are computationally indistinguishable:

Fresh∗Π,b(λ)
de f
=

{
(r, c, c′) : r ← $, (sk, pk) := KeyGen(1λ, 1τ; r),

c← Encrypt(pk,b), c′ ← Encrypt(pk, Π(b))
}
,

Eval∗Π,b(λ)
de f
=

{
(r, c, c′) : r ← $, (sk, pk) := KeyGen(1λ, 1τ; r),

c← Encrypt(pk,b), c′ ← Evaluate(pk, Π, c)
}
.

Definitions 5.2.5 and 5.2.6 can be modified in the obvious way to handle secret-
key homomorphic encryption. Although these definitions are stated relative to a
fixed circuit family C, one readily sees that this dependence (as well as the depen-
dence on τ) is immaterial: If some Cτ∗ contains AND and XOR gates (or any other
functionally complete set of gates) then we can extend the Evaluate procedure to
evaluate any circuit, by repeatedly evaluating each gate on the outputs of the pre-
ceding gates. Moreover, the output distribution when evaluating a circuit Π is at
most negl(λ) · size(Π) away from that of fresh encryption of the outputs. A similar
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statement applies also in the computational setting, using the fact that these distribu-
tions are indistinguishable even given the secret key (since the correctness condition
involved the secret key). Hence we have:

Proposition 5.2.7. Any encryption scheme which is (computationally) strongly ho-
momorphic relative to a circuit family C, where some Cτ∗ contains AND and XOR
gates, can be transformed to a (computationally) strongly fully homomorphic
scheme (i.e. strongly homomorphic relative to a circuit family C′ with C′1 containing
all circuits).

Given Proposition 5.2.7, we always assume below that any strongly homomor-
phic scheme is strongly fully homomorphic, and we suppress the irrelevant parame-
ter τ when describing such schemes.

5.2.2.2 Compactness

The main deficiency in the uninteresting realization in which Evaluate just appends
the description of Π to the ciphertexts is that we expect the decryption work to be
the same whether the decrypted ciphertext is fresh or evaluated. This is clearly the
case if the scheme is strongly homomorphic, but being strongly homomorphic is
often overkill. A weaker notion that captures a lot of the power of homomorphic
computation is compactness, which only requires that the size of the ciphertext does
not grow with the complexity of the evaluated circuit.

Definition 5.2.8 (Compactness). A homomorphic encryption scheme E = (KeyGen,
Encrypt,Decrypt,Evaluate) is compact if there exists a fixed polynomial bound B(·)
so that, for all λ, τ ∈ N, any circuitΠ with t inputs and a single output, and plaintext
bits b = (b1, . . . , bt) ∈ {0, 1}t, it holds that

Pr
[
|c′| ≤ B(λ) :

(sk, pk)← KeyGen(1λ, 1τ),
c← Encrypt(pk,b), c′ ← Evaluate(pk, Π, c)

]
= 1.

We note that the bound B(·) above depends only on λ but not on τ. This means
that, even if we allow some aspects of the scheme (such as the public-key size)
to depend on the parameter τ, the size of the evaluated ciphertexts must not grow
with τ.

In some settings it is useful to consider a weaker condition, where we allow the
ciphertext size to grow with τ so long as it remains smaller then the size of circuits
in Cτ. We use log |Cτ| as our measure of the size of circuits in Cτ, since you need
at least as many bits to describe these circuits (and note that we only count single-
output circuits). This yields the following definition:

Definition 5.2.9 (Weak compactness). A homomorphic encryption scheme E =

(KeyGen,Encrypt,Decrypt,Evaluate) is weakly compact if there exists a fixed
polynomial bound B(·, ·) so that (i) for all λ, τ ∈ N, any circuit Π with t inputs
and a single output, and plaintext bits b = (b1, . . . , bt) ∈ {0, 1}t, it holds that
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Pr
[
|c′| ≤ B(λ, τ) :

(sk, pk)← KeyGen(1λ, 1τ),
c← Encrypt(pk,b), c′ ← Evaluate(pk, Π, c)

]
= 1,

and (ii) B(λ, τ) = poly(λ) · o(log |Cτ|).

5.2.2.3 Circuit Privacy

Circuit privacy roughly means that the ciphertext generated by Evaluate does not
reveal anything about the circuit that it evaluates, beyond the output value of that
circuit, even to the party who generated the public and secret keys. To define it,
we view the operation of Evaluate as a protocol between a client who generates
the keys and encrypts its input, and a server who evaluates some function on that
input and returns the result to the client. We then formalize circuit privacy as the
usual input privacy property for the server, namely we require that the client can be
simulated given only the output value that it learns.

Definition 5.2.10 (Circuit privacy, semi-honest). A homomorphic encryption
scheme E = (KeyGen,Encrypt,Decrypt,Evaluate), correct for the circuit family C,
is circuit private for C, if there exists an efficient simulator Sim such that, for every
τ ∈ N, Π ∈ Cτ, and plaintext bits b = (b1, . . . , bt) ∈ {0, 1}t, one for every input bit of
Π , we have

RealΠ,b(λ)
(c)
≈ Sim(1λ, 1τ, b, Π(b)), where

RealΠ,b(λ)
de f
=

{
(r, r′, c′) : r, r′ ← $, (sk, pk) := KeyGen(1λ, 1τ; r),

c := Encrypt(pk,b; r′), c′ ← Evaluate(pk, Π, c)
}
.

It is important to note that the simulator Sim is given the output Π(b) but not the de-
scription of Π itself, and it needs to simulate the view that includes the randomness
for both key generation and encryption, as well as the evaluated ciphertext.

Circuit privacy against malicious adversaries. Definition 5.2.10 above applies
only to the semi-honest case in which the client uses the prescribed KeyGen and
Encrypt procedures. The more general case was considered by Ostrovsky et al. [76].
Roughly, they defined circuit privacy against malicious adversaries by requiring that,
for every (pk∗, c∗) (even ones that are not generated honestly), there exists an “im-
plied plaintext” b∗ such that Evaluate(pk∗, Π, c∗) can be simulated knowing only
pk∗, c∗, and Π(b∗) (but without knowing Π itself).

Building on techniques of Gentry et al. [46] (see Theorem 5.2.13 below), they
show how to get a compact scheme which is circuit private against malicious ad-
versary, by combining a compact scheme which is not circuit private with a circuit
private scheme which is not compact.

5.2.2.4 Circuit Private Homomorphic Encryption Versus Two-Message SFE

As we discussed in the introduction, circuit private homomorphic encryption im-
plies a two-message (semi-honest) secure function evaluation (SFE) protocol for
any function. We now show these two notions are essentially equivalent. Namely
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we show how to realize (non-compact) circuit private fully homomorphic encryp-
tion from any two-message semi-honest SFE protocol for general functions.

Recall the structure of a two-message SFE protocol for a function F(x, y), where
one party (the client) holds x, the other party (the server) holds y, and the client
needs to learn F(x, y).

Definition 5.2.11 (Two-message SFE protocol). A two-message two-party SFE
protocol for a function F(·, ·) consists of three procedures, PF = (SFE1F ,SFE2F ,
SFE3F) as follows:

• The client computes (s,m1) ← SFE1F(1λ, x), sending m1 to the server and
keeping the state s to itself;
• The server responds with m2 ← SFE2F(1λ, y,m1);
• The client recovers the result as z← SFE3F(s,m2).

The (perfect) correctness of the protocol means that we have z = F(x, y) with prob-
ability 1.

Definition 5.2.12 (Semi-honest security). The security of the protocol PF is de-
fined by means of two simulators, Sim1 and Sim2, that simulate the view of the two
parties. Specifically for all inputs x, y for F, we have

Sim1(1λ)
(c)
≈ SFE1F(1λ, x) and Sim2(1λ, F(x, y))

(c)
≈ cViewx,y(λ), where

cViewx,y(λ)
de f
=

{
(r,m2) : r ← $, (s,m1) := SFE1F(1λ, x; r), m2 ← SFE2F(1λ, y)

}
.

Intuitively, a two-message SFE protocol can be thought of as the encryption of x
via SFE1 followed by evaluation via SFE2 and decryption via SFE3, but is not
quite homomorphic encryption yet. In particular, there is no public key involved,
and the same party (the client) is doing both the encryption and the decryption.4

In contrast, a public key homomorphic encryption should be thought of as a three-
player game: first a recipient publishes a public key, then a sender (client) encrypts
the data b under that public key, next an evaluator (server) evaluates a circuit Π on
the encrypted data, and finally the recipient decrypts the result and recovers Π(b).
Another issue is that, as described above, the client’s SFE1 function handles the
entire input x at once, whereas we need the client processing to be “decomposable”
(cf. [61]), i.e., encrypting each bit of x separately.

If the underlying SFE protocol already happened to be decomposable (such as
Yao’s garbled circuit protocol that uses bit-by-bit oblivious transfer), then it is
straightforward to turn it into homomorphic encryption using an auxiliary (stan-
dard) public-key encryption scheme. The recipient chooses a public/secret key pair
for the encryption scheme, the sender sends the first SFE message and in addition
also the encryption of the client’s SFE-state s under the public key, and the evaluator
forwards the encrypted state to the recipient together with the second SFE message.

4 We cannot use here the equivalence between public- and secret-key homomorphic encryption
from Theorem 5.2.19, since it only applies to compact schemes.
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The recipient uses its secret key to decrypt and recover the SFE state s, and then
uses the procedure SFE3 with this state to recover F(x, y).

Since two-message SFE implies both semantically secure encryption (cf. [49])
and two-message SFE with decomposable client processing (e.g., via Yao’s proto-
col), we get a non-compact circuit private HE from any two-message protocol for
secure evaluation of all functions. A more direct proof of this implication, using
techniques similar to Gentry’s bootstrapping [47], is described in the next theorem.

Theorem 5.2.13. A circuit private fully homomorphic encryption scheme can be
constructed from public-key encryption and a two-message semi-honest SFE proto-
col for all circuits.

Proof: Let E = (KeyGen,Encrypt,Decrypt) be a public-key encryption scheme,
consider the universal function U(b, Π) = Π(b), and define the related function
U′(·, ·) as

U′(sk, (c, Π))
de f
= U(Decrypt(sk, c), Π) (= Π(Decrypt(sk, c)).

Let PU′ = (SFE1U′ ,SFE2U′ ,SFE3U′ ) be a two-message SFE protocol for U′, and
use E and PU′ to construct a fully homomorphic public-key encryption scheme E ′ =

(KeyGen′,Encrypt′,Decrypt′,Evaluate′), as follows:

• KeyGen′(1λ) runs the underlying key generation (sk, pk) ← KeyGen(1λ), and
then the first-message procedure of the SFE protocol (s,m1)← SFE1U′ (1λ, sk).
It outputs (sk′ = s, pk′ = (pk,m1)) (where pk is used for encryption and m1 is
used for evaluation).

• Encrypt′(pk′ = (pk,m1), b) just uses the Encrypt procedure of the underlying
scheme, outputting c = Encrypt(pk, b).

• Evaluate′(pk′ = (pk,m1), Π, c) runs the second-message procedure of the SFE
protocol for U′, outputting c′ ← SFE2U′ (1λ,m1, (c, Π)).

• Decrypt(sk′ = s, c′) runs the last procedure of the SFE protocol for U′, out-
putting z← SFE3U′ (s, c′).

Correctness of E ′ follows from that of E and PU′ : If c = Encrypt(pk,b) then by
correctness of E we have b = Decrypt(sk, c), and by correctness of PU′ we have
z = U′(sk, (c, Π)) = Π(Decrypt(sk, c)) = Π(b).

Semantic security follows from the semantic security of the underlying E and
from client security of PU′ . To show that Encrypt(pk, 0) is indistinguishable from
Encrypt(pk, 1) even given pk and m1, consider a hybrid experiment in which m1 is
generated by the simulator m1 ← Sim1(1λ) instead of being a part of the output
of SFE1(1λ, sk). The client security of PU′ implies that this hybrid experiment is
indistinguishable from the real encryption scheme. But in this hybrid, m1 no longer
depends on the secret key sk, and therefore by semantic security of E we get that
Encrypt(pk, 0) is indistinguishable from Encrypt(pk, 1).

Finally, the circuit privacy of E ′ follows from the server security of PU′ : The
simulator SimE ′ that we need for circuit privacy is constructed from the client
view simulator Sim2 above: SimE ′ (1λ, b, z) first chooses randomness r, r′ for the
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key generation and encryption of the underlying encryption scheme, then sets
(sk, pk) := KeyGen(1λ; r) and c := Encrypt(pk,b; r′). Next it runs Sim2 to get
(r′′, c′) ← Sim2(1λ, z). Then SimE ′ outputs (r, r′′) as the randomness for KeyGen′,
r′ as the randomness for Encrypt′, and c′ as the evaluated ciphertext. Indistinguisha-
bility between the simulated and real views follows directly from that of Sim2. �

5.2.2.5 Multi-hop Homomorphic Encryption

In settings where we do not have strong homomorphism, the evaluated ciphertexts
produced by Evaluate may differ from freshly encrypted ones, bringing up the ques-
tion of whether one can keep computing on evaluated ciphertexts. An i-hop homo-
morphic encryption scheme is one where Evaluate can be called on its own output
up to i times (while still being able to decrypt the result), and a multi-hop homo-
morphic encryption scheme is one which is i-hop for all i. Note that the number of
hops supported by a scheme is somewhat orthogonal to its homomorphic capacity.
For example the Goldwasser–Micali cryptosystem is only additively homomorphic
but is multi-hop, while the scheme constructed from a two-message SFE protocol
in Theorem 5.2.13 above is fully homomorphic but supports only a single hop. Also
it is clear that strong homomorphism implies multi-hop homomorphism. Gentry et
al. studied multi-hop homomorphism in [46]. They extended the notion of circuit
privacy to the multi-hop case and described how it can be realized (with or without
compactness); their definitions and results are summarized below:

Let E = (KeyGen,Encrypt,Decrypt,Evaluate) be a homomorphic encryption
scheme. The syntax of Evaluate is extended in the natural way to a sequence of
circuits: An ordered sequence of circuits

−→
Π = (Π1, . . . , Πt) is compatible if the

output length of Π j is the same as the input length of Π j+1 for all j. The composed
function Πt(· · ·Π2(Π1(·)) · · · ) is denoted (Πt ◦ · · · ◦ Π1). The extended procedure
Evaluate∗ takes as input the public key, a compatible sequence

−→
Π = (Π1, . . . , Πt),

and ciphertexts c0. For i = 1, 2, . . . , t it sets ci ← Evaluate(pk, Πi, ci−1), outputting
the last ct.

Definition 5.2.14 (Multi-hop homomorphic encryption). For a circuit family C
and i ∈ N, we say that E is i-hop homomorphic for C if, for all λ, τ ∈ N and
every compatible sequence

−→
Π = (Π1, . . . , Πt) with t ≤ i functions such that Π̃ =

Πt ◦ · · · ◦ Π1 ∈ Cτ, we have

Pr
[
Decrypt(sk, c′) = Π̃(b) :

(sk, pk)← KeyGen(1λ, 1τ),
c← Encrypt(pk,b), c′ ← Evaluate∗(pk,

−→
Π, c)

]
= 1.

We say that E is a multi-hop homomorphic encryption scheme if it is i-hop for all i ∈
N.

Theorem 5.2.15 (Multi-hop homomorphism [46]).
• If a 1-hop circuit private, fully homomorphic encryption scheme exists, then for

any constant i there exists an i-hop circuit private, fully homomorphic encryp-
tion scheme.
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• If both 1-hop circuit private fully homomorphic encryption scheme and 1-hop
compact fully homomorphic encryption scheme exist, then there exists a multi-
hop circuit private, compact, fully homomorphic encryption scheme.
• Under the decision Diffie–Hellman assumption, there exists a (non-compact)

multi-hop circuit-private fully homomorphic encryption scheme.

In the rest of this tutorial we only consider multi-hop schemes.

5.2.2.6 From Secret-Key to Public-Key Homomorphic Encryption

One demonstration of the power of compact homomorphic encryption is a result of
Rothblum [82] showing that it enables a transformation from secret-key to public-
key encryption. As a warm-up, we demonstrate this result for strongly homomorphic
encryption. Let E = (KeyGen,Encrypt,Decrypt,Evaluate) be a secret-key scheme
which is strongly fully homomorphic. We transform E to a public-key strongly fully
homomorphic scheme E ′ = (KeyGen′,Encrypt′,Decrypt,Evaluate) with the same
Decrypt and Evaluate procedures, but modified KeyGen′ and Encrypt′:

• KeyGen′(1λ) first runs the underlying KeyGen to get sk ← KeyGen(1λ).
Then it runs the underlying encryption to encrypt 0 and 1, getting c0 ←

Encrypt(sk, 0) and c1 ← Encrypt(sk, 1). It outputs (sk, pk = (c0, c1)).
• Encrypt′(pk = (c0, c1), b) uses the Evaluate procedure for the underlying

scheme. Specifically let Πid be a circuit computing the identity function, then it
outputs c← Evaluate(Πid, cb).

The strong homomorphism condition implies that the output of Encrypt′ is sta-
tistically close to (resp. computationally indistinguishable from) Encrypt(sk, b),
even conditioned on the public key (resp. the secret key). Hence the modified
scheme maintains the semantic security and strong homomorphism of the under-
lying scheme, and we have:

Proposition 5.2.16. Any secret-key strongly homomorphic encryption scheme can
be transformed to a public-key strongly homomorphic scheme.

When the secret-key scheme that we are given is not strongly homomorphic,
the transformation above may fail to provide semantic security. Rothblum observed
in [82] that semantic security can be obtained by capitalizing on the fact that a
compact homomorphic encryption scheme must lose some information in the course
of homomorphic evaluation, since the evaluation output is short. Using this loss of
information to provide security is done by means of (a special case of) the leftover
hash lemma [58], which is stated below.

Lemma 5.2.17 (Linear-hashing extractor). Fix some n, q,m ∈ N, and for every

matrix A ∈ Zn×m
q consider the multiply-by-A function hA(s)

de f
= [A × s]q.

Then for every subset S ⊆ Zm
q and every linear subspace L ⊆ Zn

q, the distribution
{(A, hA(s)) : A ← Lm, s ← S } is statistically close up to |L| ·

√
2/|S | to the uniform

distribution over Lm+1.
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The special case q = 2, n = 1, and L = Z2 is summarized in the following corollary:

Corollary 5.2.18. For m ∈ N and a bit-string r ∈ {0, 1}m, denote the inner-product-

with-r function by hr(s)
de f
= [〈r, s〉]2. Then for every subset S ⊆ {0, 1}m, the distribu-

tion {(r, hr(s)) : r ← {0, 1}m, s← S } is statistically close up to
√

8/|S | to the uniform
distribution over {0, 1}m+1.

We are now ready to describe the transformation from private-key to a public-key
encryption.

Theorem 5.2.19 (Secret-key to public-key [82]). Any compact, multi-hop, secret-
key fully homomorphic scheme can be transformed into a compact, multi-hop,
public-key fully homomorphic scheme.

Proof: Let E = (KeyGen,Encrypt,Decrypt,Evaluate) be a compact, multi-
hop, secret-key fully homomorphic scheme, and let B(λ) be a bound on the size
of evaluated circuits under E . We transform E to a public-key scheme E ′ =

(KeyGen′,Encrypt′,Decrypt,Evaluate) with the same Decrypt and Evaluate pro-
cedures, but modified KeyGen′ and Encrypt′:

• KeyGen′(1λ, 1τ) first runs the underlying KeyGen to get sk← KeyGen(1λ, 1τ).
Letting m = 2(B(λ) + λ), it next chooses a random string r ← {0, 1}m and for
each bit ri in r it computes ci ← Encrypt(pk, ri) and denotes c∗ = (c1, . . . , cm).
Finally it outputs the secret key sk and the public key pk = (r, c∗).

• Encrypt′(pk = (r, c), b) chooses at random s ← {0, 1}m subject to the condition
〈r, s〉 = b (mod 2). Denoting by Πs an m-input circuit made of XOR gates that
computes the function hs(·), it outputs the ciphertext c← Evaluate(Πs, c∗).

Correctness follows from that of the underlying scheme: Since c∗ = Encrypt(sk, r)
then for freshly encrypted ciphertexts we have Decrypt(sk, c) = Πs(r) = hs(r) = b.
Similarly for evaluated ciphertexts, for c = Encrypt′(pk,b) = Evaluate(Πs, c∗),
where each input bit bi in b is encrypted using some si such that circuitsi (r) = bi.
Then for any Π ′ such that Π ′ ◦ Πs ∈ Cτ, we have

Evaluate(Π ′, c) = Evaluate∗(Π ′ ◦ Πs, c∗) = Π ′(Πs(r)) = Π ′(b).

To prove semantic security, consider a hybrid experiment in which the cipher-
texts c∗ in the public key are generated not as encryption of r but rather encryption
of 0, c∗ ← Encrypt(sk, 0). By semantic security of the underlying scheme E , no
adversary can distinguish between the public key in the real scheme and that in the
hybrid experiment, except with negligible probability. It remains to show that, in
this hybrid game, the ciphertext is nearly independent of the encrypted bit.

Note that, with this setting for c∗, the evaluated ciphertext c ← Evaluate(Πs, c∗)
is independent of the random string r, and it carries at most B = B(λ) bits of infor-
mation about s (since it is only B-bits long). It is therefore sufficient to show that,
given r ∈ {0, 1}m and B bits of information about s, one can have at most a negligible
advantage in guessing the inner product b = r, s (mod 2).



5 Homomorphic Encryption 239

We denote Ec∗ (s)
de f
= Evaluate(Πs(c∗)), and for any B-bit ciphertext c consider

the pre image E−1
c∗ (c)

de f
=

{
s ∈ {0, 1}m : Ec∗ (s) = c

}
. By Corollary 5.2.18, for any

fixed c, the conditional distribution Dc∗,c
de f
= {(r, 〈r, s〉)|Ec∗ (s) = c} is statistically

close up to
√

8/
∣∣∣E−1

c∗ (c)
∣∣∣ to the uniform distribution over {0, 1}m+1. Hence for every

adversary algorithm A, we have

Pr
[
A(r, Ec∗ (s)) = 〈r, s〉 : r, s← {0, 1}m

]
=

∑
c∈{0,1}B

Pr[Ec∗ (s) = c : s← {0, 1}m] · Pr
[
A(r, c) = 〈r, s〉 : r ← {0, 1}m, s← E−1

c∗ (c)
]

≤
∑

c∈{0,1}B

∣∣∣E−1
c∗ (c)

∣∣∣
2m ·

(
Pr

[
A(r, c) = b : r ← {0, 1}m, b← {0, 1}

]︸                                              ︷︷                                              ︸
=1/2

+

√
8/

∣∣∣E−1
c∗ (c)

∣∣∣)

=
1
2

+
∑

c∈{0,1}B

√
8
∣∣∣E−1

c∗ (c)
∣∣∣

2m <
1
2

+
2B ·
√

8 · 2m

2m <
1
2

+ 3 · 2B−m/2 =
1
2

+ 3 · 2−λ.

�

Remark 5.2.20. For the transformation above, the secret-key scheme E need not be
fully homomorphic (nor multi-hop); for example, it is sufficient for it to be addi-
tively homomorphic since the circuits Πs are all linear. The result E ′ would still be
a public-key encryption scheme, but it may not be homomorphic since the new en-
cryption procedure used up some of the homomorphic capacity of E . Specifically, if
the secret-key scheme E is i-hop homomorphic relative to some circuit family C, then
E ′ is (i − 1)-hop homomorphic relative to the family C′ = {Π ′ : (Π ′ ◦ Πs) ∈ C ∀s}.

This transformation applies also to weakly compact schemes; all we need is for
the size of evaluated inner-product ciphertexts to grow slower than the dimension of
the vectors used for the inner product.

5.3 Realizing Leveled Homomorphic Encryption
In this section, we show how to implement leveled homomorphic encryption, i.e.,
where the complexity of the encryption scheme grows with the depth of the cir-
cuits that it can evaluate. Specifically below we describe the GSW construction due
to Gentry, Sahai, and Waters [48] in its most basic form, getting a leveled homo-
morphic encryption, with semantic security under the (sub exponential) decision-
LWE assumption. Later in Section 5.4, we show how to use Gentry’s bootstrapping
technique to get fully homomorphic encryption (under the additional assumption
of circular security), and also quantitatively improve the hardness assumption to
quasipolynomial (or even polynomial) decision-LWE.
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5.3.1 Tools
We begin by describing the basic tools that underlie the construction. We describe
the learning-with-errors problem, and a flattening gadget and some other useful
tricks for reducing the norm of vectors.

5.3.1.1 Learning with Errors (LWE)

The learning-with-errors (LWE) problem, first formulated and studied by Regev
[80], underlies much of lattice-based cryptography. At a very high level, this
average-case computational problem considers noisy modular linear equations, and
the hardness assumption states that it is hard to solve such systems (or even decide
if a solution exists).

The LWE problem is parametrized by integers q, n,m and a distribution χ over
Zq. The parameter n is related to the security parameter, and we consider a modulus
q which is at least polynomially larger than n (or even as large as q = 2nε ) and
m = Θ(n log q). The distribution χ is concentrated on “small integers”, namely we
assume Pr[x ← χ : |x| > αq] < negl(n) for some small α � 1 (to be determined
later).5 The LWE distribution with these parameters is defined as

LWE[n,m, q, χ]
de f
=

{
(A,b) : A← Zn×m

q , s← Zn
q, η← χm, b := [sA + η]q

}
.

b
:= s × A +

η

In words, we choose a uniformly random n-by-m matrix A and a row n-vector
s over Zq, and an m-vector η whose entries are drawn from χ, and compute b :=
[sA + η]q. The vector s is called the secret and η is called the noise (or the error).

Remark 5.3.1. Applebaum et al. proved in [4] that a variant in which s is drawn
from χn (rather than being uniformly random) is equally hard. Hence we formalize
the hardness assumption below using a uniform secret s, but we can use it with a
small secret when needed. For most of this tutorial we get by with a uniform s, but
on occasion also consider variants that need the secret to be small.

Since m is significantly larger than n, the row-span of A is a rather low-dimension
random linear subspace of Zm

q . It follows that with high probability, the row span of
A has large minimum distance (in l∞ norm), roughly q1−n/m. Hence for α � q−n/m,
it holds with high probability (over A) that there is a unique point in the row span of
A within distance αq of b (call that point b′), and the secret s is the unique solution
to sA = b′ (mod q).

The argument above shows that with high probability the secret s is uniquely
defined, but computing it from A and b seems to be hard. Indeed, Regev described
in [80] a worst-case to average-case quantum reduction from approximating the

5 Often χ is taken to be a discrete Gaussian distribution with parameter α′ ≈ α [71].
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shortest-vector search problem in an arbitrary dimension-n lattice to solving a ran-
dom instance of LWE, where the approximation factor is essentially n/α. Follow-up
work [78, 18] described classical reductions of some other worst-case problems to
LWE with similar dependence on α. These reductions provide ample evidence of
the hardness of the search problem of computing s from A and b. Moreover, for
many parameter regimes, the search problem of computing s can be further reduced
to the problem of distinguishing the pair (A,b) from uniform [8, 80, 70]. It is the
hardness of this decision problem which is most convenient for use in cryptography.

We often think of the pair (A,b) as an (n + 1)-by-m matrix with b being the last
row. Denoting this matrix by A′, it satisfies the equation (s,−1) × A′ = η (mod q)
with η having low norm, yet our hardness assumption says that A′ is pseudorandom
in Z(n+1)×m. Thinking of n′ = n + 1 as the security parameter, we can therefore state
our hardness assumption as follows:

Definition 5.3.2 (Decision-LWE). For parameters n,m, q, α (that depend on the
security parameter λ), the decision-LWE hardness assumption (DLWE[n,m, q, α])
states that there exists an efficiently sampleable ensemble {ψλ}λ over pairs (s ∈
Zn

q,A ∈ Zn×m
q ), for which the following conditions hold:

• The induced distribution ensemble over A is pseudorandom over Zn×m
q .

• The l∞-norm of η
de f
= [sA]q ∈ Z

m
q is bounded by αq with overwhelming proba-

bility, and sn = −1.

(Note that above we use the notations n, s, A rather than n′, s′,A′ from before; this
will be more convenient in the sequel.)

Remark 5.3.3. The DLWE assumption becomes stronger as α gets smaller. We have
strong evidence that it holds for any polynomial fraction α(n) = 1/poly(n), and
distinguishing A from random seems hard also for quasipolynomial or even nearly
exponential fractions such as 2−nε . On the other hand, for an exponentially small
fraction, α = 2−O(n), lattice-reduction tools allow us to find the secret s in polynomial
time (so in particular we can distinguish A from random).

Also we clearly need αq ≥ 1 (else the only integer vector satisfying ‖η‖∞ ≤ αq
is the all-zero vector), and there are attacks due to Arora and Ge [5] that apply
when αq = O(1). Below we always use settings where αq = n (which is nearly the
smallest possible). Hence in our setting the DLWE hardness assumption becomes
stronger as q increases, and for q = 2Ω(n) we know that it no longer holds. In this
section we will need to assume that DLWE holds for q = 2nε , but later in the text we
can relax this to q = 2polylog(n) and even q = poly(n).

Finally note that the assumption becomes stronger as m increases, but all evi-
dence points to this assumption holding for every polynomial m = m(n). Below we
will use m ≈ 2n log q.

5.3.1.2 Public-Key Encryption from LWE

Regev described in [80] a simple public-key encryption whose security is based on
the DLWE assumption. That construction, which is naturally additively homomor-
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phic, plays an important role in many homomorphic encryption schemes, including
the GSW scheme that we describe later in this section.

The salient features of the Regev encryption scheme is that the secret key is a
vector s ∈ Zn

q with sn = −1, and an encryption of a bit b is a vector u ∈ Zn
q such that

〈s,u〉 = b·bq/2c+δ (mod q) where δ is a small noise. Clearly adding/subtracting two
ciphertexts yields an encryption of the XOR of the two encrypted bits, with noise
which is the sum of the two noise elements for the individual ciphertext. It is easy to
see how to construct a secret-key encryption scheme with ciphertexts as above, and
since that scheme is additively homomorphic then one can use Theorem 5.2.19 to
turn it into a public-key scheme. A more direct way of getting a public-key scheme
is described below. Security of this scheme is reduced to the DLWE assumption; the
proof is nearly identical to Lemma 5.3.6 later in this section.

Key generation: KeyGen(1λ). given the parameters n,m, q and the distribution ψn

for the DLWE assumption, draw a pair (s,A)← ψn, outputting the secret key s ∈ Zn
q

and public key A ∈ Zn×m
q .

Encryption: Encrypt(A,b). For a public key A ∈ Zn×m
q and plaintext bit b ∈ {0, 1},

choose a uniform {0, 1} vector r ← {0, 1}m and output the ciphertext vector u :=
[b · bq/2c · (0, . . . , 0,−1) + A × r]q ∈ Z

n
q.

Observe that indeed 〈s,u〉 = [b · bq/2c + sAr = b · bq/2c +
〈
η, r

〉
, and |

〈
η, r

〉
| is

small as needed.

Decryption: Decrypt(s,u). Compute z := [〈s,u〉]q, outputting 0 if |z| < q/4 and 1
otherwise.

5.3.1.3 The Flattening Gadget

A very useful technical tool in many lattice-based cryptosystems (including GSW
encryption) is a “flattening gadget” that allows one to take a high-norm vector and
represent it by a low-norm vector of higher dimension, while maintaining some
linear-algebraic properties. We want a “representation function” f : Zq → Z

`
q (for

some not-too-large `) with the properties:

• For any z ∈ Zq, the l∞-norm of f (z) is much smaller than q; and
• Recovering z from f (z) is a linear operation. That is, there exists a “gadget

vector” g ∈ Z`q such that for every z ∈ Zq we have 〈g, f (z)〉 = z (mod q).

Note that the function f itself need not be linear, but its inverse is linear. A simple
function with these properties is obtained by breaking z into its binary representa-
tion: Let ` =

⌈
log q

⌉
and f (z) = (z0, z1, . . . , z`−1) be the vector of bits in the binary

(2’s-complement) representation of z ∈ [−q/2, q/2), with z0 the least-significant bit
and z`−1 ∈ {0,−1} representing the most-significant bit. Then ‖ f (z)‖∞ ≤ 1 and set-
ting g = (1, 2, . . . , 2`−1) we have 〈g, f (z)〉 =

∑`−1
i=1 2izi = z.

To stress the fact that our representation function is an inverse of a linear function,
we denote it below by g−1(·). Note again that g is a vector (representing a linear
function), but g−1 is a non-linear function.
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The same representation extends naturally to vectors and matrices. For an n-
vector z = (z1, . . . , zn) ∈ Zn, we let G−1(z) be the concatenation of all the vectors
g−1(zi), namely G−1(z)

de f
= (g−1(z1)|g−1(z2)| . . . |g−1(zn)) ∈ Zn`

q . If we think of z and
G−1(z) as column vectors and consider the “gadget matrix”

G de f
=


1 2 . . . 2`−1

1 2 . . . 2`−1

. . .

1 2 . . . 2`−1

 ∈ Zn×n`
q ,

then for any vector z ∈ Zn
q we have ‖G−1(z)‖∞ ≤ 1 and G × G−1(z) = z. Similarly

for an n × m matrix A = (a1| . . . |am) with columns ai ∈ Z
n
q, we let

G−1(A)
de f
=

(
G−1(a1)| . . . |G−1(am)

)
∈ Zn`×m

q .

Then for any matrix A ∈ Zn×m
q we have ‖G−1(A)‖∞ ≤ 1 and G ×G−1(A) = A.

5.3.1.4 Modulus and Key Switching

Below we describe the two tricks of modulus switching and key switching, due to
Brakerski et al. [19, 17], which can be used in some cases to reduce the size of the
modulus and the dimension of the LWE secret vectors. These tricks are not strictly
needed to obtain fully homomorphic encryption, but they can be used to improve
its parameters and efficiency and to quantitatively weaken the hardness assumptions
that are needed for its security.

Modulus switching. Modulus switching lets one convert approximate linear rela-
tions modulo one integer into relations modulo another.

Lemma 5.3.4. Fix the dimension n ∈ N and moduli p, q ∈ N, and let s,u ∈ Zn
q, such

that their mod-q inner product is bounded away from q/4, specifically [〈s,u〉]q =

b · bq/2c + δ where |δ| < q( 1
4 −

‖s‖1
2p ).

Let u′ = du · p/qc, then [〈s,u〉]p = b · bp/2c + δ′ where |δ′| ≤ p
q |δ| +

‖s‖1
2 < p/4.

Proof: Let ε denote the rounding error in the computation of u′, i.e., u′ = p/q·u+ε,
note that ‖ε‖∞ ≤ 1/2. Since over the integers we have the equality 〈s,u〉 = b ·bq/2c+
δ + kq for some k ∈ N, then we get〈

s,u′
〉

= (p/q) 〈s,u〉 + 〈s, ε〉 = b · bp/2c +
p
q
δ + 〈s, ε〉︸       ︷︷       ︸

=δ′

+kp,

with |δ′| < p
q |δ| +

‖s‖1
2 < q/4, as needed. �

We can use this lemma in settings where we have a low-norm secret LWE vector
s (such as when it is drawn from the error distribution χ, as described by Applebaum
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et al. [4]). In this situation we can switch from a mod-q vector u to a mod-p vector
u′ for p � q, with only a small penalty in terms of increased added noise. As p � q,
then mod-p arithmetic has smaller complexity than mod-q arithmetic.

Key switching. Key switching let us publish a public pseudorandom gadget for
converting approximate linear relations relative to a secret vector t into relations
relative to another vector s.

Specifically, fix the DLWE parameters n,m, q, α, where m = n′
⌈
log q

⌉
for some

n′. Let (s,A) ← ψ be drawn according to the distribution from Definition 5.3.2, so
A ∈ Zn×m

q is pseudorandom, sn = −1, and η = [sA]q has low norm ‖η‖∞ < αq.
Fix any vector t ∈ Zn′

q and let A′s:t ∈ Z
n×m
q be the matrix obtained by subtracting

tG modulo q from the last row of A, where G ∈ Zn′×m
q is the matrix from the flat-

tening gadget above. (Recall that m = n′
⌈
log q

⌉
, as needed for this gadget.) Clearly,

since A is pseudorandom then so is A′s:t for any fixed t independent of s. Also since
sn = −1 then

sA′s:t = sA + tG = tG + η (mod q).

The use of the key-switching gadget A′s:t is summarized in the following lemma:

Lemma 5.3.5. Fix the parameters n′, n,m, q ∈ N as above, and let s ∈ Zn
q, t ∈ Zn′

q ,
and A′s:t ∈ Z

n×m
q such that sA′s:t = tG + η (mod q).

Let u′ ∈ Zn′
q be a vector whose mod-q inner product with t is bounded away

from q/4, specifically [〈t,u′〉]q = b · bq/2c + δ′ where |δ′| < q/4 − ‖η‖1. Computing
u := [A′s:t ×G−1(u′)]q, we have

[〈s,u〉]p = b · bq/2c + δ,

where |δ| ≤ |δ′| + ‖η‖1 < p/4.

Proof:

〈s,u〉 = s × A′s:t ×G−1(u′) = (tG + η) ×G−1(u′) = tG ×G−1(u′) +
〈
η,G−1(u′)

〉
=

〈
t,u′

〉
+

〈
η,G−1(u′)

〉
= b · bq/2c + δ′ +

〈
η,G−1(u′)

〉︸               ︷︷               ︸
=δ

,

and since G−1(u′) is a dimension-m 0/1 vector then |
〈
η,G−1(u′)

〉
| < ‖η‖1, hence

|δ| ≤ |δ′| + ‖η‖1 < p/4. �

One use of Lemma 5.3.5 is to reduce the dimension of an LWE secret from n′ to
n < n′, which we can do as long as n is large enough so that the DLWE[n,m, q, α]
hardness assumption still holds. As with modulus-switching, this can be used to get
lower-complexity arithmetic operations.
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5.3.2 The GSW Encryption Scheme
5.3.2.1 First Try

The high-level intuition for the GSW scheme [48] comes from the concepts of eigen-
vectors and eigenvalues in linear algebra. Let F be some field and let C ∈ Fn×n be
a square matrix over F. Recall that s ∈ Fn is a (left-) eigenvector of C with corre-
sponding eigenvalue u ∈ F if we have s × C = s · u (with operations in F). It is easy
to see that, if C1,C2 are two n-by-n matrices that share the same eigenvector s with
corresponding eigenvalues u1, u2, then

s × (C1 ± C2) = s · (u1 ± u2) and s × (C1 × C2) = s · (u1 · u2).

In words, the scalar u1 ± u2 is the eigenvalue of C1 ±C2 corresponding to the eigen-
vector s, and similarly u1 · u2 is the eigenvalue of C1 × C2 corresponding to s.

It is therefore tempting to construct a cryptosystem where s is the secret key
and an encryption of a value u is a matrix that has s as an eigenvector with u the
corresponding eigenvalue. Then we could use matrix addition and multiplication to
implement homomorphic addition and multiplication over F, getting a fully homo-
morphic scheme. The problem, of course, is that this scheme is insecure: Given the
ciphertext matrix C it is easy to compute the eigenvectors of C, and one of these
eigenvectors is the secret key.

5.3.2.2 Second Try

Attempting to improve security, we may try adding some noise, making s an approx-
imate rather than an exact eigenvector of the ciphertext matrices, and relying on the
hardness of LWE to get security. Specifically, we would like to work over Zq and
maintain the invariant that a plaintext scalar u is encrypted relative to a secret key s
by a matrix C such that s×C ≈ s · u = s×C + η for a small noise vector η. We note
that adding noise over the real field would have very little effect, since the algorithm
for computing eigenvectors over the reals is very geometric in spirit, and is robust
to inaccuracies or noise. On the other hand, computing eigenvectors over discrete
fields is done using Gaussian elimination, which is algebraic and very brittle in the
presence of small noise.

Adding some noise may help security, but does it hurt the homomorphic opera-
tions? At least for addition things still seem to work: If we have s×Ci = s ·ui +ηi for
i = 1, 2 then also s× (C1 ±C2) = s · (u1 ± u2) + (η1 ± η2) so s is still an approximate
eigenvector of the matrix (C1 ±C2), corresponding to the eigenvalue (u1 ± u2) with
the (still small) noise vector (η1 ± η2). For multiplication, however, we have

s × (C1 × C2) = (s · u1 + η1) × C2 = s × C2 · u1 + η1 × C2

= (s · u2 + η2) · u1 + η1 × C2

= s · u1u2 + (u1 · η2 + η1 × C2) (mod q). (5.1)
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We would like to think of s as an approximate eigenvector of C1×C2 corresponding
to the eigenvalue (u1 · u2) with noise vector η∗ = (u1 · η2 + η1 × C2), but η∗ may
not be small anymore: If the ciphertext matrix C2 has large entries, then so would
the vector η∗, no matter how small η1 is. Similarly, if the plaintext scalar u1 is large
then u1 · η2 will be large.

5.3.2.3 Final Try

To recover functionality, we want to ensure that both the plaintext scalars and cipher-
text matrices are kept small. Keeping the plaintext small can be done by encrypting
only 0’s and 1’s and using only NAND gates, which are implemented over Zq as
NAND(x, y) = 1 − xy.

To ensure that the ciphertext matrices have small entries we use the flattening
gadget from Section 5.3.1.3. Recalling the form of the noise from Equation (5.1),
we would like to use the low-norm G−1(C2) instead of C2 itself in the multiplication
procedure. Namely, we want the homomorphic multiplication procedure to be C1 ×

G−1(C2). To make the dimensions match, we need the ciphertext matrices C to be
n-by-N matrices with N = n` (recall that ` =

⌈
log q

⌉
).

To maintain correctness we need to introduce the gadget G into the invariant that
we maintain: A plaintext scalar u is now encrypted relative to a secret key s by a
matrix C such that s × C ≈ s′ · u, where s′ = s × G. With this modification, let
Ci ∈ Z

n×N
q (for i = 1, 2) be two matrices that encrypt two bits bi ∈ {0, 1} relative to

the secret key s, i.e., s × Ci = bi · (s × G) + ηi for small noise vectors ηi. Then we
have

s × (C1 ×G−1(C2)) = (b1 · s ×G + η1) ×G−1(C2)
= b1 · s ×G ×G−1(C2) + η1 ×G−1(C2)
= b1 · s × C2 + η1 ×G−1(C2) = b1(b2 · s ×G + η2) + η1 ×G−1(C2)
= b1b2 · (s ×G) + (b1 · η2 + η1 ×G−1(C2)) (mod q)

Let us define the homomorphic NAND operation as

homNAND(C1,C2)
de f
= [G − (C1 ×G−1(C2))]q, (5.2)

so we get

s × homNAND(C1,C2) = s ×G − s × C1 ×G−1(C2) (5.3)
= (1 − b1b2)︸      ︷︷      ︸

NAND(b1,b2)

·(s ×G) − (b1 · η2 + η1 ×G−1(C2))︸                         ︷︷                         ︸
η′

(mod q).

As b1 ∈ {0, 1} and G−1(C2) ∈ {−1, 0, 1}N×N , the l∞ norm of η′ is bounded by

‖η′‖∞ ≤ ‖η2‖∞ + N · ‖η1‖∞ ≤ (N + 1) ·max
{
‖η1‖, ‖η2‖

}
.
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Consider now a depth-d circuit made of NAND gates, and assume that the inputs to
the circuit are encrypted with noise vectors with norm below some bound B (below
we use B = n ·m). Then the noise vectors at level i of the circuit have norm bounded
by B · (N + 1)i, and in particular the output has noise bounded by B · (N + 1)d.

5.3.2.4 The GSW Leveled Scheme

We are now ready to describe the complete construction. We already established
that the secret key is a vector s ∈ Zn

q and ciphertexts are matrices C ∈ Zn×N
q , and that

we maintain the invariant that an encryption of a bit b ∈ {0, 1} at level i of the circuit
satisfies s × C = b · (s ×G) + η where ‖η‖∞ ≤ n · m · (N + 1)i. It remains to explain
how to encrypt and decrypt, set the parameters, and argue security.

KeyGen(1λ, 1τ). We first select the DLWE parameters n,m, q, ψn (with αq = n) so
as to enable homomorphic evaluation of circuits of depth up to τ. This is described
later in this section. Denoting N = n ·

⌈
log q

⌉
, we remark that the parameters are

chosen so that n · m · (N + 1)τ+1 < q/4.
The KeyGen procedure draws a pair (s,A)← ψn, outputting the secret key s ∈ Zn

q
and public key A ∈ Zn×m

q , after ensuring that s , 0 and that the l∞-norm of η = [sA]q

is bounded by n (else it draws another pair).

Encrypt(A, b). For a public key A ∈ Zn×m
q and plaintext bit b ∈ {0, 1}, the Encrypt

procedure chooses a uniform {0, 1} matrix R← {0, 1}m×N and outputs the ciphertext
matrix C := [b ·G + A × R]q ∈ Z

n×N
q .

We observe that sC = b · sG + sAR = b · sG + ηR, and ‖ηR‖∞ ≤ n · m, so C
satisfies our invariant for fresh ciphertexts.

Evaluate(Π,
−→
C). For a circuit of NAND gates of depth up to τ, go over the circuit

in topological order from inputs to outputs; for every gate with inputs encrypted by
C1,C2, compute the output encryption as Cout := G − C1 ×G−1(C2).

By the analysis from above, a ciphertext C at level i of the circuit satisfies sC =

b · sG + η, where b is the plaintext bit on the corresponding wire and ‖η‖∞ ≤ n · m ·
(N + 1)i.

Decrypt(s,C). Let w = − bq/2c · (0, . . . , 0, 1) ∈ Zn
q be a scaled version of the n-th

unit vector, and note that 〈s,w〉 = bq/2c (since sn = −1). The Decrypt procedure
computes z := [s ×C ×G−1(w)]q, outputting 0 if |z| < q/4 and 1 otherwise.

Correctness. To see that correctness holds, consider a ciphertext C at a level τ or
below, so we have sC = b · sG + η with ‖η‖∞ ≤ n · m · (N + 1)τ. Hence

z = s ×C ×G−1(w) = (b · sG + η)G−1(w) = b · 〈s,w〉 +
〈
η,G−1(w)

〉
= b · bq/2c + v;

since ‖η‖∞ ≤ n·m·(N+1)τ and G−1(w) is a 0/1 vector then |v| < n·m·(N+1)τ+1 < q/4,
and therefore |z| < q/4 if b = 0 and |z| > q/4 if b = 1.

Lemma 5.3.6 (Semantic security). The GSW scheme above is semantically secure
under the DLWE[n,m, q, α] hardness assumption with α = n/q and m ≥ 1 + 2n(2 +

log q).
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Proof: Under the DLWE[n,m, q, α] hardness assumption, the public-key matrix
A is pseudorandom in Zn×m

q . It is sufficient therefore to prove that, if A was truly
random, then the distribution of fresh encryption matrices would be statistically
close to uniform in Zn×N

q , regardless of the plaintext bit b.
Let S = {0, 1}m and L = Zn

q; by Lemma 5.2.17 the distribution over (A, [Ar]q)
for uniform A ← Zn×m

q and r ← S is close to uniform over Zn×(m+1)
q up to statistical

distance of

qn ·
√

2/|S | ≤ 2n log q · 2(1−m)/2 ≤ 2n log q−n(2+log q = 2−2n.

It follows that, except for probability 2−n over the choice of A, the distribution of
[Ar]q conditioned on A (defined over the random choice r← {0, 1}m) is 2−n-close to
uniform over Zn

q. Hence, the distribution of [AR]q conditioned on A is N2−n-close
to uniform over Zn×N

q , and therefore so is the distribution of the ciphertext matrix
C = [b ·G + AR]q. �

Parameters for the basic GSW scheme. The security and correctness arguments
above rely on the conditions m ≥ 1 + 2n(2 + log q) and n · m · (N + 1)τ+1 < q/4,
respectively, where N = n ·

⌈
log q

⌉
. Substituting, we get the condition q > 4n · (1 +

2n(2 + log q)) · (1 + n
⌈
log q

⌉
)τ+1, which we can simplify as q > (2n log q)τ+3.

On the other hand, we need to keep q ≤ 2nε for some ε < 1 (else DLWE is no
longer hard). This yields the condition nε > (τ + 3)(log n + log log q + 1), which we
can again simplify (for large enough τ, n) as nε > 2τ log n. One could check that
these conditions are all satisfied by the following setting:

• n = max
{
λ,

⌈
( 4
ε
τ log τ)1/ε

⌉ }
• q =

⌈
2nε

⌉
,

• m = 1 +
⌈
2n(2 + log q)

⌉
= O(n1+ε), and

• α = n/q = n · 2−nε .

We note that, with this setting, the size of ciphertexts (fresh or evaluated) is poly-
nomial in λ and τ, while the number of circuits in Cτ is doubly exponential in τ, so
the scheme is weakly compact as per Definition 5.2.9. Hence we have proved the
following theorem:

Theorem 5.3.7. Under the DLWE[n,m, q, α] hardness assumption with q = 2nε , α =

n ·2−nε , and m = O(n1+ε), there exists a semantically-secure weakly-compact leveled
homomorphic encryption scheme, where the complexity of evaluating each gate in
a depth-d circuit is poly(λ, d1/ε).

5.4 Realizing Fully Homomorphic Encryption
Above we described the basic GSW construction from [48], obtaining a leveled ho-
momorphic encryption with security under the subexponential decision-LWE hard-
ness assumption. In Section 5.4.1 below, we describe Gentry’s bootstrapping tech-
nique [47] for transforming some leveled schemes into fully homomorphic ones,
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and then explain in Section 5.4.2 how to apply it to the GSW scheme. This yields ei-
ther a leveled homomorphic encryption with security under the quasipolynomial (or
even polynomial) decision-LWE hardness assumption, or alternatively a fully ho-
momorphic scheme whose security depends on the same (quasi)polynomial DLWE
in conjunction with a circular-security assumption.

5.4.1 Bootstrapping
So far we have a scheme E such that, for any bounded depth d, we can evaluate
depth-d circuits by setting the parameters of E to size poly(d). To increase the ho-
momorphic capacity of the scheme, however, we need to choose larger parameters,
so also the complexity of encryption/evaluation/decryption increases. Gentry’s in-
sight in [47] was that this dependence can be broken if we manage to find a setting
in which the homomorphic capacity is just slightly bigger than the decryption com-
plexity.

We start by setting some notations. Fix some homomorphic encryption scheme
E = (KeyGen,Encrypt,Decrypt,Evaluate) and a class C = {Cτ} of circuits with one
output bit. Throughout this section we assume that all ciphertexts for parameters
(λ, τ) have the same length (and hence the decryption procedure can be described
by a single circuit).

• For λ, τ ∈ N, let CT E (λ, τ) denote the set of all the fresh and evaluated cipher-
texts that can result from evaluating circuits in Cτ:

CT E (λ, τ)
de f
=

{
Encrypt(pk, b) : (pk, sk) ∈ KeyGen(1λ, 1τ), b ∈ {0, 1}

}
∪

Evaluate(pk, Π, c) :
(pk, sk) ∈ KeyGen(1λ, 1τ),
Π ∈ Cτ, b ∈ {0, 1}inpLen(Π),
c ∈ Encrypt(pk,b)

 .
• Consider the decryption procedure for parameters λ, τ, and for any ciphertext

c ∈ CT E (λ, τ) denote by Dc(sk)
de f
= Decrypt(sk, c) the decryption circuit with

c hardwired in. For any two ciphertexts c1, c2 ∈ CE (λ, τ) let the augmented
decryption circuit for these two ciphertexts be

D∗c1,c2
(sk)

de f
= NAND

(
Dc1 (sk), Dc2 (sk)

)
.

Definition 5.4.1 (Bootstrappable encryption). A homomorphic encryption scheme
E = (KeyGen,Encrypt,Decrypt,Evaluate) is bootstrappable if its homomorphic
capacity includes all the augmented decryption circuits. Specifically, there exists
an (efficiently computable) polynomially bounded function τ(·) such that, for every
λ ∈ N and any c1, c2 ∈ CT E (λ, τ(λ)), we have D∗c1,c2

∈ Cτ(λ).

Theorem 5.4.2 (Bootstrapping [47]). Any bootstrappable homomorphic encryp-
tion scheme can be transformed into a compact leveled homomorphic encryption
scheme.
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Proof: Let E = (KeyGen,Encrypt,Decrypt,Evaluate) be a bootstrappable homo-
morphic encryption scheme; we describe how to transform it into a compact leveled
scheme E ′ = (KeyGen′,Encrypt′,Decrypt′,Evaluate′).

• KeyGen′(1λ, 1d). Let τ = τ(λ) (which is unrelated to the input parameter d).
For i = 0, 1, . . . , d run the underlying key generation to get (ski, pki) ←
KeyGen(1λ, 1τ), and for i < d encrypt all the bits of the i-th secret key under
the i + 1-st public key, c ∗i ← Encrypt(pki+1, ski). The secret key of E ′ consists
of all the ski’s, and the public key consists of all the pki’s and c ∗i ’s,

sk′ = (sk0, . . . , skd), pk′ = (pk0, c ∗1 , pk1, c ∗2 , . . . , c
∗

d−1, pkd).

• Encrypt′(pk′,b). Encryption uses the first underlying public key, setting c ←
Encrypt(pk0, b) and outputting (0, c) (with the tag 0 signifying that this is a
fresh ciphertext).

• Evaluate′(pk′, Π, c). We assume w.l.o.g. that Π is made of NAND gates and is
leveled; i.e., the two inputs to any gate at level i come from gates at level i − 1.
The Evaluate′ procedure goes over the circuit in topological order from inputs
to outputs; for every gate at level i with inputs (i− 1, c1) and (i− 1, c2), compute
the description of the circuit Dc1,c2 (·). Then use the underlying evaluation proce-
dure to set c′ ← Evaluate(pki,Dc1,c2 , c ∗i−1) and use (i, c′) as the output ciphertext
of this gate. The Evaluate′ procedure outputs the ciphertexts at the output gate
of Π .

• Decrypt′(sk′, c′). On c′ = (i, c), use the i-th secret key with the underlying
decryption procedure to output b← Decrypt(ski, c).

Correctness is shown by induction over Π ; the fresh ciphertexts c ∗i are correct (rela-
tive to secret key sk0) because the underlying scheme is correct for fresh ciphertexts,
and similarly the ciphertexts encrypting the inputs to Π (relative to sk0).

Consider now any gate at level i in Π , and assume by induction that the two
ciphertexts at the input satisfy c1, c2 ∈ CT E (λ, τ), and that both these ciphertexts are
correct. Namely setting pt j ← Decrypt(ski−1, c j) (for j = 1, 2), b1, b2 are indeed the
input bits to this gate when Π is evaluated on b.

Let c′ ← Evaluate(pki,D∗c1,c2
, c ∗i−1). Since c1, c2 ∈ CT E (λ, τ) then D∗c1,c2

∈ Cτ
(since E is bootstrappable). As c ∗i is a fresh encryption of ski−1 under pki, then by
definition also c′ ∈ CT E (λ, τ), and moreover by correctness of E we have

Decrypt(ski, c′) = D∗c1,c2
(ski−1) = NAND(Dc1 (ski−1),Dc2 (ski−1)) = NAND(b1, b2),

as needed. This completes the proof of correctness.

To see that E ′ is semantically secure we consider a sequence of hybrid ex-
periments: For k = 0, 1, . . . , d, let Hk be an experiment that proceeds just like
the semantic security experiment of E ′ except for key generation: In Hk, we use
c ∗i ← Encrypt(pki+1, ski) as in the scheme for i = 0, . . . , k−1, but for i = k, . . . , d−1
we encrypt the all-zero string instead, setting c ∗i ← Encrypt(pki+1, 0).

We observe that Hd is the actual semantic security experiment, for which we
need to prove that the advantage of the adversary is negligible in λ. For all k the
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only difference between Hk and Hk−1 is in some ciphertexts that are encrypted un-
der pkk, and the corresponding skk is never used anywhere in the experiment (in
particular it is not encrypted under pkk+1), then by semantic security of the underly-
ing E we know that the adversary’s advantage in Hk−1 is close to that of Hk up to a
negligible difference. Taken together, this means that the advantage in H0 is close to
that of Hd up to a negligible difference. But since sk0 is not used anywhere in H0,
then by semantic security of the underlying E the adversary in H0 only has advan-
tage negligible in λ. We conclude that also in Hd the adversary only has negligible
advantage, as needed. �

Below we sometimes refers to homomorphic evaluation of decryption as the re-
cryption procedure.

Remark 5.4.3. In many homomorphic encryption schemes, the Decrypt procedure
can be partitioned into a public post-evaluation processing phase that depends only
on the public key, followed by the “actual decryption” that uses the secret key. We
note that in this case the circuits Dc and D∗c1,c2

can be thought of as having the
postprocessed ciphertext hardwired and consisting of only the “actual decryption”
phase. Alternatively we could think of the postprocessing phase as belonging to the
Evaluate procedure.

Also, the secret key can be preprocessed, independently of the ciphertext to be
decrypted, in order to decrease the complexity of the “actual encryption”; this pre-
processing can be thought of as part of KeyGen.

5.4.1.1 Fully Homomorphic Encryption

The above transformation yields a compact scheme, but not a fully homomorphic
one, since we need a new secret/public key-pair for every level in Π . A natural
variant of this transformation uses a single pair, and includes in the public key for
E ′ also an encryption of the secret key of E under its own public key. It is clear that
correctness still holds, but the security of the result can no longer be reduced to just
semantic security of the underlying scheme E . Rather, we now need to assume that E
enjoys also circular security. Circular security can be defined in different ways; for
our purposes we only need a weak version (taken from [23]) that requires semantic
security to hold even given Encrypt(pk, sk).

Definition 5.4.4 (Weak circular security [23]). Let E = (KeyGen,Encrypt,Decrypt)
be an encryption scheme (homomorphic or not), and let A be an adversary. The
(weak) circular-security advantage of A w.r.t. E is defined as

CircAdvEA(λ)
de f
=

∣∣∣∣∣∣Pr
[
A(pk, c ∗, c) = 1 :

1τ ← A(1λ), (sk, pk)← KeyGen(1λ, 1τ),
c ∗ ← Encrypt(pk, sk), c← Encrypt(pk, 1)

]
− Pr

[
A(pk, c ∗, c) = 1 :

1τ ← A(1λ), (sk, pk)← KeyGen(1λ, 1τ),
c ∗ ← Encrypt(pk, sk), c← Encrypt(pk, 0)

]∣∣∣∣∣∣ .
E is weakly circular secure if, for every PPT adversary A, the advantage CircAdvEA(λ)
is negligible in λ.
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Theorem 5.4.5. Any weakly circular-secure bootstrappable homomorphic encryp-
tion scheme can be transformed into a compact fully homomorphic encryption
scheme.

The proof of Theorem 5.4.5 is very similar to Theorem 5.4.2, except that security
follows directly from Definition 5.4.4.

5.4.2 The GSW Scheme Is Bootstrappable
Below we show that the GSW scheme from Section 5.3 above can be made boot-
strappable. To this end, we need to analyze the complexity of the decryption proce-
dure, and establish that it is within the homomorphic capacity of the scheme.

5.4.2.1 Decryption Complexity

Recall that the decryption formula for the GSW scheme is

Decrypt(s,C) =

0 if |[s × C × wT ]q| < q/4
1 otherwise

,

where w is some fixed vector that does not depend on the secret key. We think of
the multiplication by w as a post-evaluation processing step (as mentioned in Re-
mark 5.4.3), computing the vector u := [C×w]q. The vector u is a Regev ciphertext
(cf. Section 5.3.1.2) relative to the secret key s, and the actual decryption consists
of computing the integer inner product z := 〈s,u〉 and checking if |[z]q| < q/4. It is
well known that computing modular inner product is in NC1 (e.g., [63]). Hence, the
actual decryption can be done using a circuit of depth logarithmic in the bitsize of
s (which is n log q), namely in depth Θ(log n + log log q). Below we illustrate one
such circuit. Denoting k = dz/qc (so [z]q = z − kq), we observe that

[z]q/2 =

{
[z]q = z − 2k · (q/2) if |[zq]| < q/4,

[z]q ± (q/2) = z − (2k ± 1) · (q/2) if |[zq]| > q/4.

Since [z]q/2 = z − dz/(q/2)c · (q/2), it follows that comparing |[z]q| with q/4 can
be done by checking if dz/(q/2)c is even or odd, namely by computing the bit
dz/(q/2)c mod 2.

To slightly simplify things, when setting the parameters for any depth-d homo-
morphism, we make the modulus q one bit larger than it strictly needs to be, thus
ensuring that the eventual noise is bounded below q/8 (rather than q/4). This means
that we have the guarantee that |[z]q| is either smaller than q/8 or larger than 3q/8,
so we can afford some error in the calculations without affecting the result of com-
paring with q/4. In particular, we have the guarantee that the value z/(q/2) is within
1/4 of an integer, so an error of less than 1/4 in computing that value will not affect
the way that it is rounded.

Let q̂ be an approximation of the rational number 1/2q up to t = 3+
⌈
log n + 2 log q

⌉
bits of precision. Since |q̂−(1/2q)| < 2−t and |z| < nq2, then |zq̂−(z/2q)| < nq2 ·2−t <
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1/8, and therefore dz/(q/2)c = dzq̂c. Our decryption circuit is therefore constructed
as follows:

• Still in the post-evaluation processing phase, after setting u = [Cw]q, we com-
pute the rational vector r = [q̂ · u]2, whose entries have t bits of precision.

• The actual decryption consists of computing the inner product 〈s, r〉 (over the
rationals) and outputting the first bit to the left of the binary point (i.e., the
most-significant bit of [〈s, r〉]2).

Each of the multiplications involved in the inner product 〈s, r〉 requires adding log q
numbers, each of up to t bits. Summing up n such products, we therefore need to
add n log q numbers, each of up to t bits.

To add these numbers, we use the 3-for-2 addition method (cf. [63]),6 where the
sum of three `-bit numbers can be replaced by the sum of two numbers of up to `+1
bits: Let x, y, z be three `-bit numbers and consider the i-th bit position. The sum
xi + yi + zi < 3 can be represented by only two bits: the lower bit is the XOR of the
three and the upper bit is their majority; i.e., we replace the three numbers x, y, z by
the two numbers u, v, such that ui = XOR(xi, yi, zi) and vi+1 = MAJ(xi, yi, zi).

Repeating this process recursively, after Θ(log(n log q)) levels, we are left with
only two t-bit numbers (since we can ignore all but the first bit to the left of the
binary point). Adding these last two numbers can be done in logarithmic depth in
the bit length t, using carry look-ahead. Here we are only interested in the carry
bit into the first position to the right of the binary point, which can be expressed as
r :=

∨t−1
i=0

(
xi ∧ yi

∧t−1
j=i+1(x j ∨ y j)

)
. This expression has constant depth and fan-in

Θ(t2), so it can be computed by a fan-in-2 circuit of depth Θ(log t). Hence we get
total depth of d = Θ(log t + log(n log q)) = Θ(log n + log log q).

Parameters for bootstrappable homomorphic encryption. To obtain a bootstrap-
pable construction we need to set the parameters so that the complexity of (aug-
mented) decryption stays within the homomorphic capacity of the scheme. By the
analysis above, this means that we need to support evaluation of circuits of depth
τ ≤ ρ(log n + log log q) for some constant ρ.

Recall from Section 5.3.2 that to support depth-τ homomorphism we need q ≥
(2n log q)τ+3, and substituting the value τ from above we get the sufficient condition
q ≥ (n log q)ρ

′(log n+log log q) for some other constant ρ′ < 2ρ. For n/ log n > 4ρ′, we
can meet all the conditions with the following setting:

• n = λ,
• q =

⌈
n4ρ′ log n

⌉
= 2Θ(log2 n),

• m = 1 +
⌈
2n(2 + log q)

⌉
= Θ(n log2 n), and

• α = n/q = 2−Θ(log2 n).

These parameters yield a bootstrappable scheme under the quasipolynomial DLWE
assumption, and by Theorem 5.4.2 also a compact leveled scheme under the same

6 As described in Remark 5.4.7 below, we can use modulus-switching and key-switching tech-
niques to decrease the vector dimension and the size of q prior to decryption. Doing so we could
get a bootstrappable scheme even when using less efficient addition methods.
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assumption. If we also assume circular security, then using Theorem 5.4.5 we get a
compact fully homomorphic scheme.

Theorem 5.4.6. Under the DLWE[n,m, q, α] hardness assumption with q = 2polylog(n),
α = 2−polylog(n), and m = n · polylog(n), there exists a semantically secure compact
leveled homomorphic encryption scheme. The public-key size needed for evaluating
level-d circuits is linear in d, but the ciphertext size and the complexity of evaluating
each gate is only poly(λ), independent of d.

Further assuming circular security of the basic GSW scheme with these param-
eters, there exists a semantically secure compact fully homomorphic encryption
scheme.

Remark 5.4.7. The parameters above can be improved slightly using the modulus-
switching and key-switching tricks from Section 5.3.1.4. To use modulus-switching
we choose the secret key from the error distribution χn rather than uniformly at
random from Zn

q, and use the result of Applebaum et al. [4] to argue that security
is unaffected. We also include a key-switching gadget A′sn:s∗ in the public key, where
s∗ ∈ Zn′

q with n′ � n.
Then during post-evaluation processing we switch the Regev ciphertext u relative

to sn to a lower-dimension ciphertext relative to s∗, and then modulus-switch it to

a smaller modulus q′ � q. Then decryption needs to implement [〈s∗,u∗〉]q′
?
< q′/4,

which has lower complexity than the previous test [〈s,u〉]q
?
< q/4.

Used judiciously, this technique lets us set q′ = poly(n) (whereas q = quasipoly(n)).
This yields significant improvement in the recryption complexity, but by itself does
not allow us to relax the necessary hardness assumption from quasipolynomial to
polynomial DLWE. The reason is that, although decryption is evaluated relative to
the smaller q′, the public encryption key and fresh ciphertexts must still use the
larger q. Relaxing the hardness assumption requires other techniques, as described
next.

5.4.3 Homomorphic Encryption Under Polynomial DLWE
Is it possible to weaken the quasipolynomial DLWE assumption from above and get
FHE under polynomial DLWE? At first glance, the answer seems to be negative:
recryption seems to require circuit depth of at least log n, and each level increases
the noise by at least some small polynomial factor, so the accumulated noise (and
hence the size of the modulus q and the resulting LWE approximation factor) is at
least poly(n)log n.

Brakerski and Vaikuntanathan, however, observed in [20] that the asymmetric
noise growth from Equations 5.1 and 5.4 provides a way out. Recall that, for two
ciphertext matrices C1,C2 with associated plaintext bits b1, b2 and noise vectors
η1, η2, the noise vector when multiplying C1 ×G−1(C2) has the form η′ = b1 · η2 +

η1 ×G−1(C2), so η1 has much greater influence on η′ than η2. If we can ensure that
we always keep η1 small, even if η2 is much bigger, then we can slow down the
noise growth considerably.
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As an illustrating example, consider multiplying a sequence of n ciphertexts, Ci,
i = 1, . . . n, with associated plaintext bits bi and noise vectors ηi of similar magnitude
(say ‖ηi‖∞ ≤ n for all i). This n-wise product can be implemented in a balanced
binary tree, or using left- or right-associative trees (or any form in between), and
these different strategies exhibit very different noise behavior. The balanced strategy
is

Cbal = C1 ×G−1(C2) ×G−1(C3 ×G−1(C4))
×G−1(C5 ×G−1(C6) ×G−1(C7 ×G−1(C8))

)
· · ·

and its noise behavior is exactly what we analyzed above: We have a log(n)-high bi-
nary tree of multiplications, and the noise magnitude at level i up the tree is roughly
mi · n. Hence, the resulting matrix Cbal has a quasipolynomial noise magnitude of
about mlog n. The left-associative strategy is

C1

C2

×

C3

×

C4

× · · ·

Cn

×

G−1 G−1 G−1 G−1

Cleft = (· · · ((C1 ×G−1(C2)) ×G−1(C3)) · · · ) ×G−1(Cn),

and its noise is much bigger. Specifically, let us denote by C∗i , b
∗
i , η
∗
i the ciphertext,

plaintext, and noise after multiplying the leftmost i matrices. After the multiplication
C∗i ×G−1(Ci+1), the noise vector is η∗i+1 = b∗i ηi+1 + η∗i G

−1(Ci), which has magnitude
of roughly ‖η∗i+1‖∞ ≈ ‖ηi+1‖∞ + m · ‖η∗i ‖∞ ≈ (1 + m + · · ·+ mi) · n. Hence, the overall
noise magnitude is roughly mn · n, which is fully exponential in n.

On the other hand, the right-associative strategy is

Cn

Cn−1

× · · ·

C3

×

C2

×

C1

×
G−1 G−1 G−1 G−1

Crght = C1 ×G−1(C2 ×G−1(· · ·Cn−1 ×G−1(Cn) · · · )),

and this strategy has a much smaller noise than even the balanced one. Again let us
denote by C∗i , b

∗
i , η
∗
i the ciphertext, plaintext, and noise after multiplying the ma-

trices i through n. After incorporating also the i − 1-st matrix, Ci−1 × G−1(C∗i ),
the noise vector is η∗i−1 = biη

∗
i + ηi−1G−1(C∗i ), which has magnitude at most

‖η∗i−1‖∞ ≤ ‖η
∗
i ‖∞ + m · ‖ηi−1‖∞ ≤ n(m + m + . . . + m). Hence, the overall noise

magnitude is at most mn2, which is only polynomial in n.

“Asymmetric circuits” and branching programs. To take advantage of the noise
asymmetry, we need to design “asymmetric circuits” in which all the multiplications
have the form C×G−1(C∗), where C1 is a fresh encryption of an input bit (and hence
has small noise) while C∗ can be an evaluated ciphertext. One approach that natu-
rally yields such circuits uses Barrington’s theorem [7] and permutation branching
programs.
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Definition 5.4.8 (Permutation branching programs). A width-w, length-` permu-
tation branching-program over inputs in {0, 1}n consists of a sequence of ` tuples,
BP =

(
(inpLen(i),Ai,0, ,Ai,1) : i = 1 . . . , `

)
where the Ai,b’s are permutation matri-

ces in {0, 1}w×w, and inpLen : [`] → [n] specifies the order in which input bits are
examined (i.e., step i in the branching program examines the input bit xinpLen(i)). The
function computed by this branching program is

fBP(x)
de f
=

( ∏̀
i=1

Ai,xinpLen(i)

)
[1, 1].

In words, fBP(x) = 1 if composing all the permutations chosen by the bits of x in the
different steps yields a permutation that maps 1 to itself, and otherwise fBP(x) = 0.

Theorem 5.4.9 (Barrington’s Theorem [7]). If the function f : {0, 1}n → {0, 1}
can be computed by a depth-d fan-in-2 binary circuit, then f can also be computed
by a width-5, length-4d permutation branching program.

Barrington’s theorem directly yields a polynomial-size asymmetric circuit for
computing any NC1 circuit: We keep an “evaluated state” consisting of the current
cumulative product

∏`
i= j+1 Ai,xinpLen(i) , then multiply this state on the left by the “fresh

matrix” A′j = xkA j,1 + (1 − xk)A j,0, with k = inpLen( j). Since the Ai,b’s are all
permutation matrices then all the intermediate values in this computation are always
in {0, 1} (and moreover every sum computed during this computation always has
exactly one term equaling 1 and all other terms equaling 0).

When evaluating this circuit on encrypted data, we get an encryption of A′j that
depends linearly on the fresh encryption of xinpLen( j), and we multiply it (on the left)
by the evaluated encryption of the cumulative product so far. When using the GSW
scheme with parameters n,m, q, the cumulative noise at the end of the calculation
is bounded by 4d · m · n, which is polynomial in n when the depth d is logarithmic.
We can therefore evaluate the recryption function while only increasing the noise to
magnitude polynomial in n, so we can set q = poly(n) (and therefore α = 1/poly(n))
and m = O(n log n).

Theorem 5.4.10. Under the DLWE[n,m, q, α] hardness assumption with q = poly(n),
α = 1/poly(n), and m = O(n log n), there exists a semantically secure compact lev-
eled homomorphic encryption scheme. The public-key size needed for evaluating
level-d circuits is linear in d, but the complexity of evaluating each gate is only
poly(λ), independent of d.

Further assuming circular security of the basic GSW scheme with these param-
eters, there exists a semantically secure compact fully homomorphic encryption
scheme.

Remark 5.4.11. The key- and modulus-switching tricks from Remark 5.4.7 can be
used here too, to reduce both the recryption complexity and the constant in the expo-
nent of the polynomial-DLWE assumption. Brakerski and Vaikuntanathan describe
in [20] how iterated application of these two tricks can be used to reduce the hard-
ness assumption to DLWE with α = 1/n1/2+ε for any constant ε > 0, which nearly
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matches the best setting α = 1/Õ(
√

n) for any known lattice-based public-key en-
cryption.

The concrete efficiency of recryption was significantly improved by Alperin-
Sheriff and Peikert [3], while still relying on the same DLWE with α = 1/n1/2+ε .
See Section 5.5.1 for more discussion of efficiency considerations.

5.4.4 Realizing Strong Homomorphism
The fully homomorphic scheme from above may still fail to provide strong homo-
morphism or even circuit privacy. Following Gentry [47], we can achieve statistical
strong homomorphism using a Refresh procedure based on noise-flooding. A naive
use of this technique would require increasing the parameters and using a stronger
DLWE variant, but Ducas and Stehlé showed in [31] that iterated use of Refresh
can avoid these limitations.

For the rest of this section, it will be convenient to assume that, the recryption
procedure of the fully homomorphic encryption returns not the GSW ciphertext
matrix C but rather the post-processed “Regev ciphertext” u = [Cw]q, which is
decrypted by computing z := [〈s,u〉]q and comparing |z| with q/4. (The distinction
between these two forms of ciphertexts is only a matter of convenience, as we can al-
ways get back a GSW ciphertext by running the recryption procedure again without
post-processing.) We denote running the recryption process on the post-processed u
and returning the post-processed result by u′ ← Recryptpk(u).

Rerandomizing a ciphertext. For a vector s ∈ Zn
q, denote the linear subspace or-

thogonal to s by

L⊥s
de f
= {v ∈ Zq : 〈s, v〉 = 0 (mod q)}.

Also denote the scaled unit vector by w de f
= bq/2c · (0, . . . , 0,−1), and the “radius-ρ

1-dimensional ball” by

Bρ
de f
= {x · (0, . . . , 0, 1) : x ∈ Z, |x| ≤ ρ}.

An easy-to-verify property that we use below is that, for ρ′, ρ ∈ N and any u ∈ Bρ′ ,
the statistical distance between the uniform distributions on Bρ and on u + Bρ is
bounded by ρ′/(2ρ + 1).

Since the last entry in a GSW secret key s is sn = −1, then for ρ < bq/4c any
vector u ∈ L⊥s +Bρ is decrypted to zero and any vector u ∈ L⊥s +Bρ + w is decrypted
to one.

Let u be some fixed vector in either L⊥s +Bρ′ or L⊥s +Bρ′ + w. We rerandomize u
by adding to it a random element in L⊥s +Bρ for some ρ > ρ′ such that ρ+ρ′ < bq/4c.
The resulting vector u′ still decrypts to the same bit as u, and the statistical distance
between the distribution of u′ and the uniform distribution over L⊥s + Bρ (or over
L⊥s +Bρ+w) is bounded by ρ′/(2ρ+1). If ρ � ρ′ then the distribution of u′ is almost
independent of the original vector u, except for the plaintext bit that it decrypts to.
To perform rerandomization, it is therefore sufficient to be able to choose a nearly
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uniform vector in L⊥s + Bρ. It turns out that the public-key matrix A is all we need
for that purpose.

Lemma 5.4.12. For any fixed vector s ∈ Zn
q with sn = −1, denote by Ds the distri-

bution over public keys corresponding to the secret key s; namely choosing the top
n − 1 rows at random A′ ← Z(n−1)×m

q and the last row as s′A′ + η, where s′ are the
first n − 1 entries in s and η← χm.

Then with probability at least 1 − 2−n over the choice of A ← Ds and for all
ρ ∈ N, the distribution

RA,ρ
de f
=

{
Ar + v : r← {0, 1}m, v← Bρ

}
is close to the uniform distribution over L⊥s + Bρ, up to statistical distance at most

nm
2ρ+1 + 2−n.

Proof: Let s′ be the first n − 1 entries of s, A′ be the first n − 1 rows of A, and
Ã be the matrix A with the last row replaced by s′A′ (i.e., the last row of A with
the error η removed). Then sÃ = 0, and moreover the columns of Ã ∈ Zn×m

q are
uniform and independent in L⊥s . By Lemma 5.2.17, with probability 1− 2−n over Ã,
the distribution of [Ãr]q conditioned on Ã is 2−n away from uniform over L⊥s .

Next observe that Ar = Ãr + δ, where δ =
〈
η, r

〉
· (0, . . . , 0, 1)t ∈ Bnm. We

therefore have Ar + v = Ãr + δ + v, where Ãr is 2−n-close to uniform over L⊥s ,
and regardless of the value of δ we have that δ + v is nm

2ρ+1 -close to uniform over Bρ.
Hence Ar + v is close to uniform in L⊥s + Bρ, up to nm

2ρ+1 + 2−n. �

Corollary 5.4.13. Let ρ, ρ′ ∈ N, and fix the two vectors s ∈ Zn
q with sn = −1 and

u ∈ (L⊥s +Bρ′ )∪ (L⊥s +Bρ′ +w). Then with probability at least 1−2−n over the choice
of A← Ds, the distribution u + RA,ρ is within statistical distance nm+ρ′

2ρ+1 + 2−n of:

• The uniform distribution over L⊥s + Bρ if u ∈ L⊥s + B′ρ, or
• The uniform distribution over L⊥s + Bρ + w if u ∈ L⊥s + B′ρ + w.

Strong homomorphic encryption. To obtain strong homomorphic encryption, we
begin with the fully homomorphic scheme from above but modify the parameters,
making q larger by some factor β (to be determined later) than what is needed to
get full homomorphism. Specifically, we make q large enough to ensure that after
recryption (and post-evaluation processing) the noise is bounded by some ρ′ < q/8−
β; i.e., we always get a vector u ∈ (L⊥s + Bρ′ ) ∪ (L⊥s + Bρ′ + w). We then define a
refresh procedure as

Refreshpk(u) = [Recryptpk(u) + RA,β]q.

We then modify both the encryption and evaluation procedures, making them output
u′ ← Refreshpk(u) rather than the vector u as before. By Corollary 5.4.13 the output
distribution of the new Encrypt and Evaluate is close to uniform over L⊥s + Bρ or
L⊥s + Bρ + w (depending on the encrypted bit), where ρ = ρ′ + β < q/8. Correctness
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is not affected since the parameters are set so that the noise after Refresh is still
bounded below q/8.

The statistical distance from uniform is at most nm+ρ′

2β+1 + 2−n, so to get negligible
distance we need β > (nm + ρ′) · 2ω(log n). This means that β (and therefore q) must
be superpolynomial in n, so to get strong homomorphism in this way we need to
assume hardness of superpolynomial DLWE.

Strong homomorphism from polynomial DLWE. It was observed by Ducas and
Stehlé [31] that iterating Refresh can be used to go beyond superpolynomial DLWE.
To show this, we use the following general lemma:

Lemma 5.4.14 (Iterated refresh [31]). Let D be an arbitrary domain and let f :
D→ D be a randomized function. If for some δ < 1 it holds that S D( f (x1), f (x2)) <
δ for any x1, x2 ∈ D, then for every k ∈ N and x1, x2 ∈ D we have S D( f k(x1), f k(x2)) <
δk.

Proof: The proof is by induction on k. The basis k = 0 holds vacuously, so assume
that it holds for k and we prove for k + 1. Let x1, x2 ∈ D, so by the induction
hypothesis we have S D( f k(x1), f k(x2)) < δk.

The distributions f k(x1), f k(x2) can therefore be expressed as convex combina-
tions f k(x1) = (1 − δk) ·D + δk ·D′1 and f k(x2) = (1 − δk) ·D + δk ·D′2 for the same
D and different D′i ’s. Namely for i = 1, 2, yi ← f k(xi) is obtained by choosing a bit
b ∈ {0, 1} with Pr[b = 1] = δk, then drawing yi ← D if b = 0 and yi ← D′i if b = 1.
It follows that

S D( f k+1(x1), f k+1(x2)) ≤ (1 − δk) · S D( f (D), f (D))︸              ︷︷              ︸
=0

+δk · S D( f (D′1), f (D′2))︸                 ︷︷                 ︸
≤δ

≤ δk+1,

as needed. �
Applying Lemma 5.4.14 to the Refresh procedure from above, we can now

set the parameters so that β = 2nm · ρ′. With this setting, for every u,u′ ∈ CT
that encrypt the same bit, we get S D(Refreshpk(u1),Refreshpk(u2)) < 1/2, so af-
ter ω(log n) iterations we get negligible statistical distance. Since ρ′ can be set to
poly(n) as per Section 5.4.3 above, then we get q = ρ′+β = ρ′ · (1+2nm) = poly(n),
so we can rely on the hardness of polynomial DLWE.

Theorem 5.4.15. Under the DLWE[n,m, q, α] hardness assumption with q = poly(n),
α = 1/poly(n), and m = O(n log n), in conjunction with circular security of the basic
GSW scheme with these parameters, there exists a semantically secure strong fully
homomorphic encryption scheme.

5.5 Advanced Topics
In this section we briefly discuss other aspects of homomorphic encryption. We
begin in Section 5.5.1 by describing the active research for devising more prac-
tical homomorphic encryption, reducing the overhead of computing on encrypted
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data as compared with computing on plaintext data. In Section 5.5.2, we touch on
some (mostly failed) attempts at realizing homomorphic encryption by means other
than lattice-based cryptography. In Section 5.5.3, we discuss carrying out compu-
tation on encrypted data using models of computation other than circuits. Finally,
in Section 5.5.4, we describe uses of techniques similar to the GSW homomorphic
encryption scheme to obtain other functionalities, such as multikey homomorphism,
homomorphic commitment and signatures, multilinear maps, and obfuscation.

5.5.1 Faster Homomorphic Encryption
The GSW cryptosystem from above is capable of evaluating arbitrary circuits, but
at a steep price: Letting the overhead of a homomorphic scheme be the ratio of
encrypted computation complexity to unencrypted computation complexity (using
a circuit model of computation), it is not hard to see that as described above this
scheme has a very large polynomial overhead: Each plaintext bit is encrypted by a
matrix of dimensions at least Ω̃(λ)× Ω̃(λ) (and entries of size polylog(λ) bits). Each
NAND operation in the basic GSW scheme requires the multiplication of two such
matrices, which takes ω̃(λ2.3) even using the most asymptotically efficient algorithm.
(Of course, to use bootstrapping we would need to implement full homomorphic
description for every gate, which would drive the overhead much higher.)

A lot of work over the last few years was devoted to improving this over-
head, both asymptotically and practically. Perhaps the most significant improvement
comes from working over large extension rings rather than over the integers, relying
on the ring-LWE hardness assumption (RLWE) [68].7 Working over a large ring of
extension degree d allows one to reduce the degree of the matrices involved to as
little as n = λ/d while maintaining hardness, so in particular when setting d = λ
we can get n = 1 and m = O(log q) = Õ(λ). This yields ciphertexts of bit-size
O(log2 q) = ˜O(λ), and the complexity of implementing basic NAND (without boot-
strapping) is similarly reduced to ˜O(λ). Hence we get a variant of the basic weakly
compact scheme with overhead quasilinear in λ.

A second major improvement comes from packing multiple plaintext bits in ev-
ery ciphertext. Specifically, Smart and Vercauteren observed in [86] that, since our
“scalars” now live in some polynomial ring, the Chinese remainder theorem in that
ring can be used to encode many bits in each scalar, yielding multiple “plaintext
slots” where additions and multiplications are applied to each slot separately. Care-
ful choice of parameters lets one get as many as ` = Ω̃(λ) such plaintext slots,
making the plaintext-to-ciphertext expansion ration polylogarithmic in λ, and al-
lowing one to compute the same function on ` different inputs at the price of a
single computation.

We note, however, that packing many bits in each plaintext scalar is in general
incompatible with the Brakerski–Vaikuntanathan method of exploiting the asym-
metric noise growth: Packed scalars typically have norm polynomial in d (the ex-
tension degree of the ring), even if only 0’s and 1’s are packed in the slots. Since the

7 Specifically we use cyclotomic rings, since they have many desirable algebraic properties.
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GSW noise depends also on the plaintext size, we have to content ourselves with
multiplicative growth of noise for every multiplication operation. In fact, using the
packing technique yields better results for the “second-generation schemes” such as
those in [17, 14, 67, 13] than for the “third-generation” GSW scheme [48].

But we can go even beyond batching. It was observed in [68, 17, 86] that the
automorphisms in the polynomial ring can be used to “rotate” the contents of the
plaintext slots, and Gentry et al. show in [44] how to use these “rotations” to per-
form efficient routing of plaintext slots between successive levels of any arbitrary
circuit. This technique is then used in [44] to perform an entire computation on
“packed” ciphertexts, resulting in a scheme with only poly-logarithmic overhead
even when computing a single function on a single input. This can be extended
to bootstrapping, yielding a fully homomorphic scheme with polylogarithmic over-
head. (Further optimizations for bootstrapping were described in [43, 2, 57].)

There has also been much work devoted to practical efficiency and implement-
ing of homomorphic encryption. For example Gentry et al. reported in [45] on
an implementation of the “second-generation” Brakerski–Gentry–Vaikuntanathan
scheme (BGV) and its use for evaluating “real-world circuits” such as the AES en-
cryption/decryption circuits, and that implementation was further optimized in the
HElib library of Halevi and Shoup [56], who also implemented practical bootstrap-
ping for packed ciphertexts in a matter of minutes [57]. Also, building on techniques
from [20, 3], Ducas and Micciancio implemented bootstrapping for a (non-packed)
GSW-like scheme in less than a second [30].

5.5.2 Other Attempts at Realizing Homomorphic Encryption
Attempts to realize homomorphic encryption go back to the dawn of public-key
cryptography, when the concept was first proposed by Rivest, Adleman, and Der-
touzos [81]. Below we sketch some directions that were explored over the years,
even though as of yet none of these directions have panned out.

5.5.2.1 The Hidden-Ideal Paradigm

One natural approach is to construct a scheme that uses an algebraic ring R and an
ideal I ⊂ R, and relies for security on the hardness of distinguishing random ele-
ments in I from random elements in R. The plaintext space of such a scheme is the
quotient ring R/I, ciphertexts are (representations of) elements in R, and homomor-
phic addition and multiplication are just the ‘+’ and ‘×’ operations in R.

This approach was implicit in many additive homomorphic schemes; it was made
explicit by Fellows and Koblitz [32], who also suggested a concrete realization that
they called Polly Cracker. That scheme uses the ring of multivariate polynomials
over some field, R = F[X1, . . . , Xn], and the ideal I is a set of polynomials that have
common root, p(s1, . . . , sn) = 0. Ciphertexts are polynomials p ∈ R, the root itself
s = (s1, . . . , sn) is the secret key, and decryption corresponds to evaluating p(s).

There is a lot of freedom in choosing the concrete representation of elements
and their probability distributions (note that these R, I are infinite). The challenge
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in designing such a scheme is to find a succinct representation that allows efficient
sampling and computation of ‘+’ and ‘×’, but where (at least) recovering s is hard.
Many attempts to find such representations has been made, so far with no success;
see [66] for a survey. We note that, even though no candidate construction so far
have survived cryptanalysis, there is also no reason to think that no such candidate
exists.

5.5.2.2 Homomorphic Encryption from Binary Codes

Following Gentry’s blueprint for constructing homomorphic encryption schemes,
some attempts were made to instantiate this blueprint using binary codes as opposed
to integer lattices. The hope was, that since the problem of learning-parity-with-
noise (LPN) is similar in some ways to the learning-with-errors (LWE) problem,
then the techniques for constructing LWE-based homomorphic encryption would
extend also to LPN. The main challenge is that LPN with its notion of Hamming
distance provides a very narrow range for noise manipulation. Specifically, while
in LWE-based constructions we can handle noise with Euclidean norm polynomial
in the dimension, when it comes to Hamming distance the noise must be strictly
smaller then the dimension.

A notable attempt to port Gentry’s blueprint to the LPN-based setting was made
by Bogdanov and Lee [9]. They described a construction that has noticeable de-
cryption error probability, which is carefully controlled via evaluation of majority
gates in conjunction with the linear decryption function. That construction was later
broken by Gauthier et al. [36], and moreover Brakerski proved in [15] that the ap-
proach from [9] cannot work as-is. Specifically, he proved that a scheme which is
capable of computing majority cannot have a learnable decryption function (such
as a linear function), even if it has a significant decryption error probability. Al-
though Brakerski’s result does not rule out basing homomorphic encryption on LPN,
it does say that the decryption procedure of that scheme must be at least “some-
what complicated”, rather than the simple inner product of some LPN-based (non-
homomorphic) schemes such as [1].

5.5.2.3 Homomorphic Encryption from Group Theory

An alternative approach, using concepts from group theory, was proposed by Nuida
in [73]: For a group G (written multiplicatively), a subgroup H ⊂ G is normal in G
if g−1hg ∈ H for any h ∈ H and g ∈ G. A simple scheme with plaintext space {0, 1}
that uses such G,H represents 0 by a random h ∈ H and 1 by a random g ∈ G.
Homomorphic OR is implemented by the group operation homOR(g1, g2) := g1g2,
and homomorphic AND is implemented by the commutator homAND(g1, g2) =

g1g2g−1
1 g−1

2 . This can be used to compute arbitrary functions by using deMorgan’s
laws to push negations to the inputs, and encrypting a bit b as a pair (Enc(b), Enc(1−
b)).

Such a scheme would need to provide methods for choosing random elements
in G and H, rely on the indistinguishability of H from G for security, and provide
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a trapdoor that enables distinguishing H from G as a secret key. Some candidate
implementations of this approach are discussed in [73], and some earlier proposals
were shown to be insecure. As for the hidden-ideal paradigm, here too we currently
neither have a viable candidate nor know of a reason to think that such candidates
are impossible.

5.5.3 Homomorphic Encryption for Other Models of
Computation

Although circuits are a convenient and universal model of (classical) computation,
other models have been considered as well, both weaker and stronger. Weaker mod-
els of computation were considered before Gentry’s result, and they sometimes al-
low schemes based on different (non-lattice) hardness assumptions. Stronger models
are also considered, as they could provide better efficiency for applications. Below
we list a few such models, and what is known about them.

Truth-tables. Homomorphic encryption for truth-tables allows an encryptor to en-
crypt the index into a table, and an evaluator to compute from it an encryption of
the content of the corresponding entry in the table. This is closely related to the no-
tion of single-server private information retrieval (PIR) [65]. Indeed, a two-round
single-server PIR protocol immediately yields a weakly compact secret-key encryp-
tion scheme which is homomorphic for truth-tables (cf. [62]).

Moreover, a PIR protocol can be transformed to a public-key scheme using an
auxiliary public-key encryption scheme: The recipient chooses a public/secret key
pair for the encryption scheme, the sender sends the PIR-client message and in ad-
dition also an encryption of the client’s PIR-state s under the public key, and the
evaluator forwards the encrypted state to the recipient together with the PIR reply.
The recipient uses its secret key to decrypt and recover the SFE state s, and then
uses the procedure SFE3 with this state to recover F(x, y). The result is a public-key
encryption scheme capable of “evaluating” any table-lookup, and it is compact as
long as the client’s PIR state is short. We note that all PIR constructions have small
client state, and this can be enforced generically by having the client use a pseudo-
random generator (PRG) to derive its randomness, and using the PRG seed as the
client state.

Since two-message PIR implies also public-key encryption [29, 49], we have that
compact public-key homomorphic encryption for truth-tables can be realized from
any two-message PIR protocol. For example, this yields realizations with security
based on various factoring-related assumptions such as quadratic residuosity [52],
N-th residuosity [77], and phi-hiding [22]. See [75] for a survey of single-server
PIR.

Branching programs. Polynomial-size branching programs are a fairly strong
model of computation, being able to evaluate at least the complexity class NC1.
Ishai and Paskin described in [62] a weakly compact encryption scheme which is
homomorphic for branching programs, using the Damgård–Jurik cryptosystem [28]
whose security relies on the N-th residuosity assumption.
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Turing machines and RAM. Although circuits are universal, and hence fully-
homomorphic encryption for circuits can evaluate any function on encrypted data,
other models of computation such as Turing machines or RAM computation can
provide faster processing. It is therefore desirable to make the complexity of ho-
momorphic evaluation as low as the Turing-machine complexity or the RAM-
complexity of the evaluated function, as opposed to its circuit complexity. Unfortu-
nately this is often not possible, for example it is clear that the table lookup function
fT (i) = T [i] cannot be evaluated for an encrypted index in its RAM complexity
of O(1). Nonetheless, a significant body of recent work (such as [51] and [42]) has
been devoted to finding cases where processing encrypted data with better than cir-
cuit complexity is possible.

Homomorphic quantum computations. Going beyond classical computations,
one may wish to be able to apply quantum computations to an encrypted quan-
tum state. Note that we are asking for more than simply a classical homomorphic-
encryption scheme which is resistant to quantum attacks.8 Instead, imagine trying
to run Shor’s algorithm [84] for factoring an encrypted integer. Being able to eval-
uate classical circuits on encrypted data is not enough here; we need to be able to
evaluate also quantum gates.

A first step toward homomorphic quantum computation was recently taken by
Broadbent and Jeffery [21], who described a quantum homomorphic encryption
scheme for a restricted class of quantum circuits, assuming classical fully homo-
morphic encryption. Specifically, their scheme can handle circuits with unbounded
number of Clifford-group gates but only a constant non-Clifford depth. (This is
somewhat analogous to classical arithmetic circuits with unlimited additions but
constant multiplication depth.)

5.5.4 Beyond Homomorphic Encryption
Powerful as it is, homomorphic encryption is just one of a number of new crypto-
graphic primitives that were developed in the last decade using tools from lattice-
based cryptography. Below we describe some other primitives that use similar tools.

5.5.4.1 Multikey Homomorphic Encryption

One limitation of homomorphic encryption is that it can only process encrypted data
relative to one key. Many times, however, we want to be ale to process data that was
encrypted relative to several different keys. For example, multiple parties, each with
its own key, may upload their encrypted data to the cloud, and we want the cloud
to aggregate this data and compute useful statistics on it. Of course, recovering the
plaintext result would then depend on all the parties cooperating, each bringing its
corresponding secret key. A homomorphic scheme that supports such processing is
called multikey homomorphic.

8 Since the learning-with-errors problem is assumed to be hard even for quantum computers, then
so are all LWE-based homomorphic encryption schemes.
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The concept of multikey homomorphic encryption, along with a concrete real-
ization based on the NTRU cryptosystem [68], was first described by López-Alt et
al. in [67]. One drawback of that scheme is that an upper bound on the number of
parties must be known at key-generation time, since the parameters grow with the
number of parties. (A similar realization is possible under LWE, but it only supports
a constant number of parties.)

A different realization under LWE (or RLWE) was recently described by Clear
and McGoldrick [25], and later significantly simplified by Mukherjee and Wichs
[72]. These schemes can support an arbitrary number of parties, but they rely on a
common reference string that must be known at key-generation time.

5.5.4.2 Homomorphic Commitments and Signatures

Although homomorphic encryption allows computing on encrypted data, it does not
provide any integrity guarantees for the computed values. For example, in the client-
server application in which the client encrypts its input x and the server evaluates
on it a function f , the client has no guarantees that the alleged evaluated ciphertext
was indeed produced by evaluating f on the encrypted x.

Verifying the integrity of remote computation is generally known as verifiable
computation, and it is the subject of a very active research effort. See, e.g., [89] for
a survey (focusing on the practical-oriented side of that work). Some useful tools in
this area are homomorphic commitments and signatures, which can be constructed
using techniques similar to those used in the GSW cryptosystem, as noted by Gor-
bunov et al. [55].

Homomorphic commitments are similar to homomorphic encryption, except
that, in addition to the ciphertext-evaluation procedure Evaluate, there is also a
decommitment-evaluation procedure deEvaluate for computing on the correspond-
ing randomness, which is used by the committer. The property of deEvaluate is that,
whenever we have c=Encrypt(pk,b; r) (where r is the randomness used for encryp-
tion) and c′ ← Evaluate(pk, Π, c), then computing r′ ← deEvaluate(pk, Π, c,b, r)
we get Encrypt(pk, Π(b); r′) = c′. Thinking of the randomness r as being a de-
commitment string, this means that the committer can compute the randomness r′

that would open the evaluated ciphertext c′ to the plaintext b′ = Π(b). It is easy
to see that the basic GSW scheme as described in Section 5.3.2.4 supports such a
decommitment-evaluation routine, since whenever we have two ciphertexts Ci such
that s × Ci = bi · (s ×G) + ηi, then their sum and product satisfy

s × (C1 ± C2) = (b1 ± b2) · (s ×G) + (η1 ± η2)
and s × (C1 ×G−1(C2)) = (b1 · b2) · (s ×G) + (b1 · η2 + η1 ×G−1(C2)),

and these noise terms can be computed efficiently by the committer.
In homomorphic signatures, a data originator uses its secret key to sign messages,

and it publishes the vector of messages b = (b1, . . . , bn) and the corresponding
vector of signatures σ = (σ1, . . . , σn). A data processor, knowing b,σ, and the
public key, can efficiently generate a short evaluated signature σΠ,b′ on the pair
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(Π,Π(b)), and that signature can be verified using the public key (even without
knowing the original data b). Gorbunov et al. described in [55] a construction of
homomorphic signatures from homomorphic commitments, in which verifying an
evaluated signature σΠ,b′ can be partitioned to an offline phase that depends only
onΠ and an online phase that depends also on b′ and σΠ,b′ , such that the complexity
of the online phase is independent of Π .

5.5.4.3 Functional Encryption, Obfuscation, and Multilinear Maps

Homomorphic encryption is in particular a secure encryption scheme. So while it is
possible to compute on encrypted data (or with encrypted programs), the result is
still encrypted and it takes the secret key to make sense of it. In many applications,
however, we would like to process encrypted data or programs, and get (only) the
result of the computation in the clear. For example, consider applying a spam filter to
encrypted email: Although the content of the email messages should remain secret,
we may want the mail server to learn the spam/no-spam bit in the clear so that it
can forward to us only the non-spam messages.

For another example, imagine that we have a good model for predicting the risk
of heart attack based on various indicators, and we want to release this model for
use by the public. At the same time, we want to withhold the inner workings of this
model, either due to intellectual property concerns, or because we need to protect
the privacy of patient data that was used to devise this model. Here too, we may
want the model itself to be encrypted, but anyone should be able to evaluate the
model on their own indicators and get the result in the clear.

These examples illustrate typical uses of functional encryption (the first example)
and code obfuscation (the second example), and a large body of research is devoted
to studying these concepts. Functional encryption for simple functions can be con-
structed from pairing-based cryptography (e.g., [64, 83, 11, 74]), and some variants
that support all functions but offer weaker security can be based on the hardness of
LWE (e.g., [53, 54]). However, more is required to obtain fully secure functional
encryption for all functions, or code obfuscation for any expressive class of func-
tions. As of now, the only viable tool that we have for realizing these concepts are
the so-called cryptographic multilinear maps.

Cryptographic multilinear maps were envisioned by Boneh and Silverberg [12],
but were constructed for the first time only a decade later by Garg et al. [34]. On
a high level, they enable evaluation of arithmetic circuits over a large field on “en-
crypted” data, getting in the clear the bit saying whether or not the result is equal to
zero, without being able to “decrypt” any of the intermediate values. We currently
have three candidate constructions for multilinear maps [34, 26, 39] (with some
variations on each), all following the same high-level approach: Very roughly, they
all begin with some homomorphic encryption scheme, and then publish a defective
secret key, which allows testing for zero but not decryption.

To use such multilinear maps for obfuscation or functional encryption, one needs
to randomize the computation so that no two intermediate values will ever be equal
to each other, but where all the randomness can be canceled on the output wire so
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that the zero-test can be used to determine the output value. Such randomization
techniques were found for NC1 circuits, and a bootstrapping technique using ho-
momorphic encryption is used to extend these constructions to any polynomial-size
circuits. Following Garg et al. [35], this approach was used in very many works;
see, e.g., [60] for a survey.

5.6 Suggested Reading
Below are pointers to additional reading on related topics that are not covered in
detail in this tutorial.

Multi-hop and circuit-private FHE. The connections with secure computation
protocols with emphasis on multihop and function privacy (without compactness)
were studied by Gentry et al. [47] in the semi-honest model. Their treatment was
extended to the malicious adversary model by Ostrovsky et al. [76].

Second-generation FHE. A good survey that covers the basics of the second-
generation FHE schemes was written by Vaikuntanathan [87], with more details
given in the work of Brakerski et al. [17]. The techniques for reducing the plaintext-
to-ciphertext overhead to polylogarithmic are described in the work of Gentry et
al. [44], and many practical optimizations are described in the work of Halevi and
Shoup [56]. The scale-invariant flavor of second-generation schemes was intro-
duced by Brakerski [14] and used also in the work of Bos et al. [13].

Third-generation FHE. The GSW cryptosystem was presented by Gentry et al. in
[48], together with some extensions such as identity-based FHE. The use of asym-
metric circuits was proposed by Brakerski and Vaikuntanathan [20], and additional
bootstrapping optimizations using this approach were described by Alperin-Sheriff
and Peikert [3] and by Ducas and Micciancio [30].

Multikey FHE. The concept of a multikey FHE was introduced by López-Alt et al.
in [67], along with a solution based on NTRU. A construction based on LWE was
first described by Clear and McGoldrick [25], and later significantly simplified by
Mukherjee and Wichs [72] and improved further by Peikert and Shiehian [79].

Homomorphic commitments and signatures. An interesting usage of techniques
very similar to those described in this tutorial for the purpose of homomorphic com-
mitments and signatures was described by Gorbunov et al. in [55].
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Chapter 6
How to Simulate It – A Tutorial on the
Simulation Proof Technique

Yehuda Lindell

Abstract One of the most fundamental notions of cryptography is that of simulation.
It stands behind the concepts of semantic security, zero knowledge, and security for
multiparty computation. However, writing a simulator and proving security via the
use of simulation is a nontrivial task, and one that many newcomers to the field
often find difficult. In this tutorial, we provide a guide to how to write simulators
and prove security via the simulation paradigm. Although we have tried to make
this tutorial as stand-alone as possible, we assume some familiarity with the notions
of secure encryption, zero-knowledge, and secure computation.

6.1 Introduction
What is simulation? Although it means different things in different settings, there
is a clear common denominator. Simulation is a way of comparing what happens
in the “real world” with what happens in an “ideal world” where the primitive in
question is secure by definition. For example, the definition of semantic security
for encryption compares what can be learned by an adversary who receives a real
ciphertext with what can be learned by an adversary who receives nothing. The
definition states that an encryption scheme is secure if they can both learn approx-
imately the same amount of information. This is very strange. Clearly, the latter
adversary who receives nothing can learn nothing about the plaintext since it re-
ceives no information. However, this is exactly the point. Since the adversary who
receives nothing can learn nothing by triviality (this is an “ideal world” that is se-
cure by definition), this implies that in the real world, where the adversary receives
the ciphertext, nothing is learned as well.

At first, this seems to be a really complicated way of saying something simple.
Why not just define encryption to be secure if nothing is learned? The problem is that
it is not at all clear how to formalize the notion that “nothing is learned”. If we try to

Yehuda Lindell
Dept. of Computer Science, Bar-Ilan University, Israel, e-mail: lindell@biu.ac.il

277© Springer International Publishing AG 2017 
Y. Lindell (ed.), Tutorials on the Foundations of Cryptography, 
Information Security and Cryptography, DOI 10.1007/978-3-319-57048-8_6 

mailto:lindell@biu.ac.il


278 Yehuda Lindell

say that an adversary who receives a ciphertext cannot output any information about
the plaintext, then what happens if the adversary already has information about the
plaintext? For example, the adversary may know that it is English text. Of course,
this has nothing to do with the security of the scheme since the adversary knew this
beforehand and independently of the ciphertext. The simulation-based formulation
of security enables us to exactly formalize this. We say that an encryption scheme
is secure if the only information derived (or output by the adversary) is that which
is based on a priori knowledge. If the adversary receiving no ciphertext is able to
output the same information as the adversary receiving the ciphertext, then this is
indeed the case.

It is unclear at this point why this is called “simulation”; what we have described
is a comparison between two worlds. This will be explained throughout the tutorial
(first in Section 6.3). For now, it suffices to say that security proofs for definitions
formulated in this way work by constructing a simulator that resides in the alterna-
tive world that is secure by definition, and generates a view for the adversary in the
real world that is computationally indistinguishable from its real view. In fact, as we
will show, there are three distinct but intertwined tasks that a simulator must fulfill:

1. it must generate a view for the real adversary that is indistinguishable from its
real view;

2. it must extract the effective inputs used by the adversary in the execution; and
3. it must make the view generated be consistent with the output that is based on

this input.

We will not elaborate on these points here, since it is hard to explain them clearly
out of context. However, they will become clear by the end of the tutorial.

Organization. In this tutorial, we will demonstrate the simulation paradigm in a
number of different settings, together with explanations about what is required from
the simulator and proof. We demonstrate the aforementioned three different tasks
of the simulator in simulation-based proofs via a gradual progression. Specifically,
in Section 6.3, we provide some more background to the simulation paradigm and
how it expresses itself in the context of encryption. Then, in Section 6.4, we show
how to simulate secure computation protocols for the case of semihonest adver-
saries (who follow the protocol specification, but try to learn more than allowed by
inspecting the protocol transcript). We begin with this case since semihonest sim-
ulation is considerably easier than in the malicious case. Next, we demonstrate the
three elements of simulation through the following progression: In Section 6.5, we
show how to simulate in the context of zero-knowledge proofs. In this context, the
corrupted party (who is the verifier) has no private input or output. Thus, the simu-
lation consists of the first task only: generating a view that is indistinguishable from
the potentially malicious verifier’s view in an execution with a real prover. Next,
we proceed to secure computation with security in the presence of (static) malicious
adversaries. After presenting the definitions in Section 6.6, we proceed to the prob-
lem of secure coin tossing in Section 6.7. In this task, the parties receive output
and the simulator must generate a view that is consistent with this output. Thus, an
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additional element of the simulator’s role is added. (In this section, we also demon-
strate the hybrid model and the technique of how to write simulation-based proofs
in this model.) Then, in Section 6.8, we consider the oblivious transfer functionality
and show how the simulator extracts the inputs of the adversary. This completes
the three elements of simulation-based proofs. Finally, in Section 6.9, we show how
to simulate in the common reference string model, and in Section 6.10, we briefly
discuss some advanced topics related to simulation: concurrent composition, the
random oracle model, and adaptive corruptions.

6.2 Preliminaries and Notation
For a finite set S ⊆ {0, 1}∗, we write x ∈R S to say that x is distributed uniformly over
the set S . We denote by Un the uniform distribution over the set {0, 1}n. A function
µ(·) is negligible, if for every positive polynomial p(·) and all sufficiently large n’s,
it holds that µ(n) < 1/p(n). Finally, we denote the empty string by λ.

Computational indistinguishability. A probability ensemble X =

{X(a, n)}a∈{0,1}∗;n∈N is an infinite sequence of random variables indexed by a ∈ {0, 1}∗

and n ∈ N. In the context of secure computation, the value a will represent the par-
ties’ inputs and n will represent the security parameter. Two probability ensembles
X = {X(a, n)}a∈{0,1}∗;n∈N and Y = {Y(a, n)}a∈{0,1}∗;n∈N are said to be computationally
indistinguishable, denoted by X

c
≡ Y , if for every nonuniform polynomial-time al-

gorithm D there exists a negligible function µ(·) such that for every a ∈ {0, 1}∗ and
every n ∈ N,

|Pr[D(X(a, n)) = 1] − Pr[D(Y(a, n)) = 1]| ≤ µ(n).

All parties are assumed to run in time that is polynomial in the security parameter.
(Formally, every party considered has a security parameter tape upon which the
value 1n is written. Then the party is polynomial in the input on this tape. We note
that this means that a party may not even be able to read its entire input, as would
occur in the case where its input is longer than its overall running time.)

Nonuniformity. The above notion of computational indistinguishability is inher-
ently nonuniform, and this is not merely because we allow D to be nonuniform. In
order to see why this is the case, we show what it means if two ensembles are not
computationally indistinguishable. We first write out the requirement of computa-
tional indistinguishability in full (not using the notion “negligible function”). That
is, X

c
≡ Y if for every nonuniform polynomial-time algorithm D and every polyno-

mial p(·) there exists an N ∈ N such that for every n > N and every a ∈ {0, 1}∗,

|Pr[D(X(a, n)) = 1] − Pr[D(Y(a, n)) = 1]| <
1

p(n)
.

Now, the contradiction of this is that there exists a D and a polynomial p(·) such
that, for every N ∈ N, there exists an n > N and an a ∈ {0, 1}∗ for which

|Pr[D(X(a, n)) = 1] − Pr[D(Y(a, n)) = 1]| ≥
1

p(n)
.
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Stated in short, there exists a D and a polynomial p(·) such that, for an infinite
number of n’s, there exists an a ∈ {0, 1}∗ for which

|Pr[D(X(a, n)) = 1] − Pr[D(Y(a, n)) = 1]| ≥
1

p(n)
.

In particular, this means that for every such n there can be a different a. Now, in
order to carry out a reduction that breaks some cryptographic primitive or assump-
tion if the ensembles are not computationally indistinguishable, it is necessary for
the reduction to know the value of a associated with its given n. The value a associ-
ated with n must therefore be written on the advice tape of the reduction algorithm,
making it inherently nonuniform.

Order of quantifiers for computational indistinguishability. We observe that the
definition of computational indistinguishability above is not the same as saying that
for every a ∈ {0, 1}∗ it holds that {X(a, n)}n∈N

c
≡ {Y(a, n)}n∈N. In order to see why,

observe that this formulation here guarantees that for every a and every nonuniform
probabilistic polynomial-time D, there exists a negligible function µ such that for
every n, D distinguishes X(a, n) from Y(a, n) with probability at most µ(n). This
means that there can be a different negligible function for every a, and this function
can even depend on a. In particular, consider the negligible function µa that equals 1
for every n < 2|a| and equals 2−n for every n ≥ 2|a|, and assume that for every a ∈
{0, 1}∗ the function µa is taken. Such a function meets the definition requirements.
However, this notion is too weak to be of use. For example, zero knowledge would
become trivial for all languages in NP since the simulator could output ⊥ if n < 2|x|

where x is the statement being proven, and can just find the witness in the case that
n ≥ 2|x|. This problem does not arise with the actual definition because it requires
that there exists a single negligible function for all values of a ∈ {0, 1}∗.

6.3 The Basic Paradigm – Semantic Security
The birth of complexity-based cryptography (or “provable security”) began with the
first rigorous definition of the security of encryption [24]. The formulation captures
the notion that nothing is learned about the plaintext from the ciphertext. As we
discussed in the Introduction, this is actually very nontrivial to formalize. Since we
have motivated this definition in the Introduction, we proceed directly to present it.

The definition allows the length of the plaintext to depend on the security param-
eter, and allows for arbitrary distributions over plaintexts (as long as the plaintexts
sampled are of polynomial length). The definition also takes into account an ar-
bitrary auxiliary information function h of the plaintext that may be leaked to the
adversary through other means (e.g., because the same message x is used for some
other purpose as well). The aim of the adversary is to learn some function f of the
plaintext, from the ciphertext and the provided auxiliary information. According to
the definition, it should be possible to learn the same information from the auxiliary
information alone (and from the length of the plaintext), and without the ciphertext.
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Definition 6.3.1 (Def. 5.2.1 in [18]). A private-key encryption scheme (G, E,D) is
semantically secure (in the private-key model) if for every nonuniform probabilistic
polynomial-time algorithm A there exists a nonuniform probabilistic polynomial-
time algorithm A′ such that for every probability ensemble {Xn}n∈N with |Xn| ≤

poly(n), every pair of polynomially-bounded functions f , h : {0, 1}∗ → {0, 1}∗, every
positive polynomial p(·) and all sufficiently large n:

Pr
k←G(1n)

[
A(1n, Ek(Xn), 1|Xn |, h(1n, Xn)) = f (1n, Xn)

]
< Pr

[
A′(1n, 1|Xn |, h(1n, Xn)) = f (1n, Xn)

]
+

1
p(n)

.

(The probability in the above terms is taken over Xn as well as over the internal coin
tosses of the algorithms G, E, and A or A′.)

Observe that the adversary A is given the ciphertext Ek(Xn) as well as auxiliary
information h(1n, Xn), and attempts to guess the value of f (1n, Xn). Algorithm A′
also attempts to guess the value of f (1n, Xn), but is given only h(1n, Xn) and the
length of Xn. The security requirement states that A′ can correctly guess f (1n, Xn)
with almost the same probability as A. Intuitively, then, the ciphertext Ek(Xn) does
not reveal any information about f (1n, Xn), for any f , since whatever can be learned
by A (given the ciphertext) can be learned by A′ (without the ciphertext).

Semantic security as simulation. Although the definition does not explicitly men-
tion “simulation” or an ideal world, the definition follows this exact paradigm. In the
world in which A′ resides, it is given only the auxiliary information and plaintext
length, and not the ciphertext. Thus, A′ resides in an ideal world where, trivially,
anything that it learns is from the auxiliary information and plaintext length only.
The proof that A′ can learn as much as A can learn is exactly the comparison be-
tween the real world and the ideal world, as discussed in the Introduction.

It is now possible to explain why this ideal/real world comparison is called sim-
ulation. The reason is that the proof technique used to show that a scheme meets a
definition formalized in this way is simulation. Let us examine how one would go
about proving that an encryption scheme meets Definition 6.3.1. The main question
is how can one construct a machine A′ that outputs f (1n, Xn) with almost the same
probability as A? How can A′ even know what A does? The answer is that A′ sim-
ulates an execution of A and outputs what A does. If A′ could perfectly simulate
such an execution—by providing A with its expected inputs—then A′ would output
f (1n, Xn) with exactly the same probability as A would. However, clearly A′ cannot
do this since it does not receive Ek(Xn) for input. This is solved by having A′ give
A an encryption of garbage instead, as follows:

Simulator A′: Upon input 1n, 1|Xn |, h = h(1n, Xn), algorithm A′ works as follows:

1. A′ runs the key generation algorithm G(1n) in order to receive k (note that A′ indeed
needs to be given 1n in order to do this).

2. A′ computes c = Ek

(
0|Xn |

)
as an encryption of “garbage” (note that A′ indeed needs

to be given 1|Xn | in order to do this).
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3. A′ runs A(1n, c, 1|Xn |, h) and outputs whatever A outputs.

The simulation that A′ runs is clearly flawed; instead of giving A an encryption of
Xn it gives A an encryption of zeroes. However, if encryptions are indistinguishable,
then A should output f (1n, Xn) with approximately the same probability when given
Ek(Xn) as when given Ek

(
0|Xn |

)
. Otherwise, it would be possible to distinguish such

encryptions by seeing whether A succeeds in outputting f (1n, Xn) or not. Therefore,
such a proof proceeds by showing that A indeed cannot distinguish between two
such encryptions. For example, if the encryption works by XORing the plaintext
with the output of a pseudorandom generator, then the reduction works by showing
that any nonnegligible difference between the probability that A correctly outputs
f (1n, Xn) in the two cases can be converted into a distinguisher that distinguishes the
output of the pseudorandom generator from random with nonnegligible probability.

This modus operandi is actually typical of all simulation-based proofs. The simu-
lator somehow simulates an execution for the adversary while handing it “garbage”
that looks indistinguishable. Then, the proof proceeds by showing that the simula-
tion is “good”, or else the given assumption can be broken.

6.4 Secure Computation – Simulation for Semi-honest
Adversaries

6.4.1 Background
The model that we consider here is that of two-party computation in the presence of
static semi-honest adversaries. Such an adversary controls one of the parties (stati-
cally, and so at the onset of the computation) and follows the protocol specification
exactly. However, it may try to learn more information than allowed by looking
at the transcript of messages that it received and its internal state. Note that this
is a very weak adversary model; if the adversary does anything not according to
specification—even just choosing its random tape in a non-random way—then it
may be able to completely break the protocol (and there are actual examples of
natural protocols with this property). Nevertheless, a protocol that is secure in the
presence of semi-honest adversaries does guarantee that there is no inadvertent leak-
age of information; when the parties involved essentially trust each other but want to
make sure that no record of their input is found elsewhere, then this can suffice. Be-
yond this, protocols that are secure for semi-honest adversaries are often designed
as the first step towards achieving stronger notions of security.

We note that it is much easier to define and prove security for semi-honest ad-
versaries than for malicious adversaries, since we know exactly what the adversary
will do (it just follows the protocol specification).

6.4.2 Defining Security for Semi-honest Adversaries

Two-party computation. A two-party protocol problem is cast by specifying a
possibly random process that maps pairs of inputs to pairs of outputs (one for each
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party). We refer to such a process as a functionality and denote it f : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = ( f1, f2). That is, for every pair of inputs x, y ∈
{0, 1}n, the output pair is a random variable ( f1(x, y), f2(x, y)) ranging over pairs of
strings. The first party (with input x) wishes to obtain f1(x, y), and the second party
(with input y) wishes to obtain f2(x, y).

Privacy by simulation. As expected, we wish to formalize the idea that a protocol
is secure if whatever can be computed by a party participating in the protocol can
be computed based on its input and output only. This is formalized according to
the simulation paradigm by requiring the existence of a simulator who generates
the view of a party in the execution. However, since the parties here have input and
output, the simulator must be given a party’s input and output in order to generate
the view. Thus, security here is formalized by saying that a party’s view in a protocol
execution be simulatable given its input and output. This formulation implies that
the parties learn nothing from the protocol execution beyond what they can derive
from their input and prescribed output.

One important point to note is that, since the parties are semi-honest, it is guar-
anteed that they use the actual inputs written on their input tapes. This is important
since it means that the output is well defined, and not dependent on the adversary.
Specifically, for inputs x, y, the output is defined to be f (x, y), and so the simulator
can be given this value. As we will see, this is very different in the case of mali-
cious adversaries, for the simple reason that a malicious adversary can ignore the
input written on the input tape and can take any other input. (This is similar to the
fact that a malicious verifier in zero knowledge can ignore its random tape and use
internal hardcoded randomness instead.)

Definition of security. We begin with the following notation:

• Let f = ( f1, f2) be a probabilistic polynomial-time functionality and let π be
a two-party protocol for computing f . (Throughout, whenever we consider a
functionality, we always assume that it is polynomially time computable.)

• The view of the i-th party (i ∈ {1, 2}) during an execution of π on (x, y) and
security parameter n is denoted by viewπ

i (x, y, n) and equals (w, ri; mi
1, ...,m

i
t),

where w ∈ {x, y} (its input depending on the value of i), ri equals the contents
of the i-th party’s internal random tape, and mi

j represents the j-th message that
it received.

• The output of the i-th party during an execution of π on (x, y) and secu-
rity parameter n is denoted by outputπi (x, y, n) and can be computed from its
own view of the execution. We denote the joint output of both parties by
outputπ(x, y, n) = (outputπ1(x, y, n), outputπ2(x, y, n)).

Definition 6.4.1. Let f = ( f1, f2) be a functionality. We say that π securely com-
putes f in the presence of static semi-honest adversaries if there exist proba-
bilistic polynomial-time algorithms S1 and S2 such that{

(S1(1n, x, f1(x, y)), f (x, y))
}

x,y,n

c
≡

{
(viewπ

1(x, y, n), outputπ(x, y, n))
}

x,y,n
, and{

(S2(1n, y, f2(x, y)), f (x, y))
}

x,y,n

c
≡

{
(viewπ

2(x, y, n), outputπ(x, y, n))
}

x,y,n
,
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where x, y ∈ {0, 1}∗ such that |x| = |y|, and n ∈ N.

Observe that according to the definition, it is not enough for the simulator S i to
generate a string indistinguishable from viewπ

i (x, y). Rather, the joint distribution of
the simulator’s output and the functionality output f (x, y) = ( f1(x, y), f2(x, y)) must
be indistinguishable from (viewπ

i (x, y), outputπ(x, y)). This is necessary for proba-
bilistic functionalities. In particular, consider the case that the parties wish to se-
curely compute some randomized functionality f (x, y), where the parties receive
different output. For example, let x and y be lists of data elements, and let f be
a functionality that outputs an independent random sample of x ∪ y of some pre-
determined size to each party. Now, consider a protocol that securely outputs the
same random sample to both parties (and where each party’s view can be simu-
lated). Clearly, this protocol should not be secure. In particular, party P1 should
have no information about the sample received by P2, and vice versa. Now, con-
sider a simpler definition of security which compares the distribution generated by
the simulator only with the view of the adversary (and not the joint distribution).
Specifically, the definition requires that{

S1(1n, x, f1(x, y))
}

x,y,n

c
≡

{
viewπ

1(x, y, n)
}

x,y,n
, and{

S2(1n, y, f2(x, y))
}

x,y,n

c
≡

{
viewπ

2(x, y, n)
}

x,y,n
.

It is not difficult to see that the aforementioned protocol that securely computes the
same output to both is secure under this definition. This is due to the fact that each
party’s view consists of a random sample of x ∪ y, as required, and this view can be
simulated. The requirement that each sample be independent cannot be expressed
by looking at each output separately. This therefore demonstrates that the definition
is not satisfactory (since a clearly insecure protocol is “secure by definition”). For
this reason, Definition 6.4.1 is formulated by looking at the joint distribution.

A simpler formulation for deterministic functionalities. In the case where the
functionality f is deterministic, the aforementioned simpler definition can be used
(along with an additional correctness requirement) since the problem described
above does not arise. We first present the definition, and then explain why it suf-
fices.

The definition has two requirements (a) correctness, meaning that the output of
the parties is correct, and (b) privacy, meaning that the view of each party can be
(separately) simulated. Formally, correctness is the requirement that there exists a
negligible function µ such that for every x, y ∈ {0, 1}∗ and every n,

Pr
[
outputπ(x, y, n) , f (x, y)

]
≤ µ(n),

and privacy is the requirement that there exist probabilistic polynomial-time S 1 and
S 2 such that
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S1(1n, x, f1(x, y))

}
x,y∈{0,1}∗;n∈N

c
≡

{
viewπ

1(x, y, n)
}

x,y∈{0,1}∗;n∈N
, (6.1){

S2(1n, y, f2(x, y))
}

x,y∈{0,1}∗;n∈N

c
≡

{
viewπ

2(x, y, n)
}

x,y∈{0,1}∗;n∈N
. (6.2)

For the case of deterministic functionalities f , any protocol that meets the correct-
ness and privacy requirements is secure by Definition 6.4.1. In order to see this,
observe that the distinguisher is given the indices x, y of the ensemble and so can
compute f (x, y) by itself. Thus,{

S1(1n, x, f1(x, y))
}

x,y∈{0,1}∗;n∈N

c
≡

{
viewπ

1(x, y, n)
}

x,y∈{0,1}∗;n∈N
(6.3)

implies that{
(S1(1n, x, f1(x, y)), f (x, y))

}
x,y,n

c
≡

{
(viewπ

1(x, y, n), f (x, y))
}

x,y,n
. (6.4)

In addition, the correctness requirement guarantees that outputπ(x, y, n) is computa-
tionally indistinguishable from f (x, y), implying that{

(viewπ
1(x, y, n), f (x, y))

}
x,y,nN

c
≡

{
(viewπ

1(x, y, n), outputπ(x, y, n))
}

x,y,n
. (6.5)

Combining Equations (6.4) and (6.5), we have that{
(S1(1n, x, f1(x, y)), f (x, y))

}
x,y,n

c
≡

{
(viewπ

1(x, y, n), outputπ(x, y, n))
}

x,y,n
,

and so the protocol meets Definition 6.4.1. This argument works for deterministic
functionalities, but does not work for probabilistic ones. The reason is that Eq. (6.4)
needs to be read as the same sample of f (x, y) = ( f1(x, y), f2(x, y)) given to S1
and appearing in the random variable next to it in the ensemble. However, when
we say that the distinguisher can compute f (x, y) by itself, it is not true that it can
sample f (x, y) so that f1(x, y) is the same input given to the simulator. This problem
does not arise for deterministic functionalities, since f (x, y) is a single well-defined
value. Thus, the claim that Eq. (6.3) implies Eq. (6.4) holds only for deterministic
functionalities. See [18, Section 7.2.2] for more discussion on these definitions.

The fact that Definition 6.4.1 implies privacy and correctness is immediate. Thus,
for deterministic functionalities, these formulations are equivalent.

Triviality for semi-honest adversaries. We remark that many problems become
trivial in the case of semi-honest adversaries. For example, zero knowledge is trivial
since the “prover” can just say this is correct. Since all parties are semi-honest,
including the prover, this guarantees that the statement is indeed correct. Another
example is commitments: in order to “commit” to a value x, the committer can
simply store it locally without sending anything. Then, in order to “decommit”, the
committer can just send the value. This protocol is perfectly hiding. In addition, it
is perfectly binding since a semi-honest adversary follows the specification and so
will always send the correct value. Finally, if a number of parties wish to toss an
unbiased coin, then one of them can simply locally toss a coin and send the result
to all the others. Since the party tossing the coin is semi-honest, this guarantees that
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the coin is unbiased. Having said this, we stress that standard secure computation
tasks—where multiple parties with inputs wish to compute a joint function of their
inputs—are certainly not trivial.

Auxiliary information. In Section 6.3, and in the definition of security for mali-
cious adversaries in Section 6.6, auxiliary information is explicitly provided to the
adversary. In contrast, here it appears that there is no auxiliary information. How-
ever, auxiliary input is implicit in the definition since computational indistinguisha-
bility with respect to nonuniform adversaries is required. Thus, the distinguisher is
given auxiliary input. Note that there is no need to provide any auxiliary information
to the adversary running the protocol, since it is semi-honest and thus follows the
exact same instructions irrespective of any auxiliary input.

6.4.3 Oblivious Transfer for Semi-honest Adversaries
In this section, we consider a standard two-party functionality, where both parties
have private inputs and wish to compute an output. We will show how to securely
compute the bit oblivious transfer functionality, defined by f ((b0, b1), σ) = (λ, bσ),
where b0, b1, σ ∈ {0, 1} [36, 16]. Stated in words, P1 has a pair of input bits (b0, b1)
and P2 has a choice bit σ. The function is such that P1 receives no output (denoted
by the empty string λ), and in particular learns nothing about σ. In contrast, P2
receives the bit of its choice bσ and learns nothing about the other bit b1−σ. This is
called “oblivious transfer” since the first party has two inputs and sends exactly one
of the inputs to the receiver, according to the receiver’s choice, without knowing
which is sent. We present the protocol of [16] in Protocol 6.4.2, which relies on
enhanced trapdoor permutations.

Background – enhanced trapdoor permutations [18, Appendix C.1]. Infor-
mally, a family of trapdoor permutations is a family of bijective functions with the
property that randomly sampled functions are hard to invert on randomly sampled
values (in its range). However, there exists a trapdoor so that given the trapdoor, the
function can be efficiently inverted. Enhanced trapdoor permutations have the addi-
tional property that it is possible to sample values from the range, so that it is hard
to invert the function on these values even when given the coins used for sampling.
Formally, a collection of trapdoor permutations is a collection of functions { fα}α ac-
companied by four probabilistic polynomial-time algorithms I, S , F, F−1 such that:

1. I(1n) selects a random n-bit index α of a permutation fα along with a corre-
sponding trapdoor τ. Denote by I1(1n) the α-part of the output.

2. S (α) samples an (almost uniform) element in the domain (equivalently, the
range) of fα. We denote by S (α; r) the output of S (α) with random tape r; for
simplicity we assume that r ∈ {0, 1}n.

3. F(α, x) = fα(x), for α in the range of I1 and x in the range of S (α).
4. F−1(τ, y) = f −1

α (y) for y in the range of fα and (α, τ) in the range of I.

Then, the family is a collection of enhanced trapdoor permutations if for ev-
ery nonuniform probabilistic polynomial-time adversary A there exists a negligible
function µ such that for every n,
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Pr
[
A(1n, α, r) = f −1

α (S (α; r))
]
≤ µ(n),

where α ← I1(1n) and r ∈R {0, 1}n is random. Observe that given α and r, A can
compute y = S (α; r). Thus, A’s task is to invert y, when it is also given the random
coins used by S to sample y. See [18, Appendix C.1] for more discussion on the
definition and for constructions of enhanced trapdoor permutations.

We will also refer to a hard-core predicate B of a family of enhanced trapdoor per-
mutations [17, Section 2.5]. We say that B is a hard-core predicate of (I, S , F, F−1)
if for every nonuniform probabilistic polynomial-time adversary A there exists a
negligible function µ such that for every n,

Pr
[
A(1n, α, r) = B

(
α, f −1

α (S (α; r))
)]
≤

1
2

+ µ(n).

The protocol idea. The idea behind the protocol is that P1 chooses an enhanced
trapdoor permutation, and sends the permutation description (without the trapdoor)
to P2. Then, P2 samples two elements y0, y1 where it knows the preimage of yσ but
does not know the preimage of y1−σ. Party P2 sends y0, y1 to P1, who inverts them
both using the trapdoor, and sends b0 masked by the hard-core bit of f −1(y0), and
b1 masked by the hard-core bit of f −1(y1). Party P2 is able to obtain bσ since it
knows f −1(yσ), but is unable to obtain b1−σ since it does not know f −1(y1−σ) and
so cannot guess its hard-core bit with probability nonnegligibly greater than 1/2. In
addition, P1 sees only y0, y1 which are identically distributed (even though P2 gen-
erates them differently), and so learns nothing about P2’s bit σ. See Protocol 6.4.2
for the protocol description.

PROTOCOL 6.4.2 (Oblivious transfer [16])

• Inputs: P1 has b0, b1 ∈ {0, 1} and P2 has σ ∈ {0, 1}. (Both parties have (I, S , F, F−1)
defining a collection of enhanced trapdoor permutations and a hard-core predicate
B.)

• The protocol:

1. P1 runs I(1n) to obtain a permutation–trapdoor pair (α, τ). P1 sends α to P2.
2. P2 runs S (α) twice; denote the first value obtained by xσ and the second by

y1−σ. Then, P2 computes yσ = F(α, xσ) = fα(xσ), and sends y0, y1 to P1.
3. P1 uses the trapdoor τ and computes x0 = F−1(α, y0) = f −1

α (y0) and x1 =

F−1(α, y1) = f −1
α (y1). Then, it computes β0 = B(α, x0)⊕b0 and β1 = B(α, x1)⊕

b1, where B is a hard-core predicate of f . Finally, P1 sends (β0, β1) to P2.
4. P2 computes bσ = B(α, xσ) ⊕ βσ and outputs the result.

We prove the following theorem:

Theorem 6.4.3. Assume that (I, S , F, F−1) constitutes a family of enhanced trapdoor
permutations with a hard-core predicate B. Then, Protocol 6.4.2 securely computes
the functionality f ((b0, b1), σ) = (λ, bσ) in the presence of static semi-honest adver-
saries.
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Proof: Since this is the first proof in this tutorial, we prove it in excruciating
detail; in later proofs we will not necessarily work through all the fine details. The
oblivious transfer functionality is deterministic, and thus it suffices to use the simpler
formulation of security. Correctness is immediate, and we therefore proceed to the
simulation. We construct a separate simulator for each party (S1 for P1’s view and
S2 for P2’s view, as in Definition 6.4.1).

Consider first the case that P1 is corrupted. Observe that P1 receives no output.
Thus, we merely need to show that a simulator can generate the view of the incoming
messages received by P1. In the protocol, P1 receives a single message consisting
of a pair of values y0, y1 in the domain of fα. Formally, S1 is given (b0, b1) and 1n

and works as follows:

1. S1 chooses a uniformly distributed random tape r for P1 (of the length required,
which is what is needed to run I).

2. S1 computes (α, τ)← I(1n; r), using the r from above.
3. S1 runs S (α) twice with independent randomness to sample values y0, y1.
4. Finally, S1 outputs ((b0, b1), r; (y0, y1)); the pair (y0, y1) simulates the incoming

message from P2 to P1 in the protocol.

Note that S1 cannot sample y0, y1 in the same way as the honest P2 since it does
not know P2’s input σ. Nevertheless, the definition of a collection of trapdoor per-
mutations states that S (α) outputs a value that is almost uniformly distributed in the
domain of fα (and the domain equals the range, since it is a permutation). Thus, it
follows that the distribution over F(α, S (α)) is statistically close to the distribution
over S (α). This implies that

{(F(α, x0), y1)}
s
≡ {(y0, y1)}

s
≡ {(y0, F(α, x1))},

where α is in the range of I, and x0, x1, y0, y1 are all samples of S (α). The view of P1
includes a pair as above, along with a uniformly generated tape. Note that the pair
(F(α, x0), y1) is exactly what P1 sees when P2 has input σ = 0, that the pair (y0, y1)
is the simulator-generated view, and that the pair (y0, F(α, x1)) is exactly what P1
sees when P2 has input σ = 1. Thus, we conclude that for every σ ∈ {0, 1},

{S1(1n, (b0, b1))}
s
≡ {viewπ

1((b0, b1), σ)}

as required.
Next, we proceed to the case that P2 is corrupted, and construct a simulator S2.

In this case, we need to do something very different in the simulation. In particular,
we need to construct a view so that the output defined by that view equals the real
output of the protocol. (Observe that a party’s view includes its input, random tape,
and all incoming messages. Thus, by running the protocol instructions on this view,
an output is obtained. This output has to be the “correct” one, or the distinguisher
can easily see that it is not the view of a real execution.) Recall that S2 receives
P2’s input and output, and thus is able to achieve the above. In this protocol, this
is achieved by having S2 set βσ = B(α, xσ) ⊕ bσ, like the real P1. In contrast, S2 is
unable to compute β1−σ correctly, since it does not know b1−σ.
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Simulator S2 receives for input 1n plus P2’s input and output bits (σ, bσ). Then:

1. S2 chooses a uniform random tape for P2. Since P2’s randomness is for running
S (α) twice, we denote the random tape by r0, r1.1

2. S2 runs I(1n) and obtains (α, τ).
3. S2 computes xσ = S (α; rσ) and y1−σ = S (α; r1−σ), and sets x1−σ = F−1(τ, y1−σ).
4. S2 sets βσ = B(α, xσ) ⊕ bσ, where bσ is P2’s output received by S2.
5. S2 sets β1−σ = B(α, x1−σ).
6. S2 outputs (σ, r0, r1;α, (β0, β1)).

First, note that by putting the “σ-value” first, the real view of P2 in an execution can
be written as

viewπ
2((b0, b1), σ) =

(
σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ) ⊕ b1−σ)

)
,

where x0 = S (α; r0) and x1 = S (α; r1). In contrast, the output of the simulator
written in this way is

S2(1n, σ, bσ) =
(
σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ))

)
,

where x0 = S (α; r0) and x1 = S (α; r1). Thus, these are identical when b1−σ = 0.
Formally, when b1−σ = 0, for every σ, bσ ∈ {0, 1} and every n{

S2(1n, σ, bσ)
}
≡

{
viewπ

1((b0, b1), σ)
}
.

It therefore remains to show that the view is indistinguishable in the case that
b1−σ = 1. The only difference between the two is whether β1−σ = B(α, x1−σ) or
β1−σ = B(α, x1−σ) ⊕ 1. Thus, we need to show that for every σ, bσ ∈ {0, 1},{(

σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ))
)}

c
≡

{(
σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ) ⊕ 1)

)}
,

where the distribution on the left is that generated by S2 and the distribution on the
right is the real one when b1−σ = 1. Assume by contradiction that there exists a
nonuniform probabilistic polynomial-time distinguisher D, a polynomial p(·) and
an infinite series of tuples (σ, bσ, n) such that

Pr[D(σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ))) = 1]

− Pr[D(σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ) ⊕ 1)) = 1] ≥
1

p(n)
. (6.6)

(Without loss of generality, we assume that for infinitely many n’s, D outputs 1
with greater or equal probability when receiving B(α, x1−σ) than when receiving
B(α, x1−σ) ⊕ 1.) We construct a nonuniform probabilistic polynomial-time guessing
algorithm A that uses D to guess the hard-core predicate.

1 In almost all cases, the simulation begins by the simulator choosing a uniform random tape for
the party.
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Algorithm A is givenσ, bσ on its advice tape, and receives (1n, α, r) for input. A’s
aim is to guess B(α, S (α; r)). Algorithm A sets r1−σ = r (from its input), chooses a
random rσ, and computes xσ = S (α; rσ) and βσ = B(α, xσ)⊕ bσ. Finally, A chooses
a random β1−σ, invokes D on input (σ, r0, r1;α, (βσ, β1−σ)) and outputs β1−σ if D
outputs 1, and 1 − β1−σ otherwise. Observe that if A guesses β1−σ correctly then it
invokes D on (σ, r0, r1;α, (B(α, xσ)⊕bσ, B(α, x1−σ))), and otherwise it invokes D on
(σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ) ⊕ 1)). Thus, if D outputs 1, then A assumes
that it guessed β1−σ correctly (since D outputs 1 with higher probability when given
B(α, x1−σ) than when given B(α, x1−σ) ⊕ 1). Otherwise, it assumes that it guessed
β1−σ incorrectly and so outputs 1 − β1−σ. It therefore follows that

Pr[A(1n, α, r) = B(α, x)]

=
1
2
· Pr[A(1n, α, r) = B(α, x) | β1−σ = B(α, x)]

+
1
2
· Pr[A(1n, α, r) = B(α, x) | β1−σ , B(α, x)]

=
1
2
· Pr[D(σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ))) = 1]

+
1
2
· Pr[D(σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ) ⊕ 1)) = 0]

=
1
2
· Pr[D(σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ))) = 1]

+
1
2
· (1 − Pr[D(σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ) ⊕ 1)) = 1])

=
1
2

+
1
2
· Pr[D(σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ))) = 1]

−
1
2
· Pr[D(σ, r0, r1;α, (B(α, xσ) ⊕ bσ, B(α, x1−σ) ⊕ 1)) = 1].

By the contradicting assumption in Eq. (6.6), we have that

Pr[A(1n, α, r) = B(α, x)] ≥
1
2

+
1

2p(n)
,

in contradiction to the assumption that B is a hard-core predicate of f . We conclude
that S2’s output is computationally indistinguishable from the view of P2 in a real
execution. �

Discussion. We remark that this protocol is a good example of the fact that security
in the presence of semi-honest adversaries guarantees nothing if the corrupted party
does not behave completely honestly. In particular, if P2 generates both y0 and y1
by choosing x0, x1 and computing y0 = F(α, x0) and y1 = F(α, x1), then it will learn
both b0 and b1. Furthermore, P1 has no way of detecting this at all.

This concludes our treatment of semi-honest adversaries. As we have seen, prov-
ing security for semi-honest adversaries requires constructing a simulator that gen-
erates the entire view itself. This view must be a function of the input and output,
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since the view fully defines the output. Unlike in the case of malicious adversaries,
who may behave in an arbitrary way, semi-honest adversaries follow the protocol
specification exactly. Thus, there is no need to “rewind” them or “interact” with
them, in contrast to what we will see in the sequel below.

6.5 Simulating the View of Malicious Adversaries –
Zero Knowledge

In this section we will consider simulation in the context of zero-knowledge proof
systems. Unlike what we have seen until now, simulation for zero knowledge con-
siders malicious adversaries (in particular, malicious verifiers) who may behave ar-
bitrarily and not necessarily according to the protocol specification. However, as we
have mentioned in the Introduction, in zero knowledge there are no private inputs
or output. Thus, the simulator needs to generate the view of the verifier in a proof,
without the additional complexity of considering inputs and outputs. As we will see
below, this can already be challenging.

We will begin by defining zero knowledge and commitments in Sections 6.5.1
and 6.5.2, respectively. Then, in Section 6.5.3, we present a non-constant round
zero-knowledge proof for any language in NP . Additional proof techniques are
needed to achieve constant-round zero knowledge, as we show in Section 6.5.4.
Finally, we highlight the difference between semi-honest and malicious adversaries
by comparing with honest-verifier zero knowledge (which considers semi-honest
verifiers) in Section 6.5.5.

6.5.1 Defining Zero Knowledge

Notation. Let A be a probabilistic polynomial-time machine. We denote by A(x, y, r)
the output of the machine A on input x, auxiliary input y and random tape r. In con-
trast to the rest of this tutorial where the parties are assumed to be polynomial time
in a separate security parameter n (see Section 6.2), in this section we set n = |x|
and so A runs in time that is polynomial in the length of the statement x. We do this
in order to be consistent with the standard definitions of zero knowledge.

Let A and B be interactive machines. We denote by outputB(A(x, y, rA), B(x, z, rB))
the output of party B in an interactive execution with party A, on public in-
put x, where A has auxiliary input y and random tape rA, and B has auxiliary
input z and random tape rB. We will sometimes drop rA or rB from this no-
tation, which will mean that the random tape is not fixed but rather chosen at
random. For example we denote by outputB(A(x, y), B(x, z)) the random variable
outputB(A(x, y,Um), B(x, z,U′m′ )) where m (resp., m′) is the number of random bits
that A (resp., B) uses on input of size |x|.

The definition. Loosely speaking, an interactive proof system for a language L
involves a prover P and a verifier V , where upon common input x, the prover P
attempts to convince V that x ∈ L. We note that the prover is often given some



292 Yehuda Lindell

private auxiliary input that “helps” it to prove the statement in question to V . Such
a proof system has the following two properties:

1. Completeness: this states that when honest P and V interact on common input
x ∈ L, then V is convinced of the correctness of the statement that x ∈ L (except
with at most negligible probability).

2. Soundness: this states that when V interacts with any (cheating) prover P∗ on
common input x < L, then V will be convinced with at most negligible proba-
bility. (Thus V cannot be tricked into accepting a false statement.)

A formal definition of interactive proofs can be found in [17, Section 4.2].
We now recall the definition of zero knowledge [25]. Informally speaking, a proof

is zero knowledge if there exists a simulator that can generate the view of the verifier
from the statement alone. We remark that the corrupted verifier may output anything
it wishes, including its view. Thus, one may equivalently consider the view of the
verifier and its output. For the sake of this tutorial, we will only consider black-
box zero knowledge [23, 17], where the simulator receives only oracle access to the
verifier. In addition, we will consider only NP languages. We therefore present this
definition only.

Definition 6.5.1. Let (P,V) be an interactive proof system for an NP language L,
and let RL be the associated NP-relation. We say that (P,V) is black-box com-
putational zero knowledge if there exists a probabilistic polynomial-time oracle
machine S such that for every nonuniform probabilistic polynomial-time algorithm
V∗ it holds that{

outputV∗ (P(x,w),V∗(x, z))
}
(x,w)∈RL,z∈{0,1}∗

c
≡

{
SV∗(x,z,r,·)(x)

}
x∈L,z∈{0,1}∗

,

where r is uniformly distributed, and where V∗(x, z, r, ·) denotes the next-message
function of the interactive machine V∗ when the common input x, auxiliary input z
and random tape r are fixed (i.e., the next message function of V∗ receives a message
history m and outputs V∗(x, z, r,m)).

In some cases, the simulator (and verifier) are allowed to run in expected polynomial-
time and not strict polynomial time. We will refer to this later.

We remark that in our definition above, we fix the random tape of the verifier.
With very few exceptions (e.g., the non-black box uniform zero-knowledge protocol
of [1]), the ability to set the random tape of the adversary does not help. This is
due to the fact that the adversary can completely ignore its random tape, and can
use a pseudorandom function applied to its history with an internally hardcoded
key. Thus, in most cases of simulation, one can just ignore the random tape. Note
that if the definition is not black box, then it is necessary to choose a random tape
for the adversary. However, in most cases, this can just be chosen to be uniformly
distributed of the appropriate length, and then ignored.
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6.5.2 Preliminaries – Commitment Schemes
We will use commitment schemes in a number of places throughout the tutorial.
We denote by Com a noninteractive perfectly binding commitment scheme. Let
c = Comn(x; r) denote a commitment to x using random string r and with security
parameter n. We will typically omit the explicit reference to n and will write c =

Com(x; r). Let Com(x) denote a commitment to x using uniform randomness. Let
decom(c) denote the decommitment value of c; to be specific, if c = Com(x; r),
then decom(c) = (x, r).

A formal definition of commitment schemes can be found in [17, Section 4.4.1].
Informally, perfect binding is formalized by saying that the sets of all commitments
to different values are disjoint; that is, for all x1 , x2 it holds that Cx1 ∩ Cx2 = ∅,
where Cx1 = {c | ∃r : c = Com(x1; r)} and Cx2 = {c | ∃r : c = Com(x2; r)}.
Computational hiding can be formalized in multiple ways, and basically states
that commitments to different strings are computationally indistinguishable. For
bit commitments, this can easily be stated by requiring that C0

c
≡ C1, where

Cb = {Com(b; Un)}n∈N is the ensemble of commitments to bit b.

LR-security of commitments. One of the proofs below is made significantly easier
by using a definition of security of commitments that is both adaptive and already
includes security for multiple commitments. We present a definition that is based
on the LR-oracle definition of encryption [4]. The LR-oracle (left or right oracle)
definition is formulated by providing the adversary with an oracle that receives two
equal-length inputs, and either always returns a commitment to the first (left) input
or always returns a commitment to the second (right) input. The task of the adversary
is to determine whether it is receiving left or right commitments. This definition is
much easier to work with, as we will see below, partly because the hybrid argument
relating to multiple commitments is already built in. We first define the oracle as

LRb
Com(x0, x1) =

{
Com(xb) if |x0| = |x1|

⊥ otherwise , where Com(x) denotes a (noninteractive)

commitment to x. We define the LR experiment with a noninteractive perfectly bind-
ing commitment scheme Com and an adversary A who is given LR0

Com or LR1
Com

and attempts to distinguish between these cases. The experiment is as follows:

Experiment LR-commitCom,A(1n):

1. Choose a random b← {0, 1}.

2. Set b′ ← ALRb
Com(·,·)(1n).

3. Output 1 if and only if b′ = b.

The following can be proven via a standard hybrid argument:

Theorem 6.5.2. If Com is a noninteractive perfectly binding commitment scheme
with security for nonuniform adversaries, then for every nonuniform probabilistic
polynomial-time adversary A, there exists a negligible function µ such that

Pr
[
LR-commitCom,A(1n) = 1

]
≤

1
2

+ µ(n).

We remark that nonuniform security is needed, as we will see below.
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6.5.3 Non-constant-Round Zero Knowledge
Consider the zero-knowledge proofs for NP of 3-coloring [22] and Hamiltonic-
ity [6]. Both of these protocols work by the prover first sending commitments. Next,
the verifier sends a “challenge” asking the prover to open some of the commit-
ments. Finally, the prover sends the appropriate decommitments, and the verifier
checks that the results are as expected. In the case of 3-coloring, the prover commits
to a random valid coloring, and the verifier asks to open the colors associated with a
single edge. In the case of Hamiltonicity, the prover commits to the adjacency ma-
trix of a random permutation of the graph, and the verifier asks to either open the
entire graph or to open a simple cycle. In both of these cases, if the prover knows
the challenge of the verifier ahead of time, then it can easily prove without knowing
the required NP witness. Let us focus on the 3-coloring case. If the prover does not
know a 3-coloring, then it cannot commit to a valid coloring. Thus, there must be
at least one edge in the graph which assigns the same color to both endpoints of the
edge in the committed coloring by the prover. If the verifier asks to open the colors
of this edge, then the prover will be caught cheating. Thus, the prover can cheat with
probability at most 1/|E| (where E is the set of edges). By repeating the proof n · |E|
times (where n is the number of nodes in the graph), we have that the prover can get

away with cheating with probability at most
(
1 − 1

|E|

)n·|E|
< e−n, which is negligible.

Thus, this proof is sound.

PROTOCOL 6.5.3 (Zero-knowledge proof for 3-coloring)

• Common input: a graph G = (V, E) with V = {v1, . . . , vn}

• Auxiliary input for the prover: a coloring of the graph ψ : V → {1, 2, 3} such that
for every (vi, v j) ∈ E it holds that ψ(vi) , ψ(v j)

• The proof system: Repeat the following n · |E| times (using independent randomness
each time):

1. The prover selects a random permutation π over {1, 2, 3}, defines φ(v) = π(ψ(v))
for all v ∈ V , and computes ci = Com(φ(vi)) for all i. The prover sends the
verifier the commitments (c1, . . . , cn).

2. The verifier chooses a random edge e ∈R E and sends e to the prover.
3. Let e = (vi, v j) be the edge received by the prover. The prover sends

decom(ci), decom(c j) to the verifier.
4. Let φ(vi) and φ(v j) denote the respective decommitment values from ci and

c j. The verifier checks that the decommitments are valid, that φ(vi), φ(v j) ∈
{1, 2, 3}, and that φ(vi) , φ(v j). If not, it halts and outputs 0.

If the checks pass in all iterations, then the verifier outputs 1.

Regarding zero knowledge, observe that in each execution a new random coloring
of the edges is committed to by the prover, and the verifier only sees the colors of
a single edge. Thus, the verifier simply sees two (different) random colors for the
endpoints of the edges each time. This clearly reveals nothing about the coloring of
the graph. We stress that such an argument is insufficient, and we must prove this
intuition by constructing a simulator. The idea behind the simulation here is that if
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the simulator knows the edge to be queried ahead of time, then it can commit to
random different colors on the endpoints of that edge and to garbage elsewhere. By
the hiding property of the commitment scheme, this will be indistinguishable. As
we will see, the simulator will simply repeatedly guess the edge that is to be queried
ahead of time until it is correct.

The rewinding technique (with commitments as envelopes). We begin by de-
scribing how to construct a simulator when we model the commitments as perfect
envelopes that reveal nothing until opened. The key tool for constructing a simulator
is that of rewinding. Specifically, the simulator invokes the verifier, and guesses a
random edge e = (vi, v j) ∈R E with the hope that the verifier will query that edge.
The simulator then sends the verifier (its oracle in the black-box case) commitments
to a coloring whereby vi and v j are given two different random colors in {1, 2, 3} and
zeroes for the rest. If the verifier replies with the edge e′ = e, then the simulator
opens the envelopes for the nodes in e, and the simulation of this iteration is com-
plete. Otherwise, the simulator rewinds the verifier to the beginning of the iteration
and tries again, this time choosing a new random edge. This is repeated until e′ = e
and so the simulator succeeds. (In order to get negligible soundness error, many se-
quential executions of the protocol are run, and so after it succeeds the simulator
proceeds to the next iteration. This essentially means fixing the transcript of incom-
ing messages to this point, and continuing with the residual verifier that is defined
by the fixed transcript prefix.) Since the verifier has no way of knowing which edge
e the simulator chose (since this fact is hidden inside unopened envelopes), the ex-
pected number of repetitions required is |E|, and the probability that more than n · |E|
repetitions are needed is negligible. Note that the distribution over the view of the
verifier in the simulation is identical to its view in a real execution. This is due to the
fact that in both a real proof and in a simulation the verifier sees a set of “envelopes”
and an opening to two different random colors. The difference between the two is
that in a real proof no rewinding took place, in contrast to the simulation. However,
this fact is not evident in the verifier’s final view, and so they both look the same.

This concept of rewinding is often confusing at first sight. We therefore add two
remarks. First, one may wonder how it is possible to “technically” rewind the veri-
fier. In fact, when considering black-box zero knowledge, this is trivial. Specifically,
the simulator is given oracle access to the next-message function V∗(x, z, r, ·) of the
verifier. This means that it provides a transcript m = (m1,m2, . . .) of incoming mes-
sages and receives back the next message sent when V∗ has input x, auxiliary input
z, random tape r and incoming messages m. Now, rewinding is essentially S call-
ing its oracle with (r, (m1,m2,m3)) and then with (r, (m1,m2,m′3)), and so on. It is
worthwhile also translating this notion of rewinding into modern computing terms.
Virtual machines (VMs) are now very common. Snapshots of a VM can be taken
at any time, and it is possible to rewind a VM by simply restoring the snapshot.
The VM then continues from exactly the same state as before, and it has no way
of knowing that this “rewinding” took place. This is exactly what a simulator does
with the verifier.

A second point that is sometimes confusing is why the zero-knowledge property,
and in particular the existence of a simulator, does not contradict soundness. If the
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simulator can prove the theorem without knowing the witness (and possibly even
if the theorem is not true), then what prevents a cheating prover from doing the
same? The answer is that the simulator has additional power that the prover does
not have. In our example above, this power is the ability to rewind the verifier; a
real prover cannot rewind the verifier, in contrast to the simulator. Conceptually,
this makes a lot of sense. The motivation behind the simulation paradigm is that
whatever the verifier can learn in a real interaction with the prover it can learn by
itself. The verifier can indeed generate its view by applying the simulator to itself
and rewinding, as described above. The prover, who is an external entity to the
verifier, cannot do this.

The above analysis and explanation relate to the case that commitments are mod-
eled as ideal envelopes. It is important to stress that this modeling of commitments
is an oversimplification that bypasses the main technical difficulties involved when
proving that the simulation works. First, it is necessary to show that the view of
the verifier is indistinguishable in the simulation and real execution. This requires
a reduction to the hiding property of commitments, since the actual distribution is
very different. In particular, the real prover commits to a valid coloring of the graph,
whereas the commitment in the simulation is to zeroes except for the nodes on the
opened edge. A second, more subtle, issue is that it is required to prove that the sim-
ulation halts successfully within n·|E| attempts, except with negligible probability. In
the “envelopes” case, this is immediate. However, when using actual commitments
that are just computationally hiding, this needs a proof (perfectly hiding commit-
ments could be used, but then the protocol would only be computationally sound,
and a reduction to the computationally binding property of the commitment would
anyway be needed in order to prove soundness). In order to see the issue that arises
here, consider the case of a verifier who can break the commitments. Such a verifier
could work as follows: if the committed values constitute a valid coloring then send
a random edge; otherwise, if they are all zeroes except for two nodes, then send any
edge apart from the one connecting those two nodes. Clearly, when the simulator
works with this verifier, it never succeeds. Now, by the hiding property of commit-
ments, this should not happen. However, it shows that the success of the simulator
also depends on the computational hiding of the commitments, and thus a reduc-
tion to this property is needed as well. Formally, this can be solved by proving—via
a reduction to the hiding property of commitments—that the probability that any
given edge is queried by the verifier when it receives valid-prover commitments in
the first message is negligibly close to the probability that the edge is queried when
it receives (garbage) simulator-generated commitments. Our actual proof will work
differently, since we will first show that there exists a hypothetical simulator who
receives the correct coloring and generates a distribution identical to a real proof,
and then we will show that the actual simulator generates a distribution that is com-
putationally indistinguishable from the hypothetical one. In addition, we prove that
the hypothetical simulator halts successfully within n · |E| attempts except with neg-
ligible probability. Thus, the fact that the actual simulator generates a distribution
that is computationally indistinguishable from the hypothetical one also implies that
it halts successfully within n · |E| attempts, except with negligible probability.
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On dealing with aborts. At some point in the simulation, it is possible that V∗

does not reply with a valid edge. In this case, we have to specify what the simulator
should do. In fact, the protocol itself must specify to the honest prover what to do in
such a case. One strategy is to state that if the verify returns an illegal value, then the
honest prover halts the execution. This certainly works and will be necessary in later
cases (e.g., constant-round zero knowledge), where the prover is unable to proceed
if the verifier does not respond with a valid value. However, in this specific case, the
easiest thing to do is to have the real prover interpret any invalid reply as a default
edge. In this case, the simulator will deal with an invalid message in the same way.
According to this strategy, there are actually no invalid messages from V∗, and this
somewhat simplifies the simulation.

A formal proof of security. We are now ready to prove the zero-knowledge prop-
erty of the 3-coloring protocol (we do not prove soundness since the focus of this
tutorial is on simulation).

Theorem 6.5.4. Let Com be a perfectly binding commitment scheme with security
for nonuniform adversaries. Then, the 3-coloring protocol of [22] is black-box com-
putational zero knowledge.

Proof: We begin by describing the simulator. S is given a graph G = (V, E)
with V = {v1, . . . , vn} and oracle access to some probabilistic polynomial-time
V∗(x, z, r, ·), and works as follows:

1. S initializes the message history transcript m to be the empty string λ.
2. Repeat n · |E| times:

a. S sets j = 1.
b. S chooses a random edge (vk, v`) ∈R E and chooses two random different

colors for vk and v`. Formally, S chooses φ(vk) ∈R {1, 2, 3} and φ(v`) ∈R

{1, 2, 3} \ {φ(vk)}. For all other vi ∈ V \ {vk, v`}, S sets φ(vi) = 0.
c. For every i = 1, . . . , n, S computes ci = Com(φ(vi)).
d. S “sends” the vector (c1, . . . , cn) to V∗. Formally, S queries m concatenated

with this vector to its oracle (indeed S does not interact with V∗ and so
cannot actually “send” it any message). Let e ∈ E be the reply back from
the oracle.

e. If e = (vk, v`), then S completes this iteration by concatenating the commit-
ments (c1, . . . , cn) and (decom(ck), decom(c`)) to m. Formally, S updates
the history string m← (m, (c1, . . . , cn), (decom(ck), decom(c`))).

f. If e , (vk, v`) then S sets j ← j + 1. If j = n · |E|, then S outputs a fail
symbol ⊥. Else (when j , n · |E|), S returns to step 2b (i.e., S tries again
for this i). This return to step 2b is the rewinding of V∗ by the simulator.

3. S outputs whatever V∗ outputs on the final transcript m.

It is clear that S runs in polynomial time, since each repetition runs for at most n · |E|
iterations, and there are n · |E| repetitions.

In order to prove that S generates a transcript that is indistinguishable from a real
transcript, we need to prove a reduction to the security of the commitment scheme.



298 Yehuda Lindell

We begin by constructing an alternative simulator S ′ who is given a valid coloring
ψ as auxiliary input. We stress that S ′ is not a valid simulator, since it is given ψ.
Rather, it is a thought experiment used in the proof. Now, S ′ works in exactly the
same way as S (choosing e at random, rewinding, and so on) except that in every
iteration it chooses a random permutation π over {1, 2, 3}, sets φ(v) = π(ψ(v)), and
computes ci = Com(φ(vi)) for all i, exactly like the real prover.

We begin by proving that, conditioned on S ′ not outputting ⊥, it generates output
that is identically distributed to V∗’s output in a real proof. That is, for every V∗,
every (G, ψ) ∈ RL, and every z ∈ {0, 1}∗,{

outputV∗ (P(G, ψ),V∗(G, z))
}
≡

{
S ′V

∗(G,z,r,·)(G, ψ) | S ′V
∗(G,z,r,·)(G, ψ) , ⊥

}
. (6.7)

In order to see this, observe that the distribution over the commitments viewed by
V∗ is identical to a real proof (since they are commitments to a random permutation
of a valid coloring). The only difference is that S ′ chooses an edge e ahead of time
and only concludes an iteration if the query sent by V∗ equals e. However, since e
is chosen uniformly every time, and since V∗ is rewound to the beginning of each
iteration until it succeeds (and we condition on it indeed succeeding), these have
identical distributions.

Next, we prove that S ′ outputs ⊥ with at most negligible probability. Observe
that the commitments provided by S ′ reveal no information whatsoever about the
choice of e in that iteration (this is due to the fact that the commitments are the
same for every choice of e). Thus, the probability that a single iteration succeeds is
exactly 1/|E|, implying that S ′ outputs ⊥ for one of the i’s in the simulation with

probability
(
1 − 1

|E|

)n·|E|
< e−n. There are n · |E| iterations, and so by the union bound,

S ′ outputs⊥ somewhere in the simulation with probability less than n·|E|·e−n, which
is negligible. This implies that2{

S ′V
∗(G,z,r,·)(G, ψ) | S ′V

∗(G,z,r,·)(G, ψ) , ⊥
} c
≡

{
S ′V

∗(G,z,r,·)(G, ψ)
}
. (6.8)

Finally, we prove that the outputs of S and S ′ are computationally indistinguish-
able: {

S ′V
∗(G,z,r,·)(G, ψ)

} c
≡

{
SV∗(G,z,r,·)(G)

}
. (6.9)

Intuitively, we prove this via a reduction to the security of the commitment scheme.
Specifically, assume by contradiction, that there exists a probabilistic polynomial-
time verifier V∗, a probabilistic polynomial-time distinguisher D, and a polynomial
p(·) such that for an infinite sequence (G, ψ, z) where (G, ψ) ∈ R and z ∈ {0, 1}∗,∣∣∣∣Pr

[
D

(
G, ψ, z,S ′V

∗(G,z,r,·)(G, ψ)
)

= 1
]
− Pr

[
D

(
G, ψ, z,SV∗(G,z,r,·)(G)

)
= 1

]∣∣∣∣ ≥ 1
p(n)

,

where n denotes the number of nodes in G, and R denotes the 3-coloring relation.
Without loss of generality, assume that D outputs 1 with higher probability when

2 Observe that for all events A and F, Pr[A] = Pr[A∧ F] + Pr[A∧¬F] ≤ Pr[F] + Pr[A | ¬F]. Thus,
if F occurs with negligible probability, then |Pr[A] − Pr[A|¬F]| is negligible.
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it receives the output of S ′ than when it receives the output of S. We construct a
nonuniform probabilistic polynomial-time adversary A for the commitment exper-
iment LR-commit as defined in Section 6.5.2. Adversary A receives (G, ψ, z) on its
advice tape (for n, where G has n nodes), and works as follows:

1. A initializes V∗ with input graph G, auxiliary input z, and a uniform random
tape r.

2. Then, A runs the instructions of S ′ with input (G, ψ) and oracle V∗(x, z, r; ·),
with some changes. First, note that A knows ψ and so can compute φ(v) =

π(ψ(v)) just like S ′. Next, A does not generate the commitments by computing
ci = Com(φ(vi)) for all i, as S ′ does. Rather, A works as follows. For every
iteration of the simulation:

a. For the randomly chosen edge e = (vk, v`), adversary A generates commit-
ments ck = Com(φ(vk)) and c` = Com(φ(v`)) by itself.

b. For all other i (i.e., for all i ∈ {1, . . . , n} \ {k, `}), adversary A queries its
LR-oracle with the pair (0, φ(i)). Denote by ci the commitment received
back.

A simulates S ′ querying V∗ with the commitments (c1, . . . , cn) as a result of the
above. Observe that A can decommit to vk, v` as needed by S ′, since it computed
the commitments itself.

3. When S ′ concludes, then A invokes D on the output generated by S ′, and out-
puts whatever D outputs.

Observe that when b = 1 in the LR-oracle experiment, the commitments c1, . . . , cn

are generated as valid commitments to a random coloring, and the distribution over
V∗’s view is identical to an execution of S ′. Thus (conditioning on the b chosen in
LR-commit),

Pr
[
LR-commitCom,A(1n) = 1 | b = 1

]
= Pr

[
D

(
G, z,S ′V

∗(G,z,r,·)(G, ψ)
)

= 1
]
.

Likewise, when b = 0 in the LR-oracle experiment, then the commitments c1, . . . , cn

are all 0 except for the commitments c j, ck, which are to two random different colors.
Thus, this is exactly the distribution generated by S, and

Pr
[
LR-commitCom,A(1n) = 1 | b = 0

]
= Pr

[
D

(
G, z,SV∗(G,z,r,·)(G)

)
= 0

]
.

We have

Pr
[
LR-commitCom,A(1n) = 1

]
=

1
2
· Pr

[
LR-commitCom,A(1n) = 1 | b = 1

]
+

1
2
· Pr

[
LR-commitCom,A(1n) = 1 | b = 0

]
=

1
2
· Pr

[
D

(
G, z,S ′V

∗(G,z,r,·)(G, ψ)
)

= 1
]

+
1
2
· Pr

[
D

(
G, z,SV∗(G,z,r,·)(G)

)
= 0

]
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=
1
2
· Pr

[
D

(
G, z,S ′V

∗(G,z,r,·)(G, ψ)
)

= 1
]

+
1
2
·
(
1 − Pr

[
D

(
G, z,SV∗(G,z,r,·)(G)

)
= 1

])
=

1
2

+
1
2
·
(
Pr

[
D

(
G, z,S ′V

∗(G,z,r,·)(G, ψ)
)

= 1
]
− Pr

[
D

(
G, z,SV∗(G,z,r,·)(G)

)
= 1

])
≥

1
2

+
1

2p(n)
.

This contradicts the security of Com, as stated in Theorem 6.5.2. Combining Equa-
tions (6.7)–(6.9), we conclude that{

outputV∗ (P(G, ψ),V∗(G, z))
} c
≡

{
SV∗(G,z,r,·)(G)

}
,

thereby completing the proof. �

Discussion on the proof technique. The main technique used in the above proof is
to construct an alternative, hypothetical simulator S ′ who is given the actual color-
ing. Of course, S ′ could work by just playing the real prover. However, this would
not help us prove the indistinguishability of S. Thus, we design S ′ to work in ex-
actly the same way as S, except that it generates commitments that are the same as
the real prover. In this way, we separate the two differences between S and a real
prover: (a) the flow of S that involves choosing e and rewinding, and (b) the com-
mitments that are incorrectly generated. The only difference between the real prover
and S ′ is the flow, and the first part of the proof shows that this results in at most a
negligible difference. Then, the second part of the proof, showing that the outputs of
S ′ and S are computationally indistinguishable, works via reduction to the commit-
ments. This technique is often used in simulation-based proofs, and in some cases
there are series of simulators that bridge the differences between the real execution
and the simulation. This is similar to sequences of hybrids in game-based proofs,
with the only difference being that the sequence here is from the simulation to the
real execution (or vice versa). We recommend reading more about this technique in
the tutorial on sequences of games by Shoup [38].

6.5.4 Constant-Round Zero Knowledge
Constant-round zero-knowledge introduces a number of difficulties regarding simu-
lation. The protocol itself, as described in [20], is actually very simple and straight-
forward. However, its proof is far more involved than it seems, and requires new
techniques that are important in general. In addition, it highlights difficulties that
arise in many places when carrying out simulation.
Background. Before proceeding, we first consider simply running the n · |E| exe-
cutions of the 3-coloring protocol in parallel, instead of sequentially. At first sight,
this does not seem to make a difference to the zero-knowledge property, since the
order of execution does not change what is revealed. Despite this, all known simu-
lation attempts fail, and so we simply have no way of proving that this is still zero
knowledge. In order to see why, in the suggested parallel protocol, the prover sends
N def

= n · |E| vectors of commitments to random colorings, the verifier responds
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with N edges, and the prover opens the commitments of the two nodes of the edge.
The only way that we know to simulate this protocol is for the simulator to guess the
query edges ahead of time. However, the probability of correctly guessing N random
edges before the verifier sends them is just |E|−n|E|, which is exponentially small. It
is important to understand that rewinding does not solve the problem, since the veri-
fier can choose different random edges each time, even if it has a fixed random tape.
For example, the verifier could have a key to a pseudorandom function hardwired,
and can choose its randomness in every execution as a function of the (entire) first
message that it receives. As a result, when rewinding, effectively new randomness
is used each time and the simulator would have to try an exponential number of
rewinding attempts. Indeed, Goldreich and Krawczyk showed that this parallel pro-
tocol is not black-box zero knowledge, and in fact that no constant-round public-coin
proof for a language not in BPP is black-box zero knowledge [21] (where public
coin means that the verifier’s queries are just random coin tosses). Despite this, we
have no proof that it is not zero knowledge in general. We stress again that the lack
of a known attack on a protocol is not sufficient to conclude that it is secure. Thus,
an alternative protocol is needed.

The solution presented by Goldreich and Kahan to this problem is to simply have
the verifier commit to its query before the prover sends its commitments. This pre-
vents a malicious verifier from changing its query during rewinding. Details appear
in Protocol 6.5.5.

PROTOCOL 6.5.5 (The Goldreich–Kahan proof system [20])

The proof system of [20] works as follows (we provide a clear, yet rather informal de-
scription here):

1. The prover sends the first message of a (two-round) perfectly hiding commitment
scheme, denoted Comh. See [17, Section 4.9.1] for a definition of such commit-
ments.

2. The verifier chooses N def
= n · |E| random edges e1, . . . , eN ∈R E. Let q = (e1, . . . , eN )

be the query string; the verifier commits to q using the perfectly hiding commitment
Comh.

3. The prover prepares the first message in N parallel executions of the basic three-
round proof system in Protocol 6.5.3 (i.e., commitments to N independent random
colorings of the graph), and sends commitments to all using the perfectly binding
commitment scheme Com.

4. The verifier decommits to the string q.
5. If the verifier’s decommitment is invalid, then the prover aborts. Otherwise, the

prover sends the appropriate decommitments in every execution. Specifically, if ei
is the edge in the i-th execution, then the prover decommits to the nodes of that edge
in the i-th set of commitments to colorings.

6. The verifier outputs 1 if and only if all checks pass (as in the original proof system).

Before discussing zero knowledge, we remark that the commitments from the
verifier are perfectly hiding, whereas the commitments from the prover are perfectly
binding. This is necessary for proving soundness, but since our focus here is on
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simulation, we will not refer to this issue from here on; see [20] or [17, Section 4.9]
for a proof of soundness.

The main difference between this protocol and the simple parallel repetition of
the basic 3-coloring protocol is the fact that the verifier is committed ahead of time
to its queries. Thus, the simulator can first receive the verifier’s commitments, and
can then send garbage commitments and receive back the decommitments. After
receiving the decommitments the simulator knows all of the queries, and can rewind
the verifier back to the point after it sent the commitments and give new prover com-
mitments like in the simulation of a single execution. This works because the verifier
is committed to its edge queries before it receives the prover commitments, and so
cannot change them. Thus, the simulator can learn the edges (by giving garbage
commitments first) and can then provide “good” commitments for which it is able
to decommit and complete the proof.

Despite its simplicity, there are a number of issues that must be dealt with when
translating this into a formal proof. First, we have to deal with the fact that the
verifier may not decommit correctly in step 4. This may seem simple—if this hap-
pens, then just have the simulator abort as well. This makes sense since in a real
proof the prover would abort in such a case. However, the problem is that the veri-
fier may sometimes decommit correctly and sometimes not decommit correctly, and
this decision may be taken as a result of the messages it receives (specifically, the
commitments sent by the prover). If this is the case, and the verifier aborts with
some probability p, then the simulator will abort with probability approximately
2p.3 Note that this problem is not solved by interpreting an invalid decommit as
default edges, as in Protocol 6.5.3, since the simulator will prepare commitments to
default edges if the verifier aborted the first time and will not be able to answer if
the verifier does not abort the second time, or vice versa.

The following strategy for the simulator S addresses this problem:

1. S invokes V∗ and internally hands it an honestly generated first (receiver) mes-
sage of the perfectly hiding commitment protocol.

2. S receives V∗’s reply consisting of a commitment c.
3. S sends V∗ garbage commitments and receives its decommitment. If the de-

commitment is not valid, it aborts. Otherwise, denote the decommitted string
by q = (e1, . . . , eN).

4. S rewinds V∗ to the beginning (sending the same first message of the perfectly
hiding commitment protocol) and receives its commitment c. (Since V∗ has a
fixed random tape and this is the first step of the protocol, it always sends the
same commitment c.) Then, S hands simulated prover commitments to V∗ that
can be answered according to q; i.e., send commitments to random distinct col-
ors on the nodes of the edge committed by the verifier and to 0 elsewhere. If V∗

aborts on these commitments, then S repeats this step with fresh randomness.
When V∗ provides correct decommitments, S proceeds to the next step.

3 This holds since the probability of abort when the simulator sends the first garbage commitments
equals p, and the probability of abort when the simulator sends the good commitments the second
time (if a first abort did not occur) is also p. Thus, we have that the simulator aborts with probability
p + (1 − p) · p = 2p − p2.
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5. S sends V∗ decommitments to the nodes on the committed edge, and outputs
whatever V∗ outputs.

One issue that arises when trying to prove that this simulation strategy works is that
the commitment to q is perfectly hiding and thus only computationally binding. This
means that it is possible that V∗ decommits to a valid q′ , q, but in such a case the
simulation will fail. This possibility is ruled out by showing that if this occurs with
nonnegligible probability, then V∗ can be used to break the computational binding
of the commitments.

More importantly, it turns out that this strategy is overly simplistic, for a very im-
portant reason. Specifically, it is not necessarily the case that the simulator runs in
expected polynomial time.4 This may seem surprising. In particular, let ε denote the
probability that V∗ does not abort (ε = 1−p from above). Then, supposedly, we have
that the expected running time of the simulator is 1−ε+ε · 1

ε
times a fixed polynomial

for computing all the commitments and so on. This is the case since with probability
1 − ε the verifier V∗ aborts and the simulation ends, and with probability ε the sim-
ulation proceeds to step 4. However, since each attempt to receive a decommitment
from V∗ in this step succeeds with probability ε only, we expect to have to repeat
1/ε times. Thus, the overall expected cost is poly(n) · (1− ε+ ε · 1

ε
) = poly(n) · (2− ε).

Despite being appealing, and true when commitments are modeled as “perfect en-
velopes”, the above analysis is simply false. In particular, the probability that the
verifier decommits correctly when receiving the first prover commitments to pure
garbage is not necessarily the same as the probability that it decommits correctly
when receiving the simulator-generated commitments. In order to see this, if the
verifier was all powerful, it could break open the commitments and purposefully
make the simulation fail by decommitting when it receives pure garbage (or fully
valid commitments) and not decommitting when it receives commitments that can
be opened only to its query string. This means that we can only argue that this does
not happen by a reduction to the commitments, and this also means that there may
be a negligible difference. Thus, we actually have that the expected running time of
the simulator is

poly(n) ·
(
1 − ε(n) + ε(n) ·

1
ε(n) − µ(n)

)
for some negligible function µ. Now, it is once again tempting to conclude that
the above is polynomial because µ(n) is negligible, and so ε(n) − µ(n) is almost
the same as ε(n). This is indeed true for “large” values of ε(n). For example, if
ε(n) > 2µ(n) then ε(n)−µ(n) > ε(n)/2. This then implies that ε(n)/(ε(n)−µ(n)) < 2.
Unfortunately, however, this is not true in general. For example, consider the case
that µ(n) = 2−n and ε(n) = µ(n) + 2−n/2 = 2−n + 2−n/2. Then,

ε(n)
ε(n) − µ(n)

=
2−n + 2−n/2

2−n/2 = 2n/2 + 1,

4 Note that the simulator, as is, certainly does not run in strict polynomial time. However, this is
inherent for black-box constant-round protocols [2], and we show only that it runs in expected
polynomial time.
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which is exponential in n. We therefore have that the simulation does not run in ex-
pected polynomial time. This technical problem was observed and solved by [20].
This problem arises in other places, and essentially in any place that rewinding is
used where a different (but indistinguishable) distribution is used between rewind-
ings, and some success criteria must be reached in order to proceed (e.g., the party
must decommit correctly). For just one example of where this arises in the context
of general secure computation, see [31, Section 4.2]. We remark that in the specific
case of constant-round zero-knowledge proofs, it is possible to bypass this prob-
lem by changing the protocol [37]. However, in other cases—for example, efficient
secure two-party computation—it is not necessarily possible without incurring ad-
ditional cost.

We show how to deal with this problem in the proof of the theorem below.

Theorem 6.5.6. Let Comh and Com be perfectly hiding and perfectly binding com-
mitment schemes, respectively, with security in the presence of nonuniform prob-
abilistic polynomial-time adversaries. Then, Protocol 6.5.5 is black-box computa-
tional zero knowledge with an expected polynomial-time simulator.

Proof: We first present the simplified strategy above for a black-box simulator
S given oracle access to a verifier V∗ (with a fixed input, auxiliary input, and ran-
dom tape), and then explain how to modify it. The simplified simulator S works as
follows:

1. S hands V∗ the first message of Comh (formally, this is via the oracle, but we
write it this way for conciseness).

2. S receives from V∗ its perfectly hiding commitment c to some query string
q = (e1, . . . , eN), where N = n · |E|.

3. S generates N vectors of n commitments to 0, hands them to V∗, and receives
back its reply.

4. If V∗ aborts by not replying with a valid decommitment to c (and the decommit-
ment is to a vector of N edges), then S aborts and outputs whatever V∗ outputs.
Otherwise, let q = (e1, . . . , eN) be the decommitted value. S proceeds to the
next step.

5. Rewinding phase – S repeatedly rewinds V∗ back to the point where it receives
the prover commitments, until it decommits to q from above:

a. S generates N vectors of commitments c1, . . . , cN , as follows: Let ei =

(v j, vk) in q. Then, the j-th and k-th commitments in ci are to random dis-
tinct colors in {1, 2, 3} and all other commitments are to 0. Simulator S
hands all vectors to V∗, and receives back its reply.

b. If V∗ does not generate a valid decommitment, then S returns to the previ-
ous step (using fresh randomness).

c. If V∗ generates a valid decommitment to some q′ , q, then S outputs am-
biguous and halts.

d. Otherwise, V∗ exits the loop and proceeds to the next step.

6. S completes the proof by handing V∗ decommitments to the appropriate nodes
in all of c1, . . . , cN , and outputs whatever V∗ outputs.
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The intuition behind the simulation is clear. S repeatedly rewinds until the string q
is the one that it initially chose. In this case, it can decommit appropriately and con-
clude the proof. Intuitively, the fact that the result is computationally indistinguish-
able from a real proof by an honest prover follows from the hiding property of the
perfectly binding commitments, as in the proof of Theorem 6.5.4 in Section 6.5.3.

As we have already demonstrated, this simplified strategy suffers from the prob-
lem that S actually may not run in expected polynomial time. This is solved by
ensuring that the simulator S never runs “too long”. Specifically, if S proceeds to
the rewinding phase of the simulation, then it first estimates the value of ε(n), which
is the probability that V∗ does not abort given garbage commitments. This is done
by repeating Step 3 of the simulation (sending fresh random commitments to all
zeroes) until m = O(n) successful decommits occurs (for a polynomial m(n); to be
exact m = 12n suffices), where a successful decommit is where V∗ decommits to
q, the string it first decommitted to. We remark that as in the original strategy, if
V∗ correctly decommits to a different q′ , q then S outputs ambiguous. Then, an
estimate ε̃ of ε is taken to be m/T , where T is the overall number of attempts until
m successful decommits occurred. As shown in [20], this suffices to ensure that the
probability that ε̃ is not within a constant factor of ε(n) is at most 2−n. (An exact
computation of how to achieve this exact bound using Chernoff can be found in [26,
Section 6.5.3].)

Next, S runs the rewinding phase in step 5 of the simulation up to n times. Each
time, S limits the number of rewinding attempts in the rewinding phase to n/ε̃ iter-
ations. We have the following cases:

1. If within n/ε̃ rewinding iterations, S obtains a successful decommitment from
V∗ to q, then it completes the proof as described. It can do so in this case because
the prover commitments enable it to answer the query q.

2. If S obtains a valid decommitment to some q′ , q then it outputs ambiguous.
3. If S does not obtain any correct decommitment within n/ε̃ attempts, then S

aborts this attempted rewinding phase.

As mentioned, the above phase is repeated up to n times, each time using inde-
pendent coins. If the simulator S does not successfully conclude in any of the n
attempts, then it halts and outputs fail. We will show that this strategy ensures that
the probability that S outputs fail is negligible.

In addition to the above, S keeps a count of its overall running time and if it
reaches 2n steps, then it halts, outputting fail. (This additional time-out is needed to
ensure that S does not run too long in the case that the estimate ε̃ is not within a
constant factor of ε(n). Recall that this “bad event” can only happen with probability
2−n.)

We first claim that S runs in expected polynomial time.

Claim 6.5.7. Simulator S runs in expected time that is polynomial in n.

Proof: Observe that in the first and all later iterations, all of S’s work takes a strict
polynomial-time number of steps. We therefore need to bound only the number of
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rewinding iterations. Before proceeding, however, we stress that rewinding itera-
tions only take place if V∗ provides a valid decommitment in the first place. Thus,
all rewinding only occurs with probability ε(n).

Now, S first rewinds in order to obtain an estimate ε̃ of ε(n). This involves re-
peating until m(n) = 12n successful decommitments are obtained. Therefore, the
expected number of repetitions in order to obtain ε̃ equals exactly 12n/ε(n) (since
the expected number of trials for a single success is 1/ε(n); observe that in all of
these repetitions the commitments are to all zeroes). After the estimate ε̃ has been
obtained, S runs the rewinding phase of step 5 for a maximum of n times, in each
phase limiting the number of rewinding attempts to n/ε̃.

Given the above, we are ready to compute the expected running time of S. In
order to do this, we differentiate between two cases. In the first case, we consider
what happens if ε̃ is not within a constant factor of ε(n). The only thing we can say
about S’s running time in this case is that it is bound by 2n (since this is an overall
bound on its running time). However, since this event happens with probability at
most 2−n, this case adds only a polynomial number of steps to the overall expected
running time. We now consider the second case, where ε̃ is within a constant factor
of ε(n) and thus ε(n)/ε̃ = O(1). In this case, we can bound the expected running
time of S by

poly(n) · ε(n) ·
(

12n
ε(n)

+ n ·
n
ε̃

)
= poly(n) ·

ε(n)
ε̃

= poly(n),

and this concludes the analysis. �

Next, we prove that the probability that S outputs fail is negligible.

Claim 6.5.8. The probability that S outputs fail is negligible in n.

Proof: Notice that the probability that S outputs fail is less than or equal to the prob-
ability that it does not obtain a successful decommitment in any of the n rewinding
phase attempts plus the probability that it runs for 2n steps.

We first claim that the probability that S runs for 2n steps is negligible. We have
already shown in Claim 6.5.7 that S runs in expected polynomial time. Therefore,
the probability that an execution will deviate so far from its expectation and run for
2n steps is negligible. (It is enough to use Markov’s inequality to establish this fact.)

We now continue by considering the probability that in all n rewinding phase
attempts, S does not obtain a successful decommitment within n/ε̃ steps. First, re-
call that ε(n) equals the probability that V∗ decommits when given commitments
to all zeroes. Next, observe that there exists a negligible function µ such that the
probability that V∗ decommits when given commitments as in step 5a is at least
ε(n)−µ(n). If ε(n) is a negligible function then this is immediate (since it just means
that V∗ decommits with probability at least 0, which is always correct). In contrast,
if ε(n) is nonnegligible, then this can be proven by a direct reduction to the hiding
property of the commitment scheme. In particular, if V∗ decommits with probability
that is non-negligibly different in both cases, then this in itself can be used to distin-
guish commitments of one type from another. Having established this, consider the
following two possible cases:
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1. Case 1: ε(n) ≤ 2µ(n): In this case, V∗ decommits to its query string with only
negligible probability. This means that the probability that S even reaches the
rewinding phase is negligible. Thus, S only outputs fail with negligible proba-
bility.

2. Case 2: ε(n) > 2µ(n): Recall that V∗ successfully decommits in any iteration
with probability at least ε(n)−µ(n). Now, since in this case ε(n) > 2µ(n), we have
that ε(n) − µ(n) > ε(n)

2 . Thus, the expected number of iterations needed until V∗

successfully decommits is 1
ε(n)−µ(n) <

2
ε(n) . Assuming that ε̃ is within a constant

factor of ε(n), we have that 2/ε(n) = O(1/ε̃) and so the expected number of
rewindings in any given rewinding attempt is bound by O(1/ε̃). Therefore, by
Markov’s inequality, the probability that S tries more than n/ε̃ iterations in any
given rewinding phase attempt is at most O(1/n). It follows that the probability
that S tries more than this number of iterations in n independent rewinding
phases is negligible in n (specifically, it is bound by O(1/n)n).
This holds under the assumption that ε̃ is within a constant factor of ε(n). How-
ever, the probability that ε̃ is not within a constant factor of ε(n) is also negligi-
ble.

Putting the above together, we have that S outputs fail with negligible probability
only. �

Next, we prove the following:

Claim 6.5.9. The probability that S outputs ambiguous is negligible in n.

Proof sketch: Intuitively, if there exists an infinite series of inputs for which S
outputs ambiguous with nonnegligible probability, then this can be used to break
the computational binding of the Comh commitment scheme. The only subtlety is
that S runs in expected polynomial time, whereas an attacker for the binding of the
commitment scheme must run in strict polynomial time. Nevertheless, this can be
overcome by simply truncating S to twice its expected running time. By Markov’s
inequality, this reduces the success probability of the binding attack by at most 1/2,
and so this is still nonnegligible. �

It remains to prove that the output distribution generated by S is computationally
indistinguishable from the output of V∗ in a real proof with an honest prover. We
have already shown that S outputs fail or ambiguous with only negligible proba-
bility. Thus, the only difference between the output distribution generated by S and
the output distribution generated in a real proof is the perfectly binding commit-
ments to the colors. As in the proof of Theorem 6.5.4, this can be formally proven
by constructing an alternative simulator who is given the coloring and works in the
same way as S except that it generates the commitments via its oracle. Then, the
LR-commit experiment can be used to show indistinguishability between this and a
real proof for nonuniform distinguishers. We omit the details due to the similarity
to Theorem 6.5.4. This completes the proof. �

Discussion. Beyond the Goldreich–Kahan technique itself, which is of importance
and arises in multiple situations where rewinding-based simulation is used, there are
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two important lessons to be taken away from this proof. First, negligible differences
can make a difference, and care must be taken wherever they appear. The intuition
that a negligible event does not happen, and that computationally indistinguishable
distributions behave the same, is correct only up to a point. The case shown here
is an excellent example of this. Second, great care must be taken to prove every
claim made via a reduction to the primitive that guarantees it. In the constant-round
protocol for zero knowledge, it is clear to everyone that in order to prove indistin-
guishability of the simulation, a reduction to the security of the commitment scheme
is necessary. (Although, without doing it carefully, the need for security in the pres-
ence of nonuniform adversaries can be missed.) However, it is far less clear that
it is necessary to prove that the simulation runs in polynomial time, that the per-
fectly hiding commitment remains computationally binding, and so on. In general,
any property that does not hold when the cryptographic primitive is completely bro-
ken requires a reduction. Thus, when proving security, a good mental experiment
to carry out is to consider what happens to the simulation and proof when the ad-
versary is all powerful. If some important property needed in the proof no longer
holds, then a reduction is needed to prove it. Furthermore, if there is a property of
a cryptographic primitive that is not used anywhere in the proof, then one should
reconsider whether it is actually needed.

We also remark that the simulator presented here runs in expected polynomial
time and not strict polynomial time. This is inherent for constant-round black-
box zero knowledge, as proven in [2] (perhaps surprisingly, it is not possible to
somehow truncate the simulator’s execution and obtain only a negligible differ-
ence). Thus, in some cases—and in particular when considering constant-round
protocols—simulators are relaxed to be allowed to run in expected polynomial time.

Soundness. We reiterate that, in order to prove security for zero knowledge, it is
necessary to separately prove that soundness holds. We have omitted this here since
it is not the focus of the tutorial.

6.5.5 Honest-Verifier Zero Knowledge
A proof system is honest-verifier zero knowledge if the zero-knowledge property
holds for semi-honest verifiers. We stress that the proof system must be sound for
malicious provers. Otherwise, as we have mentioned above, it is meaningless (the
prover can just say “trust me”).

It is instructional to consider honest-verifier zero knowledge as well, since this
enables a comparison with the simulation technique above for arbitrary malicious
verifiers, and serves as a good contrast between semi-honest simulation as in Sec-
tion 6.4 and the remainder of this tutorial that considers malicious adversaries. As
we will see, simulation for semi-honest adversaries is very different than for mali-
cious adversaries.

Parallel 3-coloring. Consider the basic 3-coloring protocol described in Proto-
col 6.5.3 run n · |E| times in parallel. Specifically, the prover generates n · |E| sets
of commitments to random colorings and sends them to the verifier. The verifier
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chooses q = (e1, . . . , eN) at random and sends q to the prover. Finally, the prover
decommits as in the protocol.

The simulator S for honest-verifier zero knowledge. We proceed directly to de-
scribe the simulator for this protocol. Given a graph G = (V, E) with |V | = n and
auxiliary input z, the simulator S works as follows:

1. Let N = n · |E|. Then, for i = 1, . . . ,N, S chooses a random edge ei ∈ E, and
sets q = (e1, . . . , eN). Let rq be the random coin tosses that define q.

2. For every i = 1, . . . ,N:

a. Let ei = (v j, vk).
b. S chooses random φ(v j) ∈R {1, 2, 3} and φ(vk) ∈R {1, 2, 3} \ {φ(v j)}. For all

other v` ∈ V \ {v j, vk}, S sets φ(v`) = 0.
c. S sets the commit vector ci = (c1

i , . . . , c
n
i ) = (Com(φ(v1)), . . . ,Com(φ(vn))).

d. S sets the decommit vector di = (decom(c j
i ), decom(ck

i )).

3. S outputs the view of the (semi-honest) verifier, defined by

〈G, z, rq; (c1, . . . , cN), (d1, . . . ,dN)〉.

Before proving that this is indeed indistinguishable from a real view in a real inter-
action, observe that there is no rewinding here and the simulator S just chooses the
query string of the verifier. This is allowed since a semi-honest verifier chooses its
query string by reading it directly from its random tape. Since S chose rq randomly,
and writes rq on the verifier’s random tape, it is given that the verifier’s query is q.
The reason why S need not rewind at all is because it already knows the query string
(indeed, it chose it). In fact, S here does not “interact” with the verifier at all, unlike
the simulator for regular (malicious) zero knowledge that interacts with V∗. Rather,
S just generates the transcript of messages, independently of the adversary. This is
allowed since the verifier is semi-honest, and so we know exactly what it will do
already.

Restating the above, it is not necessary to interact with the adversary or rewind it
to somehow guess the query string, since we know exactly how the verifier chooses
that string in the semi-honest case. Thus, the problem that the verifier can choose its
query in an arbitrary way, and in particular possibly based on the first message, does
not arise. This means that a simpler protocol suffices, and it is much easier to prove
security. Recall that this parallel 3-coloring protocol is not black-box zero knowl-
edge for malicious verifiers [21]. Thus, honest-verifier zero knowledge is strictly
easier to achieve than black-box zero knowledge.

Theorem 6.5.10. If Com is a perfectly binding commitment scheme, then the paral-
lel 3-coloring protocol is honest-verifier zero knowledge.

Proof sketch: Assume by contradiction that there exists an infinite series of (G, z)
and a distinguisher D, such that D distinguishes the output of S from a real execu-
tion transcript with nonnegligible probability. Then, a nonuniform polynomial-time
distinguisher A, given a valid coloring ψ of G on its advice tape, can be constructed
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for the commitment scheme, as follows: A works exactly like S, but uses its LR-
oracle (as in Section 6.5.3) to generate pairs of commitments to either a real random
coloring or to simulator-generated commitment values (the two random colors for
the query edge and zeroes otherwise). The distinguisher A works in a very similar
way to in the proof of Theorem 6.5.4. As with the proof of Theorem 6.5.4, the dis-
tribution generated when the commitments are to the real colorings is exactly that
of a real execution, and otherwise it is the simulation. Thus, the distributions are
indistinguishable, as required. �

6.6 Defining Security for Malicious Adversaries

6.6.1 Motivation
In this section, we present the definition of security for the case of malicious ad-
versaries who may use any efficient attack strategy and thus may arbitrarily deviate
from the protocol specification. In this case, it does not suffice to require the exis-
tence of a simulator that can generate the view of the corrupted party, based on its
prescribed input and output as is sufficient for the case of semi-honest adversaries.
First and foremost, the generation of such a view depends on the actual input used
by the adversary, and this input affects the actual output received. Furthermore, in
contrast to the case of semi-honest adversaries, the adversary may not use the input
that it is provided. Thus, for example, a simulator for the case where P1 is cor-
rupted cannot just take x and f (x, y) and generate a view (in order to prove that
nothing more than the output is learned), because the adversary may not use x at all.
Furthermore, beyond the possibility that a corrupted party may learn more than it
should, we require that a corrupted party should not be able to cause the output to be
incorrectly distributed. This is not captured by considering the view of the adversary
alone.

In order to capture these threats, and others, the security of a protocol is analyzed
by comparing what an adversary can do in the protocol with what it can do in an
ideal scenario that is secure by definition. In this context, the ideal model consists
of an ideal computation involving an incorruptible trusted third party to whom the
parties send their inputs. The trusted party computes the functionality on the inputs
and returns to each party its respective output. Loosely speaking, a protocol is secure
if any adversary interacting in the real protocol (where no trusted third party exists)
can do no more harm than if it were involved in the ideal computation. See [8, 18]
for detailed motivation and discussion on this definitional paradigm.

We remark that in defining security for two parties it is possible to consider only
the setting where one of the parties is corrupted, or to also consider the setting
where neither of the parties are corrupted, in which case the adversary seeing the
transcript between the parties should learn nothing. Since this latter case can easily
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be achieved by using encryption between the parties, we present the simpler formu-
lation of security that assumes that exactly one party is always corrupted.5

Before proceeding, it is worth contrasting the above to the case of zero knowl-
edge (where malicious verifiers were considered). Recall that in the context of zero
knowledge, simulation is used to show that the adversary learns nothing. Specifi-
cally, the adversary is able to generate its view by itself, without receiving any ex-
ternal information, and thus it learns nothing from the real interaction. This works
for zero knowledge where the adversarial party has no private input and is supposed
to learn nothing. In fact, in the case of zero knowledge, the adversarial verifier does
learn that the statement is correct. However, the definition of zero knowledge only
states that the adversarial verifier may learn nothing when the statement is in the
language, and so is “correct”. This makes sense since zero-knowledge proofs are
typically used to ensure that parties behave “correctly”. Thus, when the verifier is
corrupted, the prover is honest and so the statement is supposed to be true. (The case
of a corrupted prover who wishes to prove an incorrect statement to an honest ver-
ifier is covered separately by soundness.) In the coming sections, we will consider
the more general case where parties are supposed to learn output, and also possi-
bly have input. As we will see, this considerably changes the way simulators work,
although the techniques shown so far are also needed.

6.6.2 The Definition

Execution in the ideal model. In the case of no honest majority (and in particular
in the two-party case that we consider here), it is in general impossible to achieve
guaranteed output delivery and fairness [15]. This “weakness” is therefore incorpo-
rated into the ideal model by allowing the adversary in an ideal execution to abort
the execution or obtain output without the honest party obtaining its output. De-
note the participating parties by P1 and P2 and let i ∈ {1, 2} denote the index of
the corrupted party, controlled by an adversary A. An ideal execution for a function
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ proceeds as follows:

Inputs: Let x denote the input of party P1, and let y denote the input of party P2.
The adversary A also has an auxiliary input denoted by z. All parties are ini-
tialized with the same value 1n on their security parameter tape (including the
trusted party).

Send inputs to trusted party: The honest party P j sends its prescribed input to
the trusted party. The corrupted party Pi controlled by A may either abort (by
replacing the input with a special aborti message), send its prescribed input, or
send some other input of the same length to the trusted party. This decision is
made by A and may depend on the input value of Pi and the auxiliary input z.
Denote the pair of inputs sent to the trusted party by (x′, y′) (note that if i = 2
then x′ = x but y′ does not necessarily equal y, and vice versa if i = 1).

5 There is no need to consider the case of both parties corrupted, since in such a case there is nothing
to protect. In the case of adaptive corruptions (see Section 6.10.3), there is reason to consider
corrupting both. However, this is beyond the scope of this tutorial.
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Early abort option: If the trusted party receives an input of the form aborti for
some i ∈ {1, 2}, it sends aborti to the honest party P j and the ideal execution
terminates. Otherwise, the execution proceeds to the next step.

Trusted party sends output to adversary: At this point the trusted party com-
putes f1(x′, y′) and f2(x′, y′) and sends fi(x′, y′) to party Pi (i.e., it sends the
corrupted party its output).

Adversary instructs trusted party to continue or halt: A sends either continue
or aborti to the trusted party. If it sends continue, the trusted party sends
f j(x′, y′) to the honest party P j. Otherwise, if A sends aborti, the trusted party
sends aborti to party P j.

Outputs: The honest party always outputs the output value it obtained from the
trusted party. The corrupted party outputs nothing. The adversary A outputs
any arbitrary (probabilistic polynomial-time computable) function of the pre-
scribed input of the corrupted party, the auxiliary input z, and the value fi(x′, y′)
obtained from the trusted party.

Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a two-party functionality, where
f = ( f1, f2), let A be a nonuniform probabilistic polynomial-time machine, and
let i ∈ {1, 2} be the index of the corrupted party. Then, the ideal execution of
f on inputs (x, y), auxiliary input z to A, and security parameter n, denoted by
ideal f ,A(z),i(x, y, n), is defined as the output pair of the honest party and the adversary
A from the above ideal execution.

Execution in the real model. We next consider the real model in which a real two-
party protocol π is executed (and there exists no trusted third party). In this case,
the adversary A sends all messages in place of the corrupted party, and may follow
an arbitrary polynomial-time strategy. In contrast, the honest party follows the in-
structions of π. We consider a simple network setting where the protocol proceeds
in rounds, where in each round one party sends a message to the other party. (In the
multiparty setting, this is an unsatisfactory model and one must allow all parties to
send messages at the same time. However, in this case, it is standard to assume a
rushing adversary, meaning that it receives the messages sent by the honest parties
before it sends its own.)

Let f be as above and let π be a two-party protocol for computing f , meaning
that when P1 and P2 are both honest, then the parties output f1(x, y) and f2(x, y),
respectively, after an execution of π with respective inputs x and y. Furthermore, let
A be a nonuniform probabilistic polynomial-time machine and let i ∈ {1, 2} be the
index of the corrupted party. Then, the real execution of π on inputs (x, y), auxiliary
input z to A, and security parameter n, denoted by realπ,A(z),i(x, y, n), is defined as
the output pair of the honest party and the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the
ideal and real models, we can now define security of protocols. Loosely speaking,
the definition asserts that a secure protocol (in the real model) emulates the ideal
model (in which a trusted party exists). This is formulated by saying that adversaries
in the ideal model are able to simulate executions of the real-model protocol.
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Definition 6.6.1. Let f be a two-party functionality and let π be a two-party pro-
tocol that computes f .6 Protocol π is said to securely compute f with abort
in the presence of static malicious adversaries if for every nonuniform proba-
bilistic polynomial-time adversary A for the real model, there exists a nonuniform
probabilistic polynomial-time adversary S for the ideal model, such that for every
i ∈ {1, 2}, {

ideal f ,S(z),i(x, y, n)
}

x,y,z,n

c
≡

{
realπ,A(z),i(x, y, n)

}
x,y,z,n ,

where x, y ∈ {0, 1}∗ under the constraint that |x| = |y|, z ∈ {0, 1}∗, and n ∈ N.

The above definition assumes that the parties (and adversary) know the input
lengths (this can be seen from the requirement that |x| = |y| is balanced and so all
the inputs in the vector of inputs are of the same length). We remark that some
restriction on the input lengths is unavoidable because, as in the case of encryption,
to some extent such information is always leaked. We will ignore this throughout,
and just assume that the functionality is such that the parties know the lengths of all
inputs.

In this tutorial we only consider security with abort. Therefore, in the latter when
we say “securely computes” the intention is always with abort.

Discussion. Observe that Definition 6.6.1 implies privacy (meaning that nothing
but the output is learned), corrrectness (meaning that the output is correctly com-
puted), and more. This holds because the ideal and real distributions include both
the corrupted and honest parties’ outputs. Specifically, in the ideal model, the adver-
sary cannot learn anything about the honest party’s input beyond what is revealed
in the output. Now, since the ideal and real distributions must be indistinguishable,
this in particular implies that the output of the adversary in the ideal and real exe-
cutions is indistinguishable. Thus, whatever the adversary learns in a real execution
can be learned in the ideal model. Regarding correctness, if the adversary can cause
the honest party’s output to diverge from a correct value in a real execution, then
this will result in a nonnegligible difference between the distribution over the honest
party’s output in the real and ideal executions. Observe that correctness in the real
model only is rather tricky to define. Is a computation correct if there exists some
input for the corrupted party such that the output of the honest party is the correct
result on that input and its own? This is a very unsatisfactory definition. First, it
is possible that such an input exists, but it may be computationally hard to find.
Second, it is possible that it is easy to find such an input, but only if the honest
party’s input is already known.7 The ideal/real definition solves all of these prob-
lems at once. This is because in the ideal model, the adversary has to send its input
explicitly to the trusted party, and correctness is judged relative to the actual input

6 A prerequisite of any secure protocol is that it computes the functionality, meaning that two
honest parties receive correct output. As we show at the end of Section 6.8, this is a necessary
requirement.
7 This relates to an additional property that is guaranteed by the definition, called independence of
inputs, meaning that the corrupted party is unable to make its input depend on the honest party’s
input. For example, in a closed-bid auction, it should not be possible for a corrupted party to make
its bid be exactly $1 greater than the honest party’s bid.
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sent. This also means that parties actually “know” their inputs in protocols that are
secure. See [18, Section 7.2.3] for more discussion.

Remark 6.6.2. (Deterministic versus probabilistic adversaries): In all of the proofs
in this tutorial —and in most proofs in general—the real-world adversary A is used
in a black-box manner. Thus, the simulator S, who is given input x and auxiliary
input z for the corrupted party, can begin by choosing a random string r and defining
the residual adversary A′(·) def

= A(x, z, r; ·), with security parameter 1n (as on its
own security parameter tape). From then on, S works with A′ and simulates for A′.
Due to the above, it suffices to consider a deterministic adversary, with a fixed input,
auxiliary input, and random tape. This simplifies the treatment throughout.

Expected polynomial-time simulation. It is sometimes necessary to relax the re-
quirement on the simulator and allow it to run in expected polynomial time. As we
have mentioned, this is the case for constant-round zero knowledge and thus when
using constant-round zero-knowledge proofs inside other protocols. However, it is
also necessary when constructing constant-round protocols for general secure com-
putation (where a protocol for general secure computation can be used to securely
compute any polynomial-time computable function). This is due to the fact that such
a general protocol can be used to securely compute the “zero-knowledge proof of
knowledge” functionality. Thus, if the simulator is black box, it must run in expected
polynomial time [2].

6.6.3 Modular Sequential Composition
A protocol that is secure under sequential composition maintains its security when
run multiple times, as long as the executions are run sequentially (meaning that each
execution concludes before the next execution begins). Sequential composition the-
orems are theorems that state “if a protocol is secure in the stand-alone model under
definition X, then it remains secure under X under sequential composition”. Thus,
we are interested in proving protocols secure under Definitions 6.4.1 and 6.6.1 (for
semi-honest, and malicious adversaries), and immediately deriving their security
under sequential composition. This is important for two reasons. First, sequential
composition constitutes a security goal within itself, as security is guaranteed even
when parties run many executions, albeit sequentially. Second, sequential compo-
sition theorems are useful tools that help in writing proofs of security. Specifically,
it enables one to design a protocol using calls to ideal functionalities (as subproto-
cols), and to analyze its security in this partially ideal setting. This makes protocol
design and analysis significantly more simple. Thus, the use of composition theo-
rems in order to help in proving simulation-based proofs of security is one of the
most important techniques.

We do not present proofs of the sequential composition theorems for the semi-
honest and malicious cases, and we recommend reading these proofs in [18]; see
Sections 7.3.1 and 7.4.2, respectively. However, we do present a formal statement
of the theorem for malicious adversaries, as we will use it in the tutorial.
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Modular sequential composition. The basic idea behind the formulation of the
modular sequential composition theorems is to show that it is possible to design a
protocol that uses an ideal functionality as a subroutine, and then analyze the secu-
rity of the protocol when a trusted party computes this functionality. For example,
assume that a protocol is constructed using oblivious transfer as a subroutine. Then,
first we construct a protocol for oblivious transfer and prove its security. Next, we
prove the security of the protocol that uses oblivious transfer as a subroutine, in a
model where the parties have access to a trusted party computing the oblivious trans-
fer functionality. The composition theorem then states that when the “ideal calls” to
the trusted party for the oblivious transfer functionality are replaced with real execu-
tions of a secure protocol computing this functionality, the protocol remains secure.
We begin by presenting the “hybrid model” where parties communicate by sending
regular messages to each other (as in the real model) but also have access to a trusted
party (as in the ideal model).

The hybrid model. We consider a hybrid model where parties both interact with
each other (as in the real model) and use trusted help (as in the ideal model). Specif-
ically, the parties run a protocol π that contains “ideal calls” to a trusted party com-
puting some functionalities f1, . . . , fp(n). These ideal calls are just instructions to
send an input to the trusted party. Upon receiving the output back from the trusted
party, the protocol π continues. The protocol π is such that fi is called before fi+1
for every i (this just determines the “naming” of the calls as f1, . . . , fp(n) in that or-
der). In addition, if a functionality fi is reactive (meaning that it contains multiple
stages), then no messages are sent by the parties directly to each other from the time
that the first message is sent to fi to the time that all stages of fi have concluded. We
stress that the honest party sends its input to the trusted party in the same round and
does not send other messages until it receives its output (this is because we consider
sequential composition here). The trusted party may be used a number of times
throughout the execution of π. However, each use is independent (i.e., the trusted
party does not maintain any state between these calls). We call the regular messages
of π that are sent amongst the parties standard messages and the messages that are
sent between parties and the trusted party ideal messages.

Sequential composition – malicious adversaries. Let f1, . . . , fp(n) be probabilistic
polynomial-time functionalities and let π be a two-party hybrid-model protocol that
uses ideal calls to a trusted party computing f1, . . . , fp(n). Furthermore, let A be a
nonuniform probabilistic polynomial-time machine and let i be the index of the cor-
rupted party. Then, the f1, . . . , fp(n)-hybrid execution of π on inputs (x, y), auxiliary
input z to A, and security parameter n, denoted hybrid f1,..., fp(n)

π,A(z),i (x, y, n), is defined as
the output of the honest party and the adversary A from the hybrid execution of π
with a trusted party computing f1, . . . , fp(n).

Let ρ1, . . . , ρp(n) be protocols (as we will see, ρi takes the place of fi in π).
Consider the real protocol πρ1,...,ρp(n) that is defined as follows: All standard mes-
sages of π are unchanged. When a party is instructed to send an ideal mes-
sage α to the trusted party to compute f j, it begins a real execution of ρ j with
input α instead. When this execution of ρ j concludes with output y, the party
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continues with π as if y were the output received from the trusted party for f j

(i.e., as if it were running in the hybrid model).
The composition theorem states that, if ρ1, . . . , ρp(n) securely compute f1, . . . , fp(n)

respectively, and π securely computes some functionality g in the f1, . . . , fp(n)-hybrid
model, then πρ1,...,ρp(n) securely computes g in the real model. As discussed above, the
hybrid model that we consider here is where the protocols are run sequentially. Thus,
the fact that sequential composition only is considered is implicit in the theorem, via
the reference to the hybrid model.

Theorem 6.6.3. Let p(n) be a polynomial, let f1, . . . , fp(n) be two-party probabilistic
polynomial-time functionalities, and let ρ1, . . . , ρp(n) be protocols such that each ρi

securely computes fi in the presence of malicious adversaries. Let g be a two-party
functionality and let π be a protocol that securely computes g in the f1, . . . , fp(n)-
hybrid model in the presence of malicious adversaries. Then, πρ1,...,ρp(n) securely com-
putes g in the presence of malicious adversaries.

Composition with expected polynomial-time simulation. The composition the-
orem proven by [8, 18] holds for strict polynomial-time adversaries, and certain
difficulties arise when considering expected polynomial-time simulation. This is-
sue was considered by [28], and a far simpler solution was later provided in [19].
Although of importance, we will ignore this issue in this tutorial.

Sequential composition – semi-honest adversaries. A composition theorem that
is analogous to Theorem 6.6.3 also holds for semi-honest adversaries; see [18, Sec-
tion 7.4.2].

6.7 Determining Output – Coin Tossing
Previously, we considered the simulation of malicious adversaries in the context of
zero knowledge. However, as we have mentioned, zero knowledge is an easier case
since the verifier receives no output (if the prover is honest, then the verifier already
knows that the statement is true). In this section, we consider the problem of coin
tossing. The coin-tossing functionality has no input, but the parties must receive the
same uniformly distributed output. Thus, in this section, we demonstrate simulation
in this more difficult scenario, where the view must be generated and correlated to
the actual output.

6.7.1 Coin Tossing a Single Bit
In this section, we present the protocol by Blum for tossing a single coin se-
curely [5]. The protocol securely computes the functionality fct(λ, λ) = (U1,U1),
where U1 is a random variable that is uniformly distributed over {0, 1}. We stress
that we only consider security with abort here, and thus it is possible for one party
to see the output and then abort before the other receives it (e.g., in the case that it
is not a favorable outcome for that party). Indeed, it is impossible for two parties
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to toss a coin fairly so that neither party can cause a premature abort or bias the
outcome [15].

Tossing a single coin. The idea behind the protocol is very simple: both parties
locally choose a random bit, and the result is the XOR of the two bits. The prob-
lem that arises is that if P1 sends its random bit to P2 first, then P2 can cheat and
send a bit that forces the output to be the result that it desires. One possible way
to solve this problem is to have P1 and P2 simultaneously send their bits to each
other. However, we do not have simultaneous channels that force independence.
(Formally, we defined a real model where protocols proceed in rounds and in each
round one message is sent from one party to the other.) This is solved by having P1
send a commitment to its bit b1, rather than b1 itself. From the hiding property of the
commitment scheme, when P2 sends b2 it must send it independently of b1 (since it
only receives a commitment). Likewise, from the binding property of the commit-
ment scheme, P1 cannot change b1 after it is committed. Therefore, even though P1
sees b2 before decommitting, it cannot change the value. See Protocol 6.7.1 for a
description of the protocol.

PROTOCOL 6.7.1 (Blum’s coin tossing of a single bit)

• Security parameter: Both parties have security parameter 1n

• The protocol:

1. P1 chooses a random b1 ∈ {0, 1} and a random r ∈ {0, 1}n and sends c =

Com(b1; r) to P2.
2. Upon receiving c, party P2 chooses a random b2 ∈ {0, 1} and sends b2 to P1.
3. Upon receiving b2, party P1 sends (b1, r) to P2 and outputs b = b1 ⊕ b2. (If P2

does not reply, or replies with an invalid value, then P2 sets b2 = 0.)
4. Upon receiving (b1, r) from P1, party P2 checks that c = Com(b1; r). If yes, it

outputs b = b1 ⊕ b2; else it outputs ⊥.

Before we proceed to proving the security of Protocol 6.7.1, we discuss the main
challenges in carrying out the simulation. This is our first example of a “standard”
secure computation. The simulator here is the ideal-model adversary. As such,
it externally interacts with the trusted party computing the functionality (in this
case, fct(λ, λ) = (U1,U1)), and internally interacts with the real-model adversary as
part of the simulation. Throughout simulation-based proofs, it is very important to
emphasize the difference between such interactions. (Of course, internal interaction
is not real, and is just the simulator internally feeding messages to A that it runs as
a subroutine, as in Section 6.5.) In general, the simulator needs to send the trusted
party the corrupted party’s input and receive back its output. In this specific case
of coin tossing, the parties have no input, and so the adversary just receives the
output from the trusted party (formally, the parties send an empty string λ as input
so that the trusted party knows to compute the functionality). The challenge of the
simulator is to make the output of the execution that it simulates equal the output
that it received from the trusted party.
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We elaborate on this challenge: in the simulation, the simulator receives the out-
put bit b from the trusted party and needs to make the result of the execution equal b.
Thus, it has to be able to completely bias the outcome to be a specific value. This
contradicts the basic security of a coin-tossing protocol! However, like zero knowl-
edge versus soundness in the case of zero-knowledge proofs, this contradiction is
overcome by the fact that the simulator has some additional power that a real adver-
sary does not have. As before, the additional power it has here is the ability to rewind
the adversary. Intuitively, since we are tossing a single bit, and in each execution the
probability that the result equals b is 1/2, it follows that the simulator can just run
the protocol numerous times from scratch, until the result is b. Since we expect to
need to rewind only twice, we are guaranteed that the simulator will succeed within
n attempts, except with negligible probability. However, another concern arises here.
Specifically, a corrupted P1 may abort and refuse to decommit to its first commit-
ment. Observe that P1 already knows the output at this point, and so this decision
may be a function of what the output will be. Fortunately, in the ideal model, the
definition of security allows the corrupted party to obtain the input, and not nec-
essarily provide the output to the honest party. However, the simulation must take
great care to not skew the probability of this happening (if in a real execution P2 re-
ceives output with probability p when the output will be 0, and receives output with
probability q when the output will be 1, then these probabilities must be negligibly
close to p and q in the simulation as well). We now proceed to the actual proof (this
proof is based heavily on [18, Section 7.4.3.1]).

Theorem 6.7.2. Assume that Com is a perfectly binding commitment scheme. Then,
Protocol 6.7.1 securely computes the bit coin-tossing functionality defined by
fct(λ, λ) = (U1,U1).

Proof: It is clear that Protocol 6.7.1 computes fct, since when both parties are
honest they output b1⊕b2, which is uniformly distributed. We now proceed to prove
that the protocol is secure.

Let A be a nonuniform probabilistic polynomial-time adversary. As discussed in
Remark 6.6.2, we may consider a deterministic A. We first consider the case that P2
is corrupted. We describe the simulator S:

1. S sends λ externally to the trusted party computing fct and receives back a bit
b.

2. S initializes a counter i = 1.
3. S invokes A, chooses a random b1 ∈R {0, 1} and r ∈R {0, 1}n, and internally

hands A the value c = Com(b1; r) as if it was sent by P2.
4. If A replies with b2 = b ⊕ b1, then S internally hands A the pair (b1, r) and

outputs whatever A outputs. (As in the protocol, if A does not reply or replies
with an invalid value, then this is interpreted as b2 = 0.)

5. If A replies with b2 , b ⊕ b1 and i < n, then S sets i = i + 1 and returns back to
step 3.

6. If i = n, then S outputs fail.



6 How to Simulate It – A Tutorial on the Simulation Proof Technique 319

We first prove that S outputs fail with negligible probability. Intuitively, this is the
case since A’s response bit b2 is (computationally) independent of b1. In order to
see this, observe that an iteration succeeds if and only if b1 ⊕ b2 = b, where b2 is
A’s response to Com(b1). We have

Pr[A(Com(b1)) = b1 ⊕ b] =
1
2
· Pr[A(Com(0)) = b] +

1
2
· Pr[A(Com(1)) = 1 ⊕ b]

=
1
2
· Pr[A(Com(0)) = b] +

1
2
· (1 − Pr[A(Com(1)) = b])

=
1
2

+
1
2
· (Pr[A(Com(0)) = b] − Pr[A(Com(1)) = b]),

where the probability is taken over the choice of b1 and the randomness used to
generate the commitment. By the assumption that Com is a perfectly binding com-
mitment scheme, and thus is computationally hiding, we have that there exists a
negligible function µ such that for every b ∈ {0, 1}∣∣∣ Pr[A(Com(0)) = b] − Pr[A(Com(1)) = b]

∣∣∣ ≤ µ(n),

and so

1
2
· (1 − µ(n)) ≤ Pr[A(Com(b1)) = b1 ⊕ b] ≤

1
2
· (1 + µ(n)). (6.10)

(We stress that, in Eq. (6.10), the probability is taken over the choice of b1 and
the randomness used to generate Com(b1).) Since S outputs fail if and only if
A(Com(b1)) , b1 ⊕ b in all n iterations, we have that S outputs fail with proba-
bility at most (

1
2
· (1 + µ(n))

)n

<

(
2
3

)n

,

which is negligible (the inequality holds for all large enough n’s).
Next, we show that, conditioned on the fact that S does not output fail, the output

distributions ideal and real are statistically close. Observe that in both the real and
ideal (i.e., simulated) executions, the bit b2 sent by A is fully determined by b1, r.
Specifically, we can write b2 = A(Com(b1; r)). We therefore have that both distri-
butions are of the form (b,A(Com(b1; r), b1, r)), where b = b1⊕A(Com(b1; r)). The
difference between the distributions is as follows:

• Real: In a real execution, b1 and r are uniformly distributed.
• Ideal: In an ideal execution, a random b is chosen, and then random b1 and r

are chosen under the constraint that b1 ⊕A(Com(b1; r)) = b.

In order to see that these distributions are statistically close, we calculate the proba-
bility that every (b1, r) is chosen according to the distributions. Fix b̂1, r̂. Then, in the
real execution it is immediate that (b̂1, r̂) appears with probability exactly 2−(n+1).

Regarding the ideal execution, denote by S b = {(b1, r) | b1⊕A(Com(b1; r)) = b}.
Observe that S b contains all the pairs (b1, r) that can lead to an output of b in the
ideal execution (since S concludes when b1 ⊕ A(Com(b1; r)) = b). We claim that
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the fixed (b̂1, r̂) appears in the ideal execution with probability

1
2
·

1
|S b|

. (6.11)

This holds because b is uniformly chosen by the trusted party, and conditioned on
not outputting fail, simulator S samples a uniformly distributed element from S b.
(This can be seen by the fact that S concludes as soon as it obtains an element of
S b, and in every iteration it chooses a random b1, r with the “hope” that it is in S b.)

It remains to show that for every b ∈ {0, 1}, the set S b has close to 2n elements.
However, this follows directly from Eq. (6.10). Specifically, Eq. (6.10) states that
for every b, the probability that A(Com(b1; r)) = b1 ⊕ b is 1

2 · (1 ± µ(n)). However,
this probability is exactly the probability that (b1, r) ∈ S b. This implies that

1
2
· (1 − µ(n)) ≤

|S b|

2n+1 ≤
1
2
· (1 + µ(n)),

and so
2n · (1 − µ(n)) ≤ |S b| ≤ 2n · (1 + µ(n)).

Combining this with Eq. (6.11), we have that the pair (b̂1, r̂) appears with probability
between 2−(n+1) · (1 − µ(n)) and 2−(n+1) ·(1+µ(n)). This is therefore statistically close
to the probability that (b̂1, r̂) appears in a real execution. The real and ideal output
distributions are therefore statistically close.8

We now turn to the case that P1 is corrupted. The simulation here needs to take
into account the case that A does not reply with a valid message and so aborts. The
simulator S works as follows:

1. S sends λ externally to the trusted party computing fct and receives back a bit b.
2. S invokes A and internally receives the message c that A sends to P1.
3. S internally hands A the bit b2 = 0 as if coming from P2, and receives back

its reply. Then, S internally hands A the bit b2 = 1 as if coming from P2, and
receives back its reply. We have the following cases:

a. If A replies with a valid decommitment (b1, r) such that Com(b1; r) = c
in both iterations, then S externally sends continue to the trusted party. In
addition, S defines b2 = b1 ⊕ b, internally hands A the bit b2, and outputs
whatever A outputs.

b. If A does not reply with a valid decommitment in either iteration, then S
externally sends abort1 to the trusted party. Then, S internally hands A a
random bit b2 and outputs whatever A outputs.

c. If A replies with a valid decommitment (b1, r) such that Com(b1; r) = c
only when given b2 where b1 ⊕ b2 = b, then S externally sends continue to

8 It may seem surprising that we obtain statistical closeness, even though we are relying on the com-
putational hiding of the commitment scheme. However, the computational hiding is used only to
ensure that S outputs fail with negligible probability, and holds when considering any polynomial-
time A.
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the trusted party. Then, S internally hands A the bit b2 = b1⊕b and outputs
whatever A outputs.

d. If A replies with a valid decommitment (b1, r) such that Com(b1; r) = c
only when given b2 where b1 ⊕ b2 , b, then S externally sends abort1 to
the trusted party. Then, S internally hands A the bit b2 = b1 ⊕ b ⊕ 1 and
outputs whatever A outputs.

We prove that the output distribution is identical. We consider three cases:

1. Case 3a – A always replies with a valid decommitment: In this case, A’s view
in a real execution consists of a random bit b2, and the honest P2’s output equals
b = b1 ⊕ b2, where b1 is the committed value in c. Since b1 is fully determined
by the commitment c before b2 is chosen by P1, it follows that b is uniformly
distributed.
In contrast, in an ideal execution, the bit b is uniformly chosen. Then, A’s view
consists of b2 = b1 ⊕ b, and the honest P2’s output equals b. Since b1 is fully
determined by the commitment c before any information about b is given to A,
it follows that b2 = b1 ⊕ b is uniformly distributed.
In both cases, the bits b and b2 are uniformly distributed under the constraint
that b ⊕ b2 = b1. Thus, the joint distributions over A’s output and the honest
party’s output are identical in the real and ideal executions.

2. Case 3b – A never replies with a valid decommitment: In this case, A’s view
consists of a uniformly distributed bit, exactly like in a real execution. In addi-
tion, the honest P2 outputs ⊥ in both the real and ideal executions (with prob-
ability 1). Thus, the joint distributions over A’s output and the honest party’s
output are identical in the real and ideal executions.

3. Case 3c and 3d – A replies with a valid decommitment for exactly one value
b̂2 ∈ {0, 1}: Let b1 be the value committed in the commitment c sent by A (since
A is deterministic and this is the first message, this is a fixed value). Then, in
the real execution, if P2 sends b̂2 then A replies with a valid decommitment and
the honest P2 outputs b = b1 ⊕ b̂2. In contrast, if P2 sends b̂2 ⊕ 1, then A does
not reply with a valid decommitment and P2 outputs ⊥.
Consider now the ideal execution. If b ⊕ b1 = b̂2, then S hands A the bit b̂2. In
this case, A replies with a valid decommitment and the honest party P2 outputs
b = b1 ⊕ b̂2. In contrast, if b ⊕ b1 = b̂2 ⊕ 1, then S hands A the bit b̂ ⊕ 1. In this
case, A does not reply with a valid decommitment and P2 outputs ⊥.
We therefore see that the distribution over the view of A and the output of P2 is
identical in both cases.

This completes the proof of the theorem. �

Discussion. The proof of Theorem 6.7.2 is surprising in its complexity. The in-
tuition behind the security of Protocol 6.7.1 is very straightforward. Nevertheless,
formally justifying this fact is very difficult.9 Some specific observations are worth

9 I would like to add a personal anecdote here. The first proof of security that I read that followed
the ideal/real simulation paradigm with security for malicious adversaries was this proof by Oded
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making. First, as in the zero-knowledge proofs, the mere fact that the simulator (for
the case of P2 corrupted) runs in polynomial time is not straightforward and requires
a reduction to the security of the commitment scheme. Second, in the malicious set-
ting, many additional issues needed to be dealt with:

1. The adversary can send any message and so the simulator must “interact”
with it.

2. The adversary may abort in some cases and this must be carefully simulated so
that the distribution is not skewed when aborts can happen.

3. The adversary may abort after it receives the output and before the honest party
receives the output. This must be correlated with the abort and continue in-
structions sent to the trusted party, in order to ensure that the honest party aborts
with the same probability in the real and ideal executions, and that this behavior
matches the view of the adversary.

Third, it is worth comparing this proof with those of zero knowledge in Section 6.5.
In both cases, we deal with a malicious adversary. However, in zero knowledge,
there is no “joint distribution” over the output, since there is no output. Thus, it
suffices to simulate the view of the verifier V∗ alone. Although this is not so easy, it is
far less delicate than this proof here. The need to consider the joint distribution over
the outputs, and to simulate for the output received from the trusted party (whatever
it may be), adds considerable complexity.

Technique discussion. It is worthwhile observing that S essentially plays the role
of the honest party, in that it generates the messages from the honest party that the
adversary expects to see. This is true in all simulations. Of course, S does not actu-
ally send the messages that the honest party sends, since S has to make the output
received by A equal the output sent by the trusted party computing the functional-
ity. This is something that cannot be possible in a real execution, or else a corrupted
party could fully determine the output.

Interaction with the trusted party or ideal functionality. As we have seen, the
simulator externally interacts with the trusted party computing the functionality. In
many papers, the simulator is described as interacting directly with the functionality
itself (and not a trusted party computing it). This is merely an issue of terminology,
and the intention is exactly the same.

6.7.2 Securely Tossing Many Coins and the Hybrid Model
In this section, we will show how to toss many coins. Of course, we could apply the
sequential composition theorem and obtain that, in order to toss some ` = poly(n)
coins, the parties can carry out ` sequential executions of Protocol 6.7.1. However,

Goldreich (it appeared in a very early draft on Secure Multiparty Computation that can be found
at www.wisdom.weizmann.ac.il/∼oded/pp.html). I remember reading it multiple times until
I understood why all the complications were necessary. Thus, for me, this proof brings back fond
memories of my first steps in secure computation.
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we wish to toss many coins in a constant number of rounds. Formally, the function-
ality is parameterized by a polynomial ` and is defined by f `ct(λ, λ) = (U`(n),U`(n)).
Note that the security parameter n is also given to the trusted party, and thus it can
compute the length `(n) itself.

Our main aim in this section is to introduce simulation-based proofs in the hybrid
model. As such, we will assume that we are given a constant-round protocol that
securely computes the zero-knowledge proof of knowledge functionality for any
NP relation. This functionality is parameterized by a relation R ∈ NP and is
defined by f R

zk((x,w), x) = (λ,R(x,w)). Note that fzk receives x from both parties; if
different values of x are received then the output is 0. Formally, we define

f R
zk((x,w), x′) =

{
(λ,R(x,w)) if x = x′

(λ, 0) otherwise .

We remark that any zero-knowledge proof of knowledge for R, as defined in [17,
Section 4.7], securely computes the functionality f R

zk. This folklore fact was for-
mally proven in [27]. The existence of a constant-round zero-knowledge proof of
knowledge was proven in [30]. Thus, we conclude that f R

zk can be securely com-
puted in a constant number of rounds.

As we will see here, working in the hybrid model greatly simplifies things. In
fact, the proof of security in this section—for a far more complex protocol than for
tossing a single coin—is far simpler.

Protocol idea. As in Protocol 6.7.1, the idea behind the protocol is to have P1
commit to a random string ρ1 of length `(n), and then for P2 to reply with another
random string ρ2 of length `(n). The result is the XOR ρ1 ⊕ ρ2 of these two strings.
Unfortunately, we do not know how to simulate such a protocol. This is due to
the fact that when P2 is corrupted, S would need to rewind the adversary A an
exponential number of times in order to make ρ1 ⊕ ρ2 equal a specific string ρ
provided by the trusted party. This is similar to the problem with simulating the
basic three-round zero-knowledge protocol when running it many times in parallel.
We solve this problem by not having P1 decommit to ρ1 at all. Rather, it sends ρ1
and proves in zero knowledge that this is the value in the commitment. In the real
world, this is the same as decommitting (up to the negligible probability that P1 can
cheat in the proof). However, in the ideal simulation, the simulator can cheat in the
zero-knowledge proof and send ρ1 = ρ ⊕ ρ2, where ρ is the value received from the
trusted party, even though the value committed to is completely different.

In the case that P1 is corrupted, there is another problem that arises. Specifically,
in order to simulate, the simulator first needs to learn the value ρ1 committed before
it can set ρ2 = ρ ⊕ ρ1. Thus, it first needs to hand A a random ρ2 with the hope that
it will decommit ρ1 and correctly prove the proof. If it does not, then the simulator
can just abort. If it does send ρ1 and correctly proves the zero-knowledge proof, then
the simulator can now rewind and hand it ρ2 = ρ ⊕ ρ1. However, what happens if
A aborts given this ρ2? If the simulator aborts now then the probability of abort is
much higher in the ideal execution than in a real execution (because it aborts with
the probability that A aborts when given a random ρ2 plus the probability that A
aborts when receiving ρ2 = ρ1 ⊕ρ). But, the simulator cannot do anything else since
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there is only one ρ2 that can be used at this point. We solve this problem by adding a
zero-knowledge proof of knowledge that P1 proves as soon as it commits to ρ1. The
simulator can then extract ρ1 and set ρ2 = ρ1 ⊕ ρ without any rewinding (of course,
beyond the internal rewinding needed to prove the security of f R

zk; nevertheless,
thanks to the composition theorem we can ignore this here). If A aborts on this ρ2
then the simulator aborts; otherwise it does not. This gives the required probability
of abort, as we will see. See Protocol 6.7.3 for the full specification.

PROTOCOL 6.7.3 (Multiple coin tossing)

• Input: Both parties have input 1n (where `(n) is the number of coins to be tossed).
• Security parameter: Both parties have security parameter 1n.
• Hybrid functionalities: Let L1 = {c | ∃(x, r) : c = Com(x; r)} be the language of

all valid commitments, and let R1 be its associated NP relation (for statement c the
witness is x, r such that c = Com(x; r)). Let L2 = {(c, x) | ∃r : c = Com(x; r)} be the
language of all pairs of commitments and committed values, and let R2 be its asso-
ciated NP relation (for statement (c, x) the witness is r such that c = Com(x; r)).
The parties have access to a trusted party that computes the zero-knowledge proof
of knowledge functionalities f R1

zk and f R2
zk for relations R1 and R2, respectively.

• The protocol (for tossing `(n) coins):
1. P1 chooses a random ρ1 ∈ {0, 1}`(n) and a random r ∈ {0, 1}poly(n) of length

sufficient to commit to `(n) bits, and sends c = Com(ρ1; r) to P2.
2. P1 sends (c, (ρ1, r)) to f R1

zk .
3. Upon receiving c, party P2 sends c to f R1

zk and receives back a bit b. If b = 0
then P2 outputs ⊥ and halts. Otherwise, it proceeds.

4. P2 chooses a random ρ2 ∈ {0, 1}`(n) and sends ρ2 to P1.
5. Upon receiving ρ2, party P1 sends ρ1 to P2 and sends ((c, ρ1), r) to f R2

zk . (If P2

does not reply, or replies with an invalid value, then P1 sets ρ2 = 0`(n).)
6. Upon receiving ρ1, party P2 sends (c, ρ1) to f R2

zk and receives back a bit b. If
b = 0 then P2 outputs ⊥ and halts. Otherwise, it outputs ρ = ρ1 ⊕ ρ2.

7. P1 outputs ρ = ρ1 ⊕ ρ2.

Technique discussion – proving in the hybrid model. Before proceeding to prove
the security of Protocol 6.7.3, we explain how a proof of security in the hybrid model
works. Recall that the sequential composition theorem states that if a protocol se-
curely computes a functionality f in the g-hybrid model for some functionality g,
then it remains secure when using a secure subprotocol that securely computes g.
An important observation here is that in the hybrid model with g, there is no “neg-
ligible error” or “computational indistinguishability” when computing g. Rather, g
is secure by definition, and an incorruptible trusted party computes it. Thus, there is
no need to prove a reduction that if an adversary can break the protocol for securely
computing f , then there exists an adversary that breaks the subprotocol that securely
computes g. As we have seen above, such reductions are often a major effort in the
proof, and thus working in a hybrid model saves this effort.

A second important observation is that a protocol that is designed in the g-hybrid
model for some g contains instructions for sending inputs to the trusted party com-
puting f . Furthermore, parties receive outputs from the computation of g from the
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trusted party. This means that an adversary for the protocol also sends its inputs
to the computation of g in the clear, and expects to receive its outputs back. In the
specific example of Protocol 6.7.3, the functionality used is a zero-knowledge proof
of knowledge functionality. Thus, if the adversary controls the party running the
prover, then it directly sends the input and witness pair (x,w) to fzk. This means that
a simulator who internally runs the adversary will receive (x,w) from the adversary
and so immediately has the input and witness. Observe that there is no need to run
the proof’s knowledge extractor and deal with negligible error and polynomial-time
issues. The simulator obtains these for free. Likewise, if the adversary controls the
party running the verifier, then it expects to receive 1 as output from fzk (in the
typical case that an honest party never tries to prove an incorrect statement in the
protocol). Thus, the simulator can just hand it 1 as the output from the trusted party,
and there is no need for it to run the zero-knowledge simulator and prove a reduc-
tion that computational indistinguishability holds. In addition, this “simulation” that
works by sending 1 is perfect.

In summary, in the simulation, the simulator plays the trusted party that com-
putes the functionality used in the hybrid model that interacts with the adversary.
The simulator directly receives the input that the adversary sends and can write any
output that it likes. (We stress that this should not be confused with the trusted party
that the simulator externally interacts with in the ideal model. This interaction is
unchanged.) As a result, S has many types of interactions and it is very helpful to
the reader to explicitly differentiate between them within the proof:

1. External interaction with the trusted party: this is real interaction where S sends
and receives messages externally.

2. Internal simulated interaction with the real adversary A: this is simulated in-
teraction and involves internally invoking A as a subroutine on incoming mes-
sages. This interaction is of two subtypes:

a. Internal simulation of real messages between A and the honest party.
b. Internal simulation of ideal messages between A and the trusted party com-

puting the functionality used as a subprotocol in the hybrid model.

We attempt to differentiate between these types of interactions in the simulator de-
scription.

Theorem 6.7.4. Assume that Com is a perfectly binding commitment scheme and
let ` be a polynomial. Then, Protocol 6.7.3 securely computes the functionality
f `ct(λ, λ) = (U`(n),U`(n)) in the

(
f R1
zk , f R2

zk

)
-hybrid model.

Proof: As with Protocol 6.7.1, it is clear that Protocol 6.7.3 computes f `ct and
two honest parties output a uniformly distributed string of length `(n). We therefore
proceed to prove that the protocol is secure. We construct a simulator who is given
an output string ρ and generates a transcript that results in ρ being the output. The
simulator utilizes the calls to f R1

zk and f R2
zk in order to do this. We first consider the

case that P1 is corrupted, and then the case that P2 is corrupted.

P1 corrupted: Simulator S works as follows:
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1. S invokes A, and receives the message c that A sends to P2, and the message
(c′, (ρ1, r)) that A sends to f R1

zk .
2. If c′ , c or c , Com(ρ1; r), then S sends abort1 to the trusted party comput-

ing f `ct, simulates P2 aborting, and outputs whatever A outputs. Otherwise, it
proceeds to the next step.

3. S sends 1n to the external trusted party computing f `ct and receives back a string
ρ ∈ {0, 1}`(n).

4. S sets ρ2 = ρ ⊕ ρ1 (where ρ is as received from f `ct and ρ1 is as received from A
as part of its message to f R1

zk ), and internally hands ρ2 to A.
5. S receives the message ρ′1 that A sends to P2, and the message ((c′′, ρ′′1 ), r′′) that

A sends to f R2
zk . If c′′ , c or ρ′1 , ρ

′′
1 or c , Com(ρ′′1 ; r′′) then S sends abort1 to

the trusted party computing f `ct, simulates P2 aborting, and outputs whatever A
outputs.
Otherwise, S externally sends continue to the trusted party, and outputs what-
ever A outputs.

We show that the simulation in this case is perfect; that is, the joint output distribu-
tion in the ideal model with S is identically distributed to the joint output distribution
in an execution of Protocol 6.7.3 in the fzk-hybrid model with A. In order to show
this, we consider three phases of the execution: (1) A, controlling P1, sends c to P2
and (c, (ρ1, r)) to f R1

zk ; (2) P2 sends ρ2 to P1; and (3) A sends ρ2 to P2 and ((c, ρ1), r)
to f R2

zk .

1. Phase 1: Since A is deterministic (see Remark 6.6.2) and there is no rewinding,
the distribution over the first phase is identical in the real and ideal executions.
(If these messages cause P2 to output ⊥, then this is the entire distribution and
so is identical.)

2. Phase 2: Assume that the phase 1 messages do not result in P2 outputting ⊥.
Then, we claim that for every triple (c, ρ1, r) making up the phase 1 messages,
the distribution over ρ2 received by A is identical in the real and ideal execu-
tions. In a real execution, the honest P2 chooses ρ2 ∈R {0, 1}`(n) uniformly and
independently of (c, ρ1, r). In contrast, in an ideal execution, ρ ∈R {0, 1}`(n) is
chosen uniformly and then ρ2 is set to equal ρ⊕ρ1 (where ρ1 is previously fixed
since it is committed in a perfectly binding commitment). Since ρ is chosen in-
dependently of ρ1, we have that ρ1 ⊕ ρ is also uniformly distributed in {0, 1}`(n)

and independent of (c, ρ1, r).
3. Phase 3: Assume again that the phase 1 messages do not result in P2 out-

putting ⊥. Then, we claim that for every (c, ρ1, r, ρ2) making up the phase 1
and 2 messages, it holds that the honest P2 outputs the exact same value in a
real execution with A and in an ideal execution with S. In order to see this,
observe that this phase consists only of A sending ρ′1 to P2 and ((c′′, ρ′′1 ), r′′) to
f R2
zk . There are two cases:

a. Case 1 – c′′ = c and ρ′1 = ρ′′1 and c = Com(ρ′′; r′′): In this case, in a real
execution the trusted party computing f R2

zk will send 1 to P2 and in an ideal
execution S will send continue to the trusted party. This holds because
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both A and P2 send the same public statement (c, ρ′1) to f R2
zk and it holds

that c = Com(ρ′1; r′′). Now, in a real execution, P2 outputs ρ′1 ⊕ ρ2, whereas
in an ideal execution P2 outputs ρ = ρ1 ⊕ρ2. However, since c is a perfectly
binding commitment scheme, we have that ρ′1 = ρ1. This implies that in
this case the honest P2 outputs the same ρ = ρ1 ⊕ ρ2 in the real and ideal
executions.

b. Case 2 – c′′ , c or ρ′1 , ρ
′′
1 or c , Com(ρ′′; r′′): In this case, in an ideal

execution S will send abort1 to the trusted party (by its specification), and
the honest P2 will output ⊥. In a real execution, in this case, the trusted
party computing f R2

zk will send 0 to P2. This is because either A and P2
send different statements to the trusted party ((c, ρ′1) versus (c′′, ρ′′1 )) or the
witness is incorrect and c , Com(ρ′′; r′′). Thus, the honest P2 in a real
protocol execution will also output ⊥.

We have shown that the distributions in each phase are identical, conditioned on the
previous phases. This therefore proves that the overall joint distribution over A’s
view and P2’s output is identical in the real and ideal executions. (Although the
simulation is perfect, this does not mean that the real protocol is perfectly secure,
since this analysis is in the hybrid model only.)

P2 is corrupted. Simulator S works as follows:

1. S sends 1n to the external trusted party computing f `ct and receives back a string
ρ ∈ {0, 1}`(n). S externally sends continue to the trusted party (P1 always re-
ceives output).

2. S chooses a random r ∈ {0, 1}poly(n) of sufficient length to commit to `(n) bits,
and computes c = Com(0`(n); r).

3. S internally invokes A and hands it c.
4. S receives back some ρ2 from A (if A does not send a valid ρ2 then S sets

ρ2 = 0`(n) as in the real protocol).
5. S sets ρ1 = ρ2 ⊕ ρ and internally hands A the message ρ1 as if coming from P1.
6. S receives some pair (c′, ρ′1) from A as it sends to f R2

zk (as the “verifier”). If
(c′, ρ′1) , (c, ρ1) then S internally simulates f R2

zk sending 0 to A. Otherwise, S
internally simulates f R2

zk sending 1 to A.
7. S outputs whatever A outputs.

The only difference between a real execution of the protocol (in the fzk-hybrid
model) and an ideal execution with the simulator is the commitment c received
by A. In a real execution it is a commitment to ρ1, whereas in the simulation it
is a commitment to 0`(n). It may be tempting to simply say that these distributions
are therefore indistinguishable, by the hiding property of the commitment scheme.
However, as we have stressed before, a reduction must be given in order to prove this
formally. In this specific case, such a reduction is not as straightforward as it may
seem. In order to see this, observe that in a reduction, the distinguisher would ask
for a commitment to either ρ1 or to 0`(n) and then would run the simulator S with the
only difference being that it uses the commitment c received instead of generating
itself. Since S simulates f R1

zk and f R2
zk , it need not know the randomness used (or even
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whether it is a commitment to ρ1 or to 0`(n)). Thus, it can seemingly carry out the
reduction. The problem with this is that S receives ρ externally and sets ρ1 = ρ2⊕ρ.
Since ρ2 is received from A (controlling P2) after A receives c, the distinguisher for
the commitment scheme only knows the value of ρ1 after it obtains the commitment
c in the distinguishing game. Thus, the reduction fails because in the commitment
experiment, the pair of values are of course determined ahead of time (it is not pos-
sible to commit to either x1 or x2 when x2 is chosen after the commitment is given
and may be a function of the commitment value c).

We therefore begin by first showing an alternative way to generate the joint output
distribution of S and the honest P1 in the ideal model. Let S ′ work in the same way
as S except that instead of receiving ρ externally from the trusted party, S ′ chooses ρ
by itself (uniformly at random) after receiving ρ2 from A. In addition, the output of
the honest party is set to be ρ. Stated differently, S ′ outputs the pair (ρ, output(A)),
where output(A) is the output of A after the simulation. It is immediate that the
output of S ′ is identically distributed to an ideal execution. That is{

S ′(1n)
}
n∈N
≡

{
ideal f `ct,S (1n, 1n, n)

}
n∈N

. (6.12)

This is due to the fact that the only difference is the point at which ρ is chosen.
However, since it is chosen independently in both cases, the output distribution is the
same. (Note that S ′ is not a valid simulator since the trusted party does not choose
the output ρ. Nevertheless, we present S ′ as a way of proving the indistinguishability
of two distributions, and not as a valid simulator.)

We now wish to show that the output of S ′ is computationally indistinguishable
from the real output realπ,A(1n, 1n, n). Since we have already shown that its output
is identical to the ideal output distribution, this completes the proof. In order to prove
this, we construct an adversary D for the commitment scheme. We use a definition
that a commitment to 0`(n) is computationally indistinguishable from a commitment
to a random string R of length `(n), even given the random string R. (This follows
easily from the standard definition of hiding for commitments, and in particular,
from the LR-oracle formulation in Section 6.5.2.)

The adversary D is given a commitment c and (random) string R and runs
the code of S ′ with the following differences: First, instead of computing c =

Com(0`(n); r) by itself, it uses c that it received as input. In addition, instead of
choosing ρ uniformly and setting ρ1 = ρ ⊕ ρ2, distinguisher D sets ρ1 = R and
ρ = ρ1 ⊕ ρ2. Apart from that, D follows the instructions of S ′. We have:

• If D receives the commitment c = Com(0`(n)), then its output is identical to
the output of S ′. In order to see this, observe that the only difference is that D
sets ρ = ρ2 ⊕ ρ1 where ρ1 = R is uniformly distributed (ρ1 does not appear
elsewhere in the execution since c is a commitment to 0). Since ρ1 is random
and independent of everything else, ρ is uniformly distributed, exactly as in an
execution of S ′. The commitment c is also exactly as generated by S ′. Thus,
the output distribution is identical.

• If D receives the commitment c = Com(ρ1), then its output is identical to the
joint output distribution from a real execution. This holds because the commit-



6 How to Simulate It – A Tutorial on the Simulation Proof Technique 329

ment from P1 is a commitment to a random ρ1, and the same ρ1 is sent to A in
the last message of the protocol. In addition, the output of the honest party is
ρ1⊕ρ2 exactly like in a real execution. Thus, this is just a real execution between
an honest P1 and the adversary A.

It follows from the hiding property of the commitment scheme that the output distri-
butions generated by D are computationally indistinguishable. Therefore, the output
of S ′—which is identical to the output in a real execution—is computationally in-
distinguishable from the joint output of a real execution. That is,{

S ′(1n)
}
n∈N

c
≡

{
realπ,A(1n, 1n, n)

}
n∈N

. (6.13)

The proof is completed by combining Equations (6.12) and (6.13). �

Discussion – the power of proving in the hybrid model. We remark that the proof
for Protocol 6.7.3 is considerably more simple than the proof for Protocol 6.7.1. This
may seem somewhat surprising since the protocol is far more complex. However,
it is actually not at all surprising since the proof of security is carried out in the
fzk-hybrid model. This is a very powerful tool, and it makes proving security much
easier. For one thing, in this specific case, no rewinding is necessary. Thus, it is not
necessary to justify that the simulation is polynomial time, and it is also not neces-
sary to justify that the output distribution is not skewed by the rewinding procedure.

6.8 Extracting Inputs – Oblivious Transfer
In the coin-tossing functionality, the parties have no input. Thus, the simulator’s
challenge is to receive the output from the trusted party and to generate a view of a
real execution for the adversary that corresponds to the received output. However,
in general, functionalities do have input, and in this case the output from the trusted
party is only defined after the parties provide input. Thus, the simulator must extract
the input from the adversary, send it to the trusted party, and receive back the output.
The view generated by the simulator must then correspond to this input and output.
As we will see below, this introduces additional challenges.

In this section, we will study the oblivious transfer functionality defined by
fot((x0, x1), σ) = (λ, xσ) where x0, x1 are from a fixed domain and σ is a bit [16, 36].
We present a version of the oblivious transfer protocol of [35] (the original pro-
tocol of [35] is in the common reference string model and will be presented in
Section 6.9).

Preliminaries – the RAND procedure. Before presenting the protocol, we will
describe and prove an important property of a probabilistic procedure, called RAND,
that is used in the protocol. Let G be a multiplicative group of prime order q. Define
the probabilistic procedure

RAND(g, x, y, z) = (u, v) =
(
gs · yt, xs · zt

)
,

where s, t ∈R Zq are uniformly random.
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Claim 6.8.1. Let g be a generator of G and let x, y, z ∈ G. If (g, x, y, z) do not form a
Diffie–Hellman tuple (i.e., there does not exist a ∈ Zq such that y = ga and z = xa),
then RAND(g, x, y, z) is uniformly distributed in G2.

Proof: We prove that for every (a, b) ∈ G × G,

Pr[u = a ∧ v = b] =
1
|G|2

, (6.14)

where (u, v) = RAND(g, x, y, z) and the probability is taken over the random choices
of s, t ∈ Zq (this implies that (u, v) is uniformly distributed). Let α, β, γ ∈ Zq be
values such that x = gα, y = gβ, and z = gγ and γ , α · β mod q. (Note that if
γ = α · β mod q then this implies that z = gγ = (gα)β = xβ and so y = gβ and z = xβ,
in contradiction to the assumption in the claim.) Then,

u = gs · yt = gs · (gβ)t = gs+β·t and v = xs · zt = (gα)s · (gγ)t = gα·s+γ·t .

Now, let δ, ε ∈ Zq such that a = gδ and b = gε . Then, since s, t are uniformly
distributed in Zq, it follows that Eq. (6.14) holds if and only if there is a single
solution to the equations

s + β · t = δ and α · s + γ · t = ε .

(Observe that g, x, y, z and a, b are fixed. Thus, α, β, γ, δ, ε are fixed and s, t are uni-
formly chosen.) Now, there exists a single solution to these equations if and only if
the matrix (

1 β
α γ

)
is invertible, which is the case here because its determinant is α · β − γ and by the
assumption α · β , γ mod q and so α · β − γ , 0 mod q. This completes the proof.
�

The protocol idea. We are now ready to present the protocol. The idea behind the
protocol is as follows: The receiving party P2 generates a tuple (g0, g1, h0, h1) that
is not a Diffie–Hellman tuple and sends it to P1 (along with a proof that it is in-
deed not a Diffie–Hellman tuple).10 Next, P2 computes g = (gσ)r and h = (hσ)r

and sends the pair to P1. Then, P1 computes (u0, v0) = RAND(g0, g, h0, h) and
(u1, v1) = RAND(g1, g, h1, h). Finally, P1 uses v0 to mask the input x0 and uses
v1 to mask x1. We will prove that if (g0, g1, h0, h1) is not a Diffie–Hellman tuple,
then for every g, h it holds that at least one of (g0, g, h0, h), (g1, g, h1, h) is not a
Diffie–Hellman tuple. Thus, at least one of the values v0, v1 is uniformly distributed
as proven in Claim 6.8.1, and so a corrupted P2 can only learn at most one of x0, x1.

10 The protocol is actually a bit different in that P2 generates a tuple (g0, g1, h0, h1) so that
(g0, g1, h0,

h1
g1

) is a Diffie–Hellman tuple. Of course, this implies that (g0, g1, h0, h1) is not a Diffie–
Hellman tuple. This method is used since it enables P2 to prove that (g0, g1, h0, h1) is not a Diffie–
Hellman tuple very efficiently by proving that (g0, g1, h0,

h1
g1

) is a Diffie–Hellman tuple.
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Regarding the case that P1 is corrupted, we must argue that it cannot learn P2’s
input bit σ. However, P1 only sees (gσ)r, (hσ)r and this hides σ by the Decisional
Diffie–Hellman assumption. We stress that the above “explanation” regarding secu-
rity explains why P1 cannot learn P2’s input and why P2 can learn at most one of
x0, x1. However, it does not show how to simulate, and this requires additional ideas,
as we will show. The full description appears in Protocol 6.8.2.

PROTOCOL 6.8.2 (Oblivious transfer)

• Inputs: Party P1’s input is a pair (x0, x1), and party P2’s input is a bit σ. We assume
for simplicity that x0, x1 ∈ G where G is defined in the auxiliary input.

• Auxiliary input: Both parties hold a security parameter 1n and (G, q, g0), where G
is an efficient representation of a group of prime order q with a generator g0, and q
is of length n. (It is possible to generate this group in the protocol, if needed.)

• Hybrid functionality: Let L = {(G, q, g0, x, y, z) | ∃a ∈ Zq : y = (g0)a ∧ z = xa}

be the language of all Diffie–Hellman tuples (where (G, q, g0) are as above), and
let RL be its associated NP-relation. The parties have access to a trusted party that
computes the zero-knowledge proof of knowledge functionality f RL

zk associated with
relation RL.

• The protocol:

1. Party P2 chooses random values y, α ∈R Zq and computes g1 = (g0)y, h0 =

(g0)α, and h1 = (g1)α+1 and sends (g1, h0, h1) to party P1.
2. P2 sends statement

(
G, q, g0, g1, h0,

h1
g1

)
and witness α to f RL

zk .

3. P1 sends statement
(
G, q, g0, g1, h0,

h1
g1

)
to f RL

zk and receives back a bit. If the bit
equals 0, then it halts and outputs ⊥. Otherwise, it proceeds to the next step.

4. P2 chooses a random value r ∈R Zq, computes g = (gσ)r and h = (hσ)r, and
sends (g, h) to P1.

5. P1 computes (u0, v0) = RAND(g0, g, h0, h) and (u1, v1) = RAND(g1, g, h1, h).
P1 sends P2 the values (u0,w0) where w0 = v0 · x0, and (u1,w1) where w1 =

v1 · x1.
6. P2 computes xσ = wσ/(uσ)r.
7. P1 outputs λ, and P2 outputs xσ.

Theorem 6.8.3. Assume that the Decisional Diffie–Hellman problem is hard in the
auxiliary input group G. Then, Protocol 6.8.2 securely computes fot in the presence
of malicious adversaries.

Proof: We begin by showing that Protocol 6.8.2 computes fot (meaning that two
honest parties running the protocol compute the correct output). This holds since
when both parties are honest, we have:

wσ

(uσ)r =
vσ · xσ
(uσ)r =

gs · ht · xσ
((gσ)s · (hσ)t)r =

((gσ)r)s · ((hσ)r)t · xσ
((gσ)s · (hσ)t)r =

(gσ)r·s · (hσ)r·t · xσ
(gσ)r·s · (hσ)r·t = xσ.

We now proceed to prove security, and separately consider the case that P1 is
corrupted and the case that P2 is corrupted.
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P1 is corrupted. Recall that in general the simulator S needs to extract the cor-
rupted party’s input in order to send it to the trusted party, and needs to simulate
its view so that its output corresponds to the output received back from the trusted
party. However, in this case, P1 receives no output, and so S’s task is somewhat sim-
pler; it needs to extract A’s input while generating a view of an interaction with an
honest P2. Since a corrupted P1 is not supposed to learn anything about P2’s input,
it seems that the following strategy should work:

1. Internally invoke A and run a complete execution between A and an honest
P2 with input σ = 0. Let x0 be the output that P2 receives as output from the
protocol execution.

2. Rewind and internally invoke A from scratch and run a complete execution
between A and an honest P2 with input σ = 1. Let x1 be the output that P2
receives as output from the protocol execution.

3. Send (x0, x1) to the external trusted party computing fot.
4. Output whatever A outputs on either one of the two executions above.

Intuitively, this works since S obtains the output that P2 would have obtained upon
either input. In addition, the view of P2 does not reveal its input bit (as we have
described above), and thus either view can be taken. Unfortunately, this intuition is
completely wrong. In order to see why, consider an adversary A who chooses x0, x1
randomly by applying a pseudorandom function to its view until the last step of the
protocol (but otherwise works honestly). Furthermore, assume that A outputs the
inputs it chose. Now, S does not know if the honest P2 in the ideal model has input
σ = 0 or σ = 1. If the honest P2 has input σ = 0 and S outputs what A outputs on
the second execution above, then the output that P2 has in the ideal model will not
match either x0 or x1 output by A (except with negligible probability). The same
will occur if P2 has input σ = 1 and S outputs what A outputs on the first execution
above. In contrast, in a real execution, P2 always outputs one of x0 or x1 output by
A (depending on its value σ). Thus this strategy completely fails and it is easy to
distinguish between a real and ideal execution.

We therefore use a completely different strategy for extracting A’s input that
does not involve rewinding. The idea behind the strategy is as follows: As we have
mentioned above, if (g0, g1, h0, h1) is not a Diffie–Hellman tuple, then one of x0, x1
is hidden information-theoretically. However, if (g0, g1, h0, h1) is a Diffie–Hellman
tuple, then it is actually possible to efficiently recover both x0 and x1 from P1’s
message. Therefore, S will provide (g0, g1, h0, h1) that is a Diffie–Hellman tuple and
will simply “cheat” by simulating f RL

zk ’s response to be 1 even though the statement is
false. By the Decisional Diffie–Hellman assumption, this will be indistinguishable,
but will enable S to extract both inputs. S works as follows:

1. S internally invokes A controlling P1 (we assume that A is deterministic; see
Remark 6.6.2).

2. S chooses y, α ∈R Zq and computes g1 = (g0)y, h0 = (g0)α, and h1 = (g1)α.
(Note that h1 = (g1)α and not (g1)α+1 as an honest P2 would compute it.)

3. S internally hands (g1, h0, h1) to A.
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4. When A sends a message intended for f RL
zk : If the message is

(
G, q, g0, g1, h0,

h1
g1

)
then S internally hands A the bit 1 as if it came from f RL

zk . If the message equals
anything else, then S simulates A receiving 0 from f RL

zk .
5. S chooses a random value r ∈R Zq, computes g = (g0)r and h = (h0)r, and

internally sends (g, h) to A. (This is exactly like an honest P2 with input σ = 0.)
6. When A sends messages (u0,w0), (u1,w1) then simulator S computes x0 =

w0/(u0)r and x1 = w1/(u1)r·y−1 mod q. (If the message is not formed correctly,
then S sends abort1 to the trusted party and outputs whatever A outputs. Oth-
erwise, it proceeds.)

7. S sends (x0, x1) to the trusted party computing fot. (Formally, S receives back
output λ and then sends continue to the trusted party. This is not really necessary
since only P2 receives output. Nevertheless, formally, S must send continue in
order for P2 to receive output.)

8. S outputs whatever A outputs, and halts.

In order to show that the simulation achieves indistinguishability, we first change
the protocol. Denote Protocol 6.8.2 by π, and denote by π′ a protocol that is the
same as π except for the two following differences:

1. P2 chooses y, α ∈R Zq and computes g1 = (g0)y, h0 = (g0)α, and h1 = (g1)α,
instead of computing h1 = (g1)α+1.

2. f RL
zk is modified so that it sends 1 to P1 if and only if P1 and P2 sends the same

statement (and irrespective of the witness sent by P2).

We claim that for every probabilistic polynomial-time nonuniform adversary A con-
trolling P1,{
realπ,A(z)((x0, x1), σ, n)

}
x0,x1,σ,z,n

c
≡

{
realπ′,A(z)((x0, x1), σ, n)

}
x0,x1,σ,z,n . (6.15)

We stress that we only claim that the output distributions of π and π′ are indistin-
guishable when P1 is corrupted. We make no claim when P2 is corrupted, and indeed
it is not true in that case. This suffices since we are currently proving the case that
P1 is corrupted. There is one difference between π and π′ and this is how g1, h0, h1
are chosen. (The change to f RL

zk is just to ensure that the output is always 1 unless A
sends a different statement. Since P2 is honest, this makes no difference.) However,
in order to prove Eq. (6.15), we have to show both that the joint distribution over A’s
view and P2’s output is indistinguishable in π and π′. Note that the joint distribution
including P2’s output must be considered since P2 computes its output as a function
of (uσ,wσ), which is computed using (g1, h0, h1) that is generated differently in π′.

We prove this via a straightforward reduction to the DDH assumption in G. We
use a variant that states that for every probabilistic polynomial-time nonuniform
distinguisher D there exists a negligible function µ such that∣∣∣Pr[D(G, q, g0, g1, (g0)r, (g1)r) = 1] − Pr[D(G, q, g0, g1, (g0)r, (g1)r+1) = 1]

∣∣∣ ≤ µ(n)
(6.16)

where G is a group of prime order q with generator g0, g1 ∈ G is a random group
element, and r ∈ Zq is randomly chosen. This assumption can be proven to be true
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if the standard DDH assumption holds. In order to see this, observe that by the
standard DDH assumption,

|Pr[D(G, q, g0, g1, (g0)r, (g1)r) = 1] − Pr[D(G, q, g0, g1, (g0)r, (g1)s) = 1]| ≤ µ(n),
(6.17)

where g1 ∈ G and r, s ∈ Zq are randomly chosen. In addition, the distribution over
(g0, g1, (g0)r, (g1)s) is identical to the distribution over (g0, g1, (g0)r, (g1)s+1). Thus,
a straightforward reduction to the standard DDH assumption gives that∣∣∣Pr[D(G, q, g0, g1, (g0)r, (g1)s) = 1] − Pr[D(G, q, g0, g1, (g0)r, (g1)r+1) = 1]

∣∣∣ ≤ µ(n).
(6.18)

In order to see this, a distinguisher D′ receiving (g0, g1, h0, h1) can run D on
(g0, g1, h0, h1 · g1). If D′ received (g0, g1, (g0)r, (g1)r) then it generates a tuple of the
form (g0, g1, (g0)r, (g1)r+1), and if D′ received (g0, g1, (g0)r, (g1)s) then it generates
a tuple of the form (g0, g1, (g0)r, (g1)s+1), which as we have mentioned is identi-
cal to (g0, g1, (g0)r, (g1)s). Thus, if D can distinguish with nonnegligible probability
in Eq. (6.18), then D′ can use D to solve the standard DDH problem. Combining
Equations (6.17) and (6.18), we obtain that Eq. (6.16) holds.

We now proceed to prove Eq. (6.15) based on the above DDH variant. Assume,
by contradiction, that there exists an adversary A controlling P1, a distinguisher Dπ,
a polynomial p(·), and an infinite series of tuples (G, q, g, x0, x1, σ, z, n) with |q| = n
such that∣∣∣Pr

[
Dπ(realπ,A(z)((x0, x1), σ, n)) = 1

]
−Pr

[
Dπ(realπ′,A(z)((x0, x1), σ, n)) = 1

]∣∣∣≥ 1
p(n)

.

We construct a nonuniform probabilistic polynomial-time distinguisher D who
receives input (G, q, g0, g1, h0, h1), and a tuple (x0, x1, σ, z, n) on its advice tape
(where n equals the security parameter used for the DDH instance generation), and
works as follows:

1. D invokes A and an honest P2 with security parameter 1n, respective inputs
x0, x1, and σ, and auxiliary input z for A.

2. D runs the execution between A and P2 following the instructions of π′ with one
change. Instead of P2 choosing y, α ∈ Zq and generating g1, h0, h1, distinguisher
D takes these values from its input. Everything else is the same; observe that P2
does not use y, α anywhere else inside π′ and thus D can carry out the simulation
of π′ in this way.

3. D invokes Dπ on the joint output of A and the honest P2 from this execution,
and outputs whatever Dπ outputs.

Since the only difference between π and π′ is how the values g1, h0, h1 are chosen,
we have that

Pr[D(G, q, g0, g1, (g0)r, (g1)r) = 1] = Pr
[
Dπ(realπ′,A(z)((x0, x1), σ, n)) = 1

]
and

Pr[D(G, q, g0, g1, (g0)r, (g1)r+1) = 1] = Pr
[
Dπ(realπ,A(z)((x0, x1), σ, n)) = 1

]
.
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Thus,∣∣∣Pr[D(G, q, g0, g1, (g0)r, (g1)r) = 1] − Pr[D(G, q, g0, g1, (g0)r, (g1)r+1) = 1]
∣∣∣ ≥ 1

p(n)
,

in contradiction to the assumption that the DDH problem is hard in G. Thus,
Eq. (6.15) holds.

Next, we prove that for every A controlling P1,{
realπ′,A((x0, x1), σ, n)

}
x0,x1,σ∈{0,1}∗;n∈N ≡

{
ideal fot,S ((x0, x1), σ, n)

}
x0,x1,σ∈{0,1}∗;n∈N

(6.19)
(i.e., the distributions are identical). There are two differences between the descrip-
tion of π′ and an ideal execution with S:

1. In an ideal execution, the pair (g, h) in the view of A is generated by computing
(g0)r and (h0)r. In contrast, in π′, these values are generated by P2 computing
(gσ)r and (hσ)r.

2. In an ideal execution, the honest P2’s outputs are determined by the trusted
party, based on (x0, x1) sent by S and its input σ (unknown to S). In contrast, in
π′, the honest P2’s output is determined by the protocol instructions.

Regarding the first difference, we claim that the view of A in both cases is identical.
When σ = 0 then this is immediate. However, when σ = 1 it also holds. This is be-
cause g1 = (g0)y and h1 = (h0)y (where the latter is because h1 = (g1)α = ((g0)y)α =

((g0)α)y = (h0)y). Thus, (g0)r = (g1)r·y−1 mod q and (h0)r = (h1)r·y−1 mod q. Since r
is uniformly distributed in Zq, the values r and r · y−1 mod q are both uniformly
distributed. Therefore, ((gσ)r, (hσ)r) as generated in π′ is identically distributed to
((g0)r, (h0)r) as generated by S in an ideal execution.

Regarding the second difference, it suffices to show that the values (x0, x1) sent
by S to the trusted party computing fot are the exact outputs that P2 receives in π′

on that transcript. There are two cases:

• Case 1 – P2 in π′ has input σ = 0: In this case, in both π′ and the ideal execution
with S, we have that g = (g0)r and h = (h0)r. Furthermore, in π′, party P2
outputs x0 = w0/(u0)r. Likewise, in an ideal execution with S , the value x0 is
defined by S to be w0/(u0)r. Thus, the value is identical.

• Case 2 – P2 in π′ has input σ = 1: In this case, in π′, the pair (g, h) is generated
by computing g = (g1)r and h = (h1)r for a random r, and P2’s output is obtained
by computing x1 = w1/(u1)r. In contrast, in an ideal execution with S, the pair
(g, h) is generated by computing g = (g0)r and h = (h0)r for a random r, and
P2’s output is defined by S to be w1/(u1)r·y−1 mod q.
Fix the messages (g1, h0, h1) and (g, h) sent by P2 to A in either π′ or in an ideal
execution with S. In both cases, there exists a unique y such that g1 = (g0)y and
h1 = (h0)y (from P2’s instructions in π′ and from S’s specification). Let k be
the unique value such that g = (g1)k and h = (h1)k. In an execution of π′ the
value k is set to equal r as chosen by P2. In contrast, in an ideal execution with
S, the value k is set to equal r · y−1 mod q where r is the value chosen by S .
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(The fact that this is the correct value of k is justified above.) Now, in both a real
execution of π′ and an ideal execution with S, party P2’s output is determined
by w1/(u1)k. Thus, the output is the same in both cases.

This completes the proof of Eq. (6.19). The computational indistinguishability for
the simulation in the case that P1 is corrupted is obtained by combining Equa-
tions (6.15) and (6.19).

Before proceeding to prove the case where P2 is corrupted, we remark that our
proof of indistinguishability of the ideal and real executions does not work in a
single step. This is due to the fact that S needs to have y where g1 = (g0)y in order
to extract x1. However, in the DDH reduction, y is not given to the distinguisher
(indeed, the DDH problem is easy if y is given). Thus, the proof is carried out in two
separate steps.

P2 is corrupted. We now proceed to the case where P2 is corrupted. First, S needs
to extract P2’s input bit σ in order to send it to the trusted party and receive back
xσ. As we will show, this is made possible by the fact that in the f RL

zk -hybrid model
S receives the witness α from A (recall that in this model, A controlling P2 must
send the valid witness directly to f RL

zk or P1 will abort). S will use α to determine
whether A “used” input σ = 0 or σ = 1. Next, S needs to generate a view for A that
is indistinguishable from a real view. The problem is that S is given xσ but not x1−σ.
However, Claim 6.8.1 guarantees that RAND completely hides x1−σ (since, as we
will show, the tuple input to RAND in this case is not a Diffie–Hellman tuple). Thus,
S can use any fixed value in place of x1−σ and the result is identically distributed.
Indeed, in this case we will show that the simulation is perfect. We now describe the
simulator S:

1. S internally invokes A controlling P2.
2. S internally obtains (g1, h0, h1) from A, as it intends to send to P1.
3. S internally obtains an input tuple and α from A, as it intends to send to f RL

zk .
4. S checks that the input tuple equals (G, q, g0, g1, h0,

h1
g1

), that h0 = (g0)α and
h1
g1

= (g1)α. If not, S externally sends abort2 to the trusted party computing fot,
outputs whatever A outputs, and halts. Else, it proceeds.

5. S internally obtains a pair (g, h) from P2. If h = gα then S setsσ = 0. Otherwise,
it sets σ = 1.

6. S externally sends σ to the trusted party computing fot and receives back xσ. (S
sends continue to the trusted party; this is not really needed since P1 has only
an empty output. Nevertheless, formally it needs to be sent.)

7. S computes (uσ, vσ) = RAND(gσ, g, hσ, h) and wσ = vσ · xσ. In addition, S sets
(u1−σ,w1−σ) to be independently uniformly distributed in G2.

8. S internally hands (u0,w0), (u1,w1) to A.
9. S outputs whatever A outputs and halts.

We construct an alternative simulator S ′ in an alternative ideal model with a trusted
party who sends both of P1’s inputs x0, x1 to S ′ upon receiving σ. Simulator S ′
works in exactly the same way as S with the exception that it computes (u1−σ,w1−σ)
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by first computing (u1−σ, v1−σ) = RAND(g1−σ, g, h1−σ, h) and w1−σ = v1−σ · x1−σ,
instead of choosing them uniformly.

First, we claim that the output distribution of the adversary S ′ in the alternative
ideal model is identical to the output of the adversary A in a real execution with an
honest P1 (it is not necessary to consider P1’s output since it has none in fot). This
follows because S ′ generates (u0,w0) and (u1,w1) exactly like an honest P1, using
the correct inputs (x0, x1). In addition, S ′ verifies the validity of (g1, h0, h1) using
witness α, exactly like f RL

zk . Thus, the result is just a real execution of the protocol.
(Observe that the determination of σ by S ′ is actually meaningless since it is not
used in the generation of (u0,w0) and (u1,w1).)

We now claim that the output distribution of the adversary S ′ in the alterna-
tive ideal model is identical to the output of the adversary S in an ideal execution
with fot. Since the only difference is in how (u1−σ,w1−σ) are computed, we need
to show that the values u1−σ,w1−σ generated by S ′ are independent uniformly dis-
tributed values in G. We stress that the value σ here is the one determined by S in
the simulation in step 5.

First, consider the case that σ = 0. By step 5, this implies that h = gα. We
first claim that in this case (g1, g, h1, h) is not a Diffie–Hellman tuple. This follows
from the fact that by Step 4 we have that h1

g1
= (g1)α and so h1 = gα+1

1 . This im-
plies that (g1, g, h1, h) = (g1, g, (g1)α+1, gα), which is not a Diffie–Hellman tuple.
Now, by Claim 6.8.1, since (g1, g, h1, h) is not a Diffie–Hellman tuple, it follows that
(u1, v1) = RAND(g1, g, h1, h) is uniformly distributed inG2, so (u1,w1) = (u1, v1 ·x1)
is uniformly distributed. Thus, (u1,w1) are identically distributed in the executions
with S and S ′.

Next, consider the case that σ = 1. By step 5, this implies that h , gα; let
α′ , α mod q such that h = gα

′

. As above, we first show that (g0, g, h0, h) is not
a Diffie–Hellman tuple. By step 4 we have that h0 = (g0)α and so (g0, g, h0, h) =

(g0, g, (g0)α, gα
′

) where α , α′ mod q. Thus, it is not a Diffie–Hellman tuple. As in
the previous claim, using Claim 6.8.1 we have that in this case (u0,w0) as generated
by S ′ is uniformly distributed and so has the same distribution as (u0,w0) generated
by S. This completes the proof. �

Correctness in the case of two honest parties. Recall that Definition 6.6.1 in-
cludes a separate requirement that π computes f , meaning that two honest parties
obtain correct output, and indeed our proof of Protocol 6.8.2 begins by showing
that π computes f . In order to see that this separate requirement is necessary, con-
sider the oblivious transfer functionality f ((x0, x1), σ) = (λ, xσ) and consider the
following protocol π:

1. P1 sends x0 to P2.
2. P2 outputs x0.

We will now show that without the requirement that π computes f , this protocol is
secure. Let A be an adversary. In the case that P1 is corrupted, we construct an ideal
simulator that invokes A and receives the string x0 that A intends to send to P2.
Simulator S then sends (x0, x0) to the trusted party. Clearly, A’s view is identical
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in both cases, and likewise the output of the honest P2 is x0 in both the real and
ideal executions. In the case that P2 is corrupted, the simulator S sends σ = 0 to the
trusted party and receives back x0. Simulator S then internally simulates P1 sending
x0 to A. Here too, the view of A is identical in the real and ideal executions. This
demonstrates why it is necessary to separately require that π computes f .

6.9 The Common Reference String Model – Oblivious
Transfer

Until now, we have considered the plain model with no trusted setup. However, in
some cases, a trusted setup is used to obtain additional properties; for example, a
common reference string can be used to achieve noninteractive zero knowledge [7],
which is impossible in the plain model. In addition, this is used to achieve security
under composition, as will be discussed briefly in Section 6.10.1.

The common reference string model. Let M be a probabilistic polynomial-time
machine that generates a common reference string that is given to both parties.
We remark that in the common random string model, M(1n) outputs a uniformly-
distributed string of length poly(n), whereas in the common reference string model,
the distribution can be arbitrary. Let CRS denote “common reference string”.

In the CRS model, in the real model the parties are provided the same string
generated by M, whereas in the ideal model the simulator chooses the string. Since
the real and ideal models must be indistinguishable, this means that the CRS chosen
by the simulator must be indistinguishable from the CRS chosen by M. However,
this still provides considerable power to the simulator. For example, assume that the
CRS contains an encryption key pk to a CCA-secure public-key encryption scheme.
Then, in the real model, neither party knows the associated secret key. In contrast,
since the simulator chooses the CRS, it can know the associated secret key and so
can decrypt any ciphertext generated by the adversary.

The motivation behind this definition is that if an adversary can attack the proto-
col in the real model, then it can also attack the protocol in the ideal model with the
simulator. The fact that the simulator can choose the CRS does not change anything
in this respect. Indeed, as we have discussed previously, the simulator must have ad-
ditional power beyond that of a legitimate party. (Recall that in the context of zero
knowledge, if there is no additional power then the zero-knowledge property will
contradict the soundness property, since a cheating prover could run the simulator
strategy.) Until now, we have considered a simulator that can rewind the adversary.
In the CRS model, it is possible to construct a simulator that does not rewind the
adversary, since its additional power is in choosing the CRS itself.

There are two ways to define security in the CRS model. The first is to include
the CRS in the output distributions. Specifically, one can modify the real output
distribution to include the CRS generated by M, the output of the adversary A,
and the output of the honest party. Then, the ideal output distribution includes the
output of S (which include two parts—the CRS generated by S and the output of the
adversary) and the output of the honest party. Alternatively, it is possible to define
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an ideal CRS functionality fcrs(1n, 1n) = (M(1n),M(1n)). Then, one constructs a
protocol and proves its security in the fcrs-hybrid model. As we have already seen,
in the f -hybrid model, the simulator S plays the role of f in the simulation of the
protocol. Thus, this means that S can choose the CRS in the fcrs-hybrid model, as
we have discussed.

Before proceeding to demonstrate the simulation technique in this model, we
remark that the sequential composition theorem of Section 6.6.3 only holds when
each execution of the protocol is independent. Thus, it is not possible to generate a
single CRS and then run many sequential executions of the protocol using the same
CRS, while relying on the composition theorem. Rather, it is necessary either to use
a different CRS for each execution (not recommended) or to explicitly prove that
security holds for many executions. This can be done by defining a multi-execution
functionality and then proving its security in the fcrs-hybrid model. For example, a
multi-execution functionality for oblivious transfer could be defined as follows:

The multi-execution oblivious transfer fm-ot works as follows: Until one of the parties
sends end, repeat the following:

1. Wait to receive (x0, x1) from P1, and σ from P2.

2. Send xσ to P2.

Typically, such functionalities are not defined in this way, since the CRS model is
usually used in the context of concurrent composition, where executions are run
concurrently and not sequentially. In the concurrent setting, parties can send inputs
whenever they wish. In order to match executions, a session identifier sid is used;
specifically, P1 sends (sid, x0, x1), P2 sends (sid, σ), and then the functionality sends
(sid, xσ) to P2. We discuss concurrent composition briefly in Section 6.10.1.

Oblivious transfer in the CRS model. In Section 6.8, we described an oblivious
transfer protocol that was based on the protocol of Peikert et al. [35]. The original
protocol in [35] was designed in the CRS model, and achieves universal compos-
ability (see Section 6.10.1). We can modify Protocol 6.8.2 to a two-round proto-
col in the CRS model by simply defining the CRS to be (G, q, g0, g1, h0, h1) where
(g0, g1, h0, h1) is not a Diffie–Hellman tuple; see Protocol 6.9.1. We will prove that
Protocol 6.9.1 is secure for a single oblivious transfer (we do not prove security un-
der multiple executions since our aim is to demonstrate the use of the CRS and not
to show the full power of the protocol).

Theorem 6.9.2. Assume that the Decisional Diffie–Hellman problem is hard rela-
tive to the group sampling algorithm used by fcrs. Then, Protocol 6.9.1 securely
computes fot in the presence of malicious adversaries in the fcrs-model.

Proof sketch: The proof here is very similar to that of Theorem 6.8.2. In particular,
the fact that Protocol 6.9.1 computes fot follows from exactly the same computation.

In the case that P1 is corrupted, the simulator S in the proof of Theorem 6.8.2
chose (g1, h0, h1) so that (g0, g1, h0, h1) is a Diffie–Hellman tuple. Given this fact,
and given that it knows y such that g1 = (g0)y, simulator S was able to extract
both x0, x1 from A. Now, in this case, S chooses the CRS so that (g0, g1, h0, h1) is
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PROTOCOL 6.9.1 (Oblivious transfer [35])

• Inputs: Party P1’s input is a pair (x0, x1), and party P2’s input is a bit σ. We assume
for simplicity that x0, x1 ∈ G where G is defined in the CRS.

• Auxiliary input: Both parties hold a security parameter 1n.
• Hybrid functionality fcrs: A group G of order q (of length n) with generator g0 is

sampled, along with three random elements g1, h0, h1 ∈R G of the group. fcrs sends
(G, q, g0, g1, h0, h1) to P1 and P2.

• The protocol:

1. P2 chooses a random value r ∈R Zq, computes g = (gσ)r and h = (hσ)r, and
sends (g, h) to P1.

2. P1 computes (u0, v0) = RAND(g0, g, h0, h) and (u1, v1) = RAND(g1, g, h1, h).
P1 sends P2 the values (u0,w0) where w0 = v0 · x0, and (u1,w1) where w1 =

v1 · x1.
3. P2 computes xσ = wσ/(uσ)r.
4. P1 outputs λ, and P2 outputs xσ.

a Diffie–Hellman tuple. Also, since it chooses g1, it knows y such that g1 = (g0)y.
Thus, S internally hands this (g0, g1, h0, h1) to A when A calls fcrs, as if it was
generated by fcrs. From then on, S uses the exact same strategy as the simulator in
the proof of Theorem 6.8.3. The proof of indistinguishability works in exactly the
same way.

In the case that P2 is corrupted, the simulator S in the proof of Theorem 6.8.2
was able to extract A’s input σ using the witness α (where h0 = (g0)α). Simulator
S obtained α from A’s message to f RL

zk . In this case, S chooses the CRS. Thus,
it generates (g0, g1, h0, h1) as in the protocol specification and takes α where h0 =

(g0)α. S then uses α exactly as the simulator in the proof of Theorem 6.8.2 in order
to extract σ. (Observe that in Protocol 6.8.2, h1 = (g0)α+1. This makes the tuple
not a Diffie–Hellman tuple, but not a random one either. In contrast, here the tuple
is random. Nevertheless, any non-Diffie–Hellman tuple suffices, and the simulator
in the proof of Theorem 6.8.2 only needs the discrete log α of h0 to base g0 in
order to extract. Specifically, if h = gα then it determines that the input is σ = 0,
and otherwise it is σ = 1. This remains the same when h1 is taken to be a random
element.) Based on the above, S chooses (g0, g1, h0, h1) as described above, and
hands it to A when it calls fcrs. Beyond that, S works in exactly the same way as S
in the proof of Theorem 6.8.3. �

6.10 Advanced Topics
In this section, we briefly mention some advanced topics, and include pointers for
additional reading.
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6.10.1 Composition and Universal Composability
In this tutorial, we focused on the stand-alone model. As discussed in Section 6.6.3,
this implies security under sequential composition. However, in the real-world set-
ting, many secure and insecure protocols are run concurrently, and it is desirable to
have security in this setting. The definition of security presented in Section 6.6 does
not guarantee security under concurrent composition. There are a number of defini-
tions that have been proposed to achieve this level of security. The most popular is
that of universal composability (UC) [9]. This definition expands upon the definition
of Section 6.6 by adding an environment machine, which is essentially an interactive
distinguisher. The environment writes the inputs to the parties’ input tapes and reads
their outputs. In addition, it externally interacts with the adversary throughout the
execution. The environment’s “goal” is to distinguish between a real protocol execu-
tion and an ideal execution. One very important artifact of this definition is that the
simulator can no longer rewind the adversary in the simulation. This is because the
real adversary can actually do nothing but fulfill the instructions of the environment.
Now, since the environment is an external machine that the real and ideal adversaries
interact with, this means that the simulator has to simulate for an external adversary.
Due to this, rewinding is not possible, and it actually follows that without an honest
majority it is impossible to securely compute a large class of functionalities in the
UC framework in the plain model without any trusted setup [13]. However, given
a trusted setup, e.g., a common reference string as in Section 6.9, it is possible to
securely compute any functionality for any number of corrupted parties under the
UC definition [14]. Indeed, the oblivious transfer protocol described in Section 6.9
has been proven secure in the UC framework [35].

The general UC framework is rather complex, as it enables one to model almost
any task and any setting. In case one is interested in standard secure computation
tasks, without guaranteeing fairness, it is possible to use the simpler equivalent for-
malization described in [10].

6.10.2 Proofs in the Random Oracle Model
In many cases, the random oracle model is used to gain higher efficiency or other
properties otherwise unobtainable. The setting of secure computation is no excep-
tion. However, beyond its inherent heuristic nature [12], there are some very subtle
definitional issues here that must be considered. One issue that arises is whether
or not the distinguisher obtains access to the random oracle, and if so, how. If the
distinguisher does not have any access, then this is a very weak definition, and se-
quential composition will not be guaranteed. If we provide the distinguisher with
the same randomly chosen oracle as the parties and the (real and ideal) adversary,
then we obtain a nonprogrammable random oracle [33], which may not be strong
enough. A third alternative is to provide the distinguisher with the random oracle,
but in the ideal world to allow the simulator to still control the oracle. This is a
somewhat strange formulation, but something of this type seems necessary in some
cases.
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In the UC framework, the random oracle can be modeled as an ideal func-
tionality computing a random function. This matches the third alternative in some
sense, since the simulator controls the oracle in the case of an ideal execution. It is
somewhat different, however, since the environment—who plays the distinguisher—
cannot directly access the oracle.

We will not do more in this tutorial than point out that these issues exist and need
to be dealt with carefully if the random oracle is to be used in the context of secure
computation. We recommend reading [33] for a basic treatment of modeling random
oracles in secure computation, and [39, 40] for a treatment of the issue of oracle-
dependent auxiliary input (and more). We conclude by remarking that in [34] it is
pointed out that other properties that are sometimes expected (such as deniability)
are not necessarily obtained in the random oracle model. In many cases of standard
secure computation, this is not needed. However, this is another example of why the
random oracle model needs to be treated with great care in these settings.

6.10.3 Adaptive Security
In this tutorial we have considered only the case of static adversaries, where the
subset of corrupted parties is fixed before the protocol execution begins. In contrast,
an adaptive adversary can choose which parties to corrupt throughout the protocol,
based on the messages viewed. A classic example of a protocol that is secure for
static adversaries but not for adaptive adversaries is as follows: Consider a very
large number of parties (say, linear in the security parameter n), and consider a
protocol which begins by securely choosing a random subset of the parties who
then carry out the computation for the rest. Assume that the adversary is limited to
corrupting a constant fraction of the parties, and assume that

√
n parties are chosen

to compute the result. Then, except with negligible probability, there will be at least
one honest party in the chosen

√
n. Thus, as long as a protocol that is secure for

any number of corrupted parties is used, we have that security is preserved. This is
true for the case of static adversaries. However, an adaptive adversary can wait until
the
√

n parties are chosen, and then adaptively corrupt all of them. Since it only
corrupts a constant fraction (less than half for n > 6), this is allowed. Clearly, such
an adversary completely breaks the protocol, since it controls all the parties who
carry out the actual computation.

In order to provide security for such adversaries, it is necessary to be able to sim-
ulate even when an adversary corrupts a party midway. The challenge that this raises
is that when an adversary corrupts a real party in the middle of an execution, then it
obtains its current state. Thus, the simulator must be able to generate a transcript—
without knowing a party’s input—and later be able to “explain” that transcript as a
function of an honest party’s instructions on its input, where the input is provided
later (upon corruption).

There are two main models that have been considered for the case of adaptive
adversaries. In the first, it is assumed that parties cannot securely erase data; this is
called the no erasures model. Thus, the adversary obtains the party’s entire view—
its input, random tape, and incoming messages—upon corruption. This forces the



6 How to Simulate It – A Tutorial on the Simulation Proof Technique 343

simulator to generate such a view, after having generated (at least part of) the pro-
tocol transcript. Amongst other things, this means that a transcript has to match all
possible inputs, and so it must be noncommitting. See [11] for a basic treatment and
constructions in the case of an honest majority, see [8] for a definitional treatment
in the stand-alone model, and see [14] for constructions in the case of no honest
majority.

A weaker model of adaptive security is one which assumes that parties can se-
curely erase data; this is called the erasures model. In this case, it is possible for
parties to erase some of their data. This makes simulation easier since it is not neces-
sary to generate the entire view, but only the current state. See [3] for a very efficient
solution for the case of an honest majority, and see [29] for an example of a two-
party protocol that is adaptively secure with erasures. These examples demonstrate
why the erasures model is easier to work with.11
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Chapter 7
The Complexity of Differential Privacy

Salil Vadhan

Abstract Differential privacy is a theoretical framework for ensuring the privacy
of individual-level data when performing statistical analysis of privacy-sensitive
datasets. This tutorial provides an introduction to and overview of differential pri-
vacy, with the goal of conveying its deep connections to a variety of other topics in
computational complexity, cryptography, and theoretical computer science at large.
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7.1 Introduction and Definition

7.1.1 Motivation
Suppose you are a researcher in the health or social sciences who has collected a
rich dataset on the subjects you have studied, and want to make the data available to
others to analyze as well. However, the dataset has sensitive information about your
subjects (such as disease diagnoses, financial information, or political affiliations),
and you have an obligation to protect their privacy. What can you do?

The traditional approach to such privacy problems is to try to “anonymize” the
dataset by removing obvious identifiers, such as name, address, and date of birth,
and then share the anonymized dataset. However, it is now well understood that
this approach is ineffective, because the data that remains is often still sufficient to
determine who is who in the dataset, given appropriate auxiliary information. This
threat is not hypothetical; there have now been many high-visibility demonstrations
that such “re-identification” attacks are often quite easy to carry out in practice,
using publicly available datasets as sources of auxiliary information [84].

A more promising approach is to mediate access to the data through a trusted
interface, which will only answer queries posed by data analysts. However, ensur-
ing that such a system protects privacy is nontrivial. Which queries should be per-
mitted? Clearly, we do not want to allow queries that target a particular individual
(such as “Does Sonny Rollins have sensitive trait X?”), even if they are couched as
aggregate queries (e.g., “How many people in the dataset are 84-year-old jazz saxo-
phonists with trait X?”). Even if a single query does not seem to target an individual,
a combination of results from multiple queries can do so (e.g., “How many people
in the dataset have trait X?” and “How many people in the dataset have trait X and
are not 84-year-old jazz saxophonists?”). These attacks can sometimes be foiled by
only releasing approximate statistics, but Dinur and Nissim [31] exhibited powerful
“reconstruction attacks” which showed that, given sufficiently many approximate
statistics, one can reconstruct almost the entire dataset. Thus, there are fundamental
limits to what can be achieved in terms of privacy protection while providing useful
statistical information, and we need a theory that can assure us that a given release
of statistical information is safe.

Cryptographic tools such as secure function evaluation and functional encryption
do not address these issues. The kind of security guarantee such tools provide is that
nothing is leaked other than the outputs of the functions being computed. Here we
are concerned about the possibility that the outputs of the functions (i.e., queries) al-
ready leak too much information. Indeed, addressing these privacy issues is already
nontrivial in a setting with a trusted data curator, whereas the presence of a trusted
third party trivializes most of cryptography.

Differential privacy is a robust definition of privacy protection for data-analysis
interfaces that:

• ensures meaningful protection against adversaries with arbitrary auxiliary in-
formation (including ones that are intimately familiar with the individuals they
are targeting),
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• does not restrict the computational strategy used by the adversary (in the spirit
of modern cryptography), and

• provides a quantitative theory that allows us to reason about how much statisti-
cal information is safe to release and with what accuracy.

Following the aforementioned reconstruction attacks of Dinur and Nissim [31],
the concept of differential privacy emerged through a series of papers by Dwork
and Nissim [35], Blum, Dwork, McSherry, and Nissim [13], and Dwork, McSherry,
Nissim, and Smith [48], with the latter providing the elegant indistinguishability-
based definition that we will see in the next section.

In the decade since differential privacy was introduced, a large algorithmic litera-
ture has developed showing that differential privacy is compatible with a wide vari-
ety of data-analysis tasks. It also has attracted significant attention from researchers
and practitioners outside theoretical computer science, many of whom are inter-
ested in bringing differential privacy to bear on real-life data-sharing problems. At
the same time, it has turned out to be extremely rich from a theoretical perspective,
with deep connections to many other topics in theoretical computer science and
mathematics. The latter connections are the focus of this tutorial, with an emphasis
on connections to topics in computational complexity and cryptography. For a more
in-depth treatment of the algorithmic aspects of differential privacy, we recommend
the monograph of Dwork and Roth [36].

7.1.2 The Setting
The basic setting we consider is where a trusted curator holds a dataset x about n
individuals, which we model as a tuple x ∈ X n, for a data universe X . The interface
to the data is given by a (randomized) mechanism M : X n × Q → Y , where Q is
the query space and Y is the output space of M. To avoid introducing continuous
probability formalism (and to be able to discuss algorithmic issues), we will assume
that X , Q, and Y are discrete.

The picture we have in mind is as follows:

X n 3

x1

x2

...

xn

−→ M

q
←−

q(x)
−→

Analyst/

adversary

for a dataset x = (x1, . . . , xn).

7.1.3 Counting Queries
A basic type of query that we will examine extensively is a counting query, which is
specified by a predicate on rows q : X → {0, 1}, and is extended to datasets x ∈ X n

by counting the fraction of people in the dataset satisfying the predicate:
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q(x) =
1
n

n∑
i=1

q(xi) ,

(Note that we abuse notation and use q for both the predicate on rows and the func-
tion that averages q over a dataset.) The examples mentioned above in Section 7.1.1
demonstrate that it is nontrivial to ensure privacy even when answering counting
queries, because answers to several counting queries can be combined to reveal in-
formation about individual rows.

There are several specific families of counting queries that are important for sta-
tistical analysis and will come up many times in this tutorial:

Point Functions (Histograms): Here X is an arbitrary set and for each y ∈ X we
consider the predicate qy : X → {0, 1} that evaluates to 1 only on input y.
The family Qpt = Qpt(X ) consists of the counting queries corresponding to
all point functions on data universe X . (Approximately) answering all of the
counting queries in Qpt amounts to (approximately) computing the histogram
of the dataset.

Threshold Functions (CDFs): Here X is a totally ordered set, and we consider the
set Qthr = Qthr(X ) of threshold functions. That is, for each y ∈ X , Qthr contains
counting query corresponding to the function qy(z) that outputs 1 iff z ≤ y.
(Approximately) answering all of the counting queries in Qthr is tantamount to
(approximating) the cumulative distribution function of the dataset.

Attribute Means (1-way Marginals): Here X = {0, 1}d, so each individual has
d Boolean attributes, and Qmeans = Qmeans(d) contains the counting queries
corresponding to the d coordinate functions q j : {0, 1}d → {0, 1} defined by
q j(w) = w j for j = 1, . . . , d. Thus, (approximately) answering all of the queries
in Qmeans = Qmeans(d) amounts to (approximately) computing the fraction of
the dataset possessing each of the d attributes. These are also referred to as the
(1-way) marginal statistics of the dataset.

Conjunctions (Contingency Tables): Here again X = {0, 1}d, and for an inte-
ger t ∈ {0, 1, 2, . . . , d}, we consider the family Qconj

t = Qconj
t (d) of count-

ing queries corresponding to conjunctions of t literals. For example, Qconj
2 (5)

contains the function q(w) = w2 ∧ ¬w4, which could represent a query like
“what fraction of individuals in the dataset have lung cancer and are non-
smokers?”. Notice that Qconj

1 (d) consists of the queries in Qmeans(d) and their
negations, and Qconj

d (d) contains the same queries as Qpt({0, 1}d). We have
|Qconj

t (d)| =
(

d
t

)
· 2t = dΘ(t) when t ≤ d1−Ω(1). We also consider the family

Qconj = Qconj(d) = ∪d
t=0Q

conj
t (d), which is of size 3d. The counting queries

in Qconj
t are also called t-way marginals and answering all of them amounts

to computing the t-way contingency table of the dataset. These are important
queries for statistical analysis, and indeed the answers to all queries in Qconj is
known to be a “sufficient statistic” for “logit models.”

Arbitrary Queries: Sometimes we will not impose any structure on the data uni-
verse X or query family Q except possibly to restrict attention to families of
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efficiently computable queries. For the latter, we encode elements of both X
and Q as strings, so X = {0, 1}d, Q = {qy : X → {0, 1}}y∈{0,1}s for some
s, d ∈ N, where qy(w) = Eval(y,w) for some polynomial-time evaluation func-
tion Eval : {0, 1}s × {0, 1}d → {0, 1}.

7.1.4 Differential Privacy
The definition of differential privacy requires that no individual’s data has much
effect on what an adversary sees. That is, if we consider any two datasets x and x′

that differ on one row (which we will denote x ∼ x′), the output distribution of M
on x should be “similar” to that of M on x′. Specifically, we require that

∀T ⊆ Y , Pr[M(x, q) ∈ T ] ≤ (1 + ε) · Pr[M(x, q) ∈ T ] .

The reverse relationship (Pr[M(x′, q) ∈ T ] ≤ (1 + ε) · Pr[M(x, q) ∈ T ]) follows by
symmetry, swapping x and x′. The choice of a multiplicative measure of closeness
between distributions is important, and we will discuss the reasons for it later. It is
technically more convenient to use eε instead of (1 + ε), because the former behaves
more nicely under multiplication (eε1 · eε2 = eε1+ε2 ). This gives the following formal
definition:

Definition 7.1.1 ((Pure) differential privacy [48]). For ε ≥ 0, we say that a ran-
domized mechanism M : X n ×Q→ Y is ε-differentially private if, for every pair of
neighboring datasets x ∼ x′ ∈ X n (i.e., x and x′ differ in one row) and every query
q ∈ Q, we have

∀T ⊆ Y , Pr[M(x, q) ∈ T ] ≤ eε · Pr[M(x′, q) ∈ T ] .

Equivalently,

∀y ∈ Y , Pr[M(x, q) = y] ≤ eε · Pr[M(x′, q) = y] .

Here we typically take ε as small, but nonnegligible (not cryptographically small),
for example, a small constant, such as ε = 0.1. Smaller ε provides better privacy,
but as we will see, the definition is no longer useful when ε < 1/n. We will also
think of n as known and public information, and we will study asymptotic behavior
as n→ ∞.

We will often think of the query as fixed, and remove q from notation. In this
section, we consider answering only one query; a major focus of subsequent sections
will be the problem of answering many queries.

7.1.5 Basic Mechanisms
Before discussing the definition further, let us see some basic constructions of dif-
ferentially private mechanisms.
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Randomized response. Let q : X → {0, 1} be a counting query, and x ∈ X n be a
dataset. For each row xi, let

yi =

q(xi) with prob. (1 + ε)/2 ,
¬q(xi) with prob. (1 − ε)/2

and
M(x1, . . . , xn) = (y1, . . . , yn) .

If x ∼ x′ are datasets that differ on the i-th row, their output distributions differ only
if q(xi) , q(x′i ), in which case the outputs differ only in the i-th components, denoted
yi and y′i , respectively. We have

Pr[yi = q(xi)]
Pr[y′i = q(xi)]

=
(1 + ε)/2
(1 − ε)/2

= eO(ε) .

And Pr[yi = q(x′i )] ≤ Pr[y′i = q(x′i )]. Thus, randomized response is O(ε)-differentially
private.

We can use the result of randomized response to estimate the value of the count-
ing query q(x) as follows. Note that E[yi] = ε·q(xi)+(1−ε)/2. Thus, by the Chernoff

bound, with high probability we have∣∣∣∣∣∣∣1n ∑
i

1
ε
·

(
yi −

(1 − ε)
2

)
− q(x)

∣∣∣∣∣∣∣ ≤ O
(

1
√

n · ε

)
.

As n→ ∞, we get an increasingly accurate estimate of the average.
An advantage of randomized response is that it does not require a trusted, central-

ized data curator; each subject can carry out the randomization on her own and pub-
licly announce her noisy bit yi. Indeed, this method was introduced in the 1960s by
Warner [108] for carrying out sensitive surveys in the social sciences, where partici-
pants may not feel comfortable revealing information to the surveyor. In Section 7.9,
we will discuss the “local model” for differential privacy, which encompasses gen-
eral mechanisms and interactive protocols where subjects ensure their own privacy
and need not trust anyone else.

The Laplace mechanism [48]. Let q be a counting query; it is natural to try to
protect privacy by simply adding noise. That is, M(x) = q(x) + noise. But how
much noise do we need to add, and according to what distribution?

Note that, if x ∼ x′, we have |q(x) − q(x′)| ≤ 1/n. This suggests “noise” of
magnitude 1/(εn) should be enough to make M(x) and M(x′) “ε-indistinguishable”
in the sense required by differential privacy.

Which distribution will satisfy the multiplicative definition of differential pri-
vacy? Recall that, at every output y, the density of the output distribution should be
the same under x and x′ up to a factor of eε. The density of M(x) at y is the density
of the noise distribution at z = y − q(x), and the density of M(x′) at y is the density
of the noise distribution at z′ = y − q(x′); again |z − z′| ≤ 1/n. So we see that it
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suffices for the density of the noise distribution to change by a factor of at most eε

over intervals of length 1/n.
This leads us to the Laplace distribution Lap(σ):

the density of Lap(σ) at z ∝ e−|z|/σ.

If we set σ = 1/εn, then we see that the ratio of densities is as we want: for z ≥ 0,
we have

density of Lap(1/εn) at z + 1/n
density of Lap(1/εn) at z

= e1/(nσ) = e−ε .

(For z ≤ −1/n, the ratio of densities is eε, and for z ∈ (−1/n, 0), it is between e−ε

and eε.)
It may seem more natural to use Gaussian noise, but it does not quite achieve

the definition of differential privacy that we have given: in the tail of a Gaussian,
the density changes by an unbounded multiplicative factor over intervals of fixed
width. Later, we will see a relaxation of differential privacy (called (ε, δ)-differential
privacy) that is achieved by adding Gaussian noise of appropriate variance.

Lap(σ) has mean 0 and standard deviation
√

2 ·σ, and has exponentially vanish-
ing tails:

Pr[|Lap(σ)| > σt] ≤ e−t .

The Laplace mechanism is not specific to counting queries; all we used was that
|q(x) − q(x′)| ≤ 1/n for x ∼ x′. For an arbitrary query q : X n → R, we need to scale
the noise to its global sensitivity:

GSq = max
x∼x′
|q(x) − q(x′)|.

Then we have:

Definition 7.1.2 (The Laplace mechanism). For a query q : X n → R, a bound
B, and ε > 0, the Laplace mechanism Mq,B over data universe X takes a dataset
x ∈ X n and outputs

Mq,B(x) = q(x) + Lap(B/ε).

From the discussion above, we have:

Theorem 7.1.3 (Properties of the Laplace mechanism).
1. If B ≥ GSq, the Laplace mechanism Mq,B is ε-differentially private.
2. For every x ∈ X n and β > 0,

Pr[|Mq,B(x) − q(x)| > (B/ε) · ln(1/β)] ≤ β.

As noted above, for a counting query q, we can take B = 1/n, and thus with high
probability we get error O(1/(εn)), which is significantly better than the bound of
O(1/ε

√
n) given by randomized response.

Global sensitivity is also small for a variety of other queries of interest:
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1. For q(x) = max{q1(x), q2(x), . . . , qt(x)}, we have GSq ≤ maxi{GSqi }.
2. For q(x) = d(x,H) where H ⊆ X n and d is Hamming distance,1 we have GSq ≤

1. (“Is my data set close to one that satisfies my hypothesis H?”).
3. A statistical query (sometimes called a linear query in the differential privacy

literature) is a generalization of a counting query to averaging a real-valued
function on the dataset. That is, we are given a bounded function q : X → [0, 1],
and are interested in the query:

q(x) =
1
n

n∑
i=1

q(xi) .

Then GSq ≤ 1/n.

We promised that we would only work with discrete probability, but the Laplace
distribution is continuous. However, one can discretize both the query values q(x)
and the Laplace distribution to integer multiples of B (yielding a scaled version of
a geometric distribution) and Theorem 7.1.3 will still hold. We ignore this issue in
the rest of the tutorial for the sake of simplicity (and consistency with the literature,
which typically refers to the continuous Laplace distribution).

7.1.6 Discussion of the Definition
We now discuss why differential privacy utilizes a multiplicative measure of simi-
larity between the probability distributions M(x) and M(x′).

Why not statistical distance? The first choice that one might try is to use statistical
difference (total variation distance). That is, we require that, for every x ∼ x′, we
have

SD(M(x),M(x′)) def
= max

T⊆Y

∣∣∣Pr[M(x) ∈ T ] − Pr[M(x′) ∈ T ]
∣∣∣ ≤ δ.

ε-Differential privacy implies the above definition with δ = 1 − e−ε ≤ ε, but not
conversely.

We claim that, depending on the setting of δ, such a definition either does not
allow for any useful computations or does not provide sufficient privacy protection.

δ ≤ 1/2n: Then by a hybrid argument, for all pairs of datasets x, x′ ∈ X n (even
nonneighbors), we have SD(M(x),M(x′)) ≤ nδ ≤ 1/2. Taking x′ to be a fixed
(e.g., all-zeroes) dataset, this means that, with probability 1/2 on M(x), we get
an answer independent of the dataset x and the mechanism is useless.

δ ≥ 1/2n: In this case, the mechanism “with probability 1/2, output a random row
of the dataset” satisfies the definition. We do not consider a mechanism that
outputs an individual’s data in the clear to be protecting privacy.

1 The Hamming distance d(x, x′) between two datasets x, x′ ∈ X n is the number of rows on which
x and x′ differ.
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However, it turns out to be quite useful to consider the following relaxation of
differential privacy, which incorporates a negligible statistical distance term δ in
addition to the multiplicative ε:

Definition 7.1.4 ((Approximate) differential privacy). For ε ≥ 0, δ ∈ [0, 1], we
say that a randomized mechanism M : X n × Q → Y is (ε, δ)-differentially private
if, for every two neighboring datasets x ∼ x′ ∈ X n (x and x′ differ in one row) and
every query q ∈ Q, we have

∀T ⊆ Y , Pr[M(x, q) ∈ T ] ≤ eε · Pr[M(x′, q) ∈ T ] + δ . (7.1)

Here, we will insist that δ is cryptographically negligible (in particular, δ ≤ n−ω(1));
it can be interpreted as an upper bound on the probability of catastrophic failure
(e.g., the entire dataset being published in the clear). This notion is often called
approximate differential privacy, in contrast with pure differential privacy as given
by Definition 7.1.1. Note that, unlike pure differential privacy, with approximate
differential privacy it is not sufficient to verify Inequality (7.1) for sets T of size 1.
(Consider a mechanism that outputs the entire dataset along with a random number
from {1, . . . , d1/δe}; then Pr[M(x, q) = y] ≤ δ ≤ eε · Pr[M(x′, q) = y] + δ for all y,
but clearly does not provide any kind of privacy or satisfy Definition 7.1.4.)

More generally, we will call two random variables Y and Y ′ taking values in Y
(ε, δ)-indistinguishable if:

∀T ⊆ Y , Pr[Y ∈ T ] ≤ eε · Pr[Y ′ ∈ T ] + δ, and
Pr[Y ′ ∈ T ] ≤ eε · Pr[Y ∈ T ] + δ

Setting ε = 0 is equivalent to requiring that SD(Y,Y ′) ≤ δ. (ε, δ)-Indistinguishability
has the following nice characterization, which allows us to interpret (ε, δ)-differential
privacy as “ε-differential privacy with probability at least 1 − δ”:

Lemma 7.1.5 (Approximate DP as smoothed2 DP [19]). Two random variables
Y and Y ′ are (ε, δ)-indistinguishable if and only if there are events E = E(Y) and
E′ = E′(Y ′) such that:

1. Pr[E],Pr[E′] ≥ 1 − δ, and
2. Y |E and Y ′|E′ are (ε, 0)-indistinguishable.

Proof: We prove the “if” direction, and omit the converse (which is rather techni-
cal). For every set T , we have

Pr[Y ∈ T ] ≤ Pr[Y ∈ T |E] · Pr[E] + Pr[E]
≤ Pr[Y ∈ T |E] · (1 − δ) + δ

≤ eε · Pr[Y ′ ∈ T |E′] · (1 − δ) + δ

≤ eε · Pr[Y ′ ∈ T |E′] · Pr[E′] + δ

≤ eε · Pr[Y ′ ∈ T ] + δ

�

2 The terminology “smoothed” was coined by [91] for similar variants of entropy measures.
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A Bayesian interpretation. Although statistical distance is not a good choice (on
its own), there are many other choices of distance measures, and we still have not
justified why a multiplicative measure is a particularly good choice. One justifi-
cation comes from a Bayesian interpretation of the definition of differential pri-
vacy [48, 33, 65]. Consider a prior distribution (X, X′) on neighboring datasets, mod-
eling an adversary’s prior on a real dataset X and a dataset X′ that would have been
obtained if a particular individual had not participated. Given an output y←M(X),
the adversary will have a posterior belief on the dataset, given by the conditional dis-
tribution X|M(X)=y. We will argue that differential privacy implies that this posterior
is close to the posterior that would have been obtained if the mechanism had been
run on X′ instead, which we think of as capturing “ideal” privacy for the individual.

Proposition 7.1.6 (DP implies Bayesian privacy). Let M : X n → Y be any ε-
differentially private mechanism and let (X, X′) be any joint distribution on X n ×

X n such that Pr[X ∼ X′] = 1. Then for every dataset x ∈ X n and output y ∈
Supp(M(X)) = Supp(M(X′)),3

SD(X|M(X)=y, X|M(X′)=y) ≤ 2ε.

A special case of the proposition is when we fix X′ = x′ to be constant (so that
there is nothing to learn from X′) and X = (Xi, x′−i) is varying only in the data of
one individual. Then the proposition says that in such a case (where the adversary
knows all but the i-th row of the dataset), the adversary’s posterior on Xi is close to
its prior. Indeed,

SD(Xi|M(X)=y, Xi) = SD(Xi|M(X)=y, Xi|M(X′)=y′ ) = SD(X|M(X)=y, X|M(X′)=y′ ) ≤ 2ε.

That is, whatever an adversary could have learned about an individual, it could have
learned from the rest of the dataset.
Proof: By Bayes’ rule,

Pr[X = x|M(X) = y] =
Pr[M(X) = y|X = x] · Pr[X = x]

Pr[M(X) = y]

≤
eε · Pr[M(X′) = y|X = x] · Pr[X = x]

e−ε · Pr[M(X′) = y]
= e2ε · Pr[X = x|M(X′) = y].

By symmetry (swapping X and X′), we also have Pr[X = x|M(X′) = y] ≤ e2ε ·

Pr[X = x|M(X) = y]. Having all probability masses equal up to a multiplicative
factor of e2ε implies that the statistical distance is at most 1 − e−2ε ≤ 2ε. �

There is also a converse to the proposition: if M guarantees that the two posterior
distributions are close to each other (even in statistical difference), then M must be
differentially private. In fact, this will hold even for the special case mentioned above
where X′ is constant.

Proposition 7.1.7 (Bayesian privacy implies DP). Let M : X n → Y be any ran-
domized mechanism, and let x0 ∼ x1 ∈ X n be two neighboring datasets. Define the

3 Supp(Z) is defined to be the support of random variable Z, i.e., {z : Pr[Z = z] > 0}.
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joint distribution (X, X′) to equal (x0, x0) with probability 1/2 and to equal (x1, x0)
with probability 1/2. Suppose that, for some y ∈ Supp(M(x0) ∩ Supp(M(x1)),

SD(X|M(X)=y, X|M(X′)=y) ≤ ε ≤ 1/4. (7.2)

Then

e−O(ε) · Pr[M(x1) = y] ≤ Pr[M(x0) = y] ≤ eO(ε) · Pr[M(x1) = y].

In particular, if for all pairs x0 ∼ x1 of neighboring datasets, we have that
Supp(M(x0)) = Supp(M(x1)) and (7.2) holds for all outputs y ∈ Supp(M(x0)),
then M is O(ε)-differentially private.

Note that, for the joint distributions (X, X′) in Proposition 7.1.7, we have Pr[X ∼
X′] = 1, so this is indeed a converse to Proposition 7.1.7.
Proof: Since X′ is constant, X|M(X′)=y is the same as the prior X (namely, uniformly
random from {x0, x1}). Thus, by hypothesis, for b = 0, 1, we have

1
2
− ε ≤ Pr[X = xb|M(X) = y] ≤

1
2

+ ε.

On the other hand, by Bayes’ rule,

Pr[M(xb) = y] = Pr[M(X) = y|X = xb]

=
Pr[X = xb|M(X) = y] · Pr[M(X) = y]

Pr[X = xb]

∈

[
(1/2) − ε

1/2
· Pr[M(X) = y],

(1/2) + ε

1/2
· Pr[M(X) = y]

]
.

Thus, Pr[M(x0) = y]/Pr[M(x1) = y] is between (1/2 − ε)/(1/2 + ε) = e−O(ε) and
(1/2 + ε)/(1/2 − ε) = eO(ε). �

There are also (ε, δ) analogues of the above propositions, where we require that,
with all but negligible probability (related to δ), the posterior probability distribu-
tions should be close to each other [65].

Interpretations of the Definition. We can now provide some more intuitive inter-
pretations of (and cautions about) the definition of differential privacy:

• Whatever an adversary learns about you, she could have learned from the rest of
the dataset (in particular, even if you did not participate). Note that this does not
say that the adversary does not learn anything about you; indeed, learning about
the population implies learning about individuals. For example, if an adversary
learns that smoking correlates with lung cancer (the kind of fact that differential
privacy is meant to allow learning) and knows that you smoke, it can deduce
that you are more likely to get lung cancer. However, such a deduction is not
because of the use of your data in the differentially private mechanism, and thus
may not be considered a privacy violation.
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• The mechanism will not leak a significant amount of information specific to an
individual (or a small group, as we will see in the next section). Consequently,
differential privacy is not an achievable privacy notion if the goal of the analysis
is to take an action on a specific individual in the dataset (e.g., to identify a
candidate for a drug trial, a potential terrorist, or a promising customer).

The above interpretations hold regardless of what auxiliary information or compu-
tational strategy the adversary uses. Indeed, the definition provides an information-
theoretic form of security. In Section 7.10, we will consider a computational ana-
logue of differential privacy, where we restrict to polynomial-time adversaries.

Variants of the definition and notation. In our treatment, the dataset is an ordered
n-tuple x ∈ X n, where n is known and public (not sensitive information).

A common alternative treatment is to consider datasets x that are multisets of ele-
ments of X , without a necessarily known or public size. Then, a convenient notation
is to represent x as a histogram – that is, as an element of NX . In the multiset defi-
nition, the distance between two datasets is the symmetric difference |x∆x′|, which
corresponds to `1 distance in histogram notation. Thus, neighboring datasets (at dis-
tance 1) are ones that differ by addition or removal of one item. Differential privacy
under this definition has a nice interpretation as hiding whether you participated in
a dataset at all (without having to replace you by an alternate row to keep the dataset
size the same).

There is not a big difference between the two notions, as one can estimate n = |x|
with differential privacy (it is just a counting query), the distance between two un-
ordered datasets of the same size under addition/removal versus substitution differ
by at most a factor of 2, and one can apply a differentially private mechanism de-
signed for ordered tuples to an unordered dataset by randomly ordering the elements
of the dataset.

7.1.7 Preview of the Later Sections
The primary goal of this tutorial is to illustrate connections of differential privacy
to computational complexity and cryptography. Consequently, our treatment of the
algorithmic foundations of differentially private is very incomplete, and we recom-
mend the monograph of Dwork and Roth [36] for a thorough treatment, including
more proofs and examples for the background material that is only sketched here.
We also focus heavily on counting queries in this tutorial, because they suffice to
bring out most of the connections we wish to illustrate. However, the algorithmic
literature on differential privacy now covers a vast range of data-analysis tasks, and
obtaining a thorough complexity-theoretic understanding of such tasks is an impor-
tant direction for future work.

The topics that will be covered in the later sections are as follows:

Section 7.2: We will describe composition theorems that allow us to reason about
the level of differential privacy provided when many differentially private algo-
rithms are executed independently. In particular, this will give us algorithms to
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answer nearly n2 counting queries accurately while satisfying differential pri-
vacy.

Section 7.3: We will briefly survey some alternatives to using global sensitivity to
calibrate the level of noise added for differentially private estimates; sometimes
we can get away with adding noise that is proportional to the sensitivity of the
query in a local neighborhood of our dataset x (but we need to be careful in
doing so).

Section 7.4: We will present some remarkable algorithms that can answer many
more than n2 counting queries with differential privacy. These algorithms are in-
spired by ideas from computational learning theory, such as Occam’s razor and
the multiplicative weights method. Unfortunately, these algorithms are compu-
tationally quite expensive, requiring time that is polynomial in the size of the
data universe X (which in turn is exponential in the bit-length of row elements).

Section 7.5: We will prove a number of information-theoretic lower bounds on dif-
ferential privacy, showing that it is impossible to answer too many queries with
too much accuracy. Some of the lower bounds will be based on combinatorial
and geometric ideas (such as “discrepancy”), and others will be on fingerprint-
ing codes, which were developed as a tool in cryptography (for secure digital
content distribution).

Section 7.6: We will turn to computational hardness results for differential privacy,
giving evidence that there is no way in general to make the algorithms of Sec-
tion 7.4 computationally efficient. These hardness results will be based on cryp-
tographic constructs (such as traitor-tracing schemes and digital signatures), and
one result will also use probabilistically checkable proofs.

Section 7.7: Next, we will turn to some additional algorithms that bypass the hard-
ness results of Section 7.6 by focusing on specific, structured families of count-
ing queries (and use alternative output representations). The methods employed
include low-degree approximations of Boolean functions (via Chebychev poly-
nomials) and convex geometry and optimization (semidefinite programming,
Gaussian width, Grothendieck’s inequality).

Section 7.8: We will then look at PAC learning with differential privacy, showing
both some very general but computationally inefficient positive results, as well
as some efficient algorithms. We will then see how methods from communica-
tion complexity have been used to show that the sample complexity of differen-
tially private PAC learning (with pure differential privacy) is inherently higher
than that of nonprivate PAC learning.

Section 7.9: In this section, we will explore generalizations of differential privacy
to the case where the data is distributed among multiple parties, rather than all
being held by a single trusted curator. We will show, using connections to ran-
domness extractors and to information complexity, that sometimes distributed
differential privacy cannot achieve the same level of accuracy attained in the
centralized model.

Section 7.10: The aforementioned limitations of multiparty differential privacy can
be avoided by using cryptography (namely, secure multiparty computation) to
implement the trusted curator. However, this requires a relaxation of differential



360 Salil Vadhan

privacy to computationally bounded adversaries. We will present the definition
of computational differential privacy, and point out its connection to the notion
of “pseudodensity” studied in the theory of pseudorandomness.

7.2 Composition Theorems for Differential Privacy

7.2.1 Postprocessing and Group Privacy
One central property of differential privacy, which we will use throughout the tuto-
rial, is that it is preserved under “postprocessing”:

Lemma 7.2.1 (Postprocessing). If M : X n → Y is (ε, δ)-differentially private
and F : Y → Z is any randomized function, then F ◦M : X n → Z is (ε, δ)-
differentially private.

Proof: Consider F to be a distribution on deterministic functions f : Y → Z .
Then, for every x ∼ x′ ∈ X n and every subset T ⊆ Z , we have

Pr[(F ◦M)(x) ∈ T ] = E
f←F

[Pr[M(x) ∈ f −1(T )]]

≤ E
f←F

[eε · Pr[M(x′) ∈ f −1(T )] + δ]

= eε · Pr[(F ◦M)(x′) ∈ T ] + δ.

�

Another useful property, alluded to in Section 7.1.6, is that differential privacy
provides protection for small groups of individuals. For x, x′ ∈ X n, let d(x, x′) de-
note the Hamming distance between x and x′, or in other words the number of rows
that need to be changed to go from x to x′ (so x ∼ x′ iff d(x, x′) ≤ 1).

Then the “group privacy” lemma for differential privacy is as follows:

Lemma 7.2.2 (Group privacy). If M is an (ε, δ)-differentially private mechanism,
then for all pairs of datasets x, x′ ∈ X n, M(x) and M(x′) are (kε, k · ekε · δ)-
indistinguishable for k = d(x, x′).

Proof: We use a hybrid argument. Let x0, x1, x2, . . . , xk be such that x0 = x and
xk = x′ and for each i such that 0 ≤ i ≤ k − 1, xi+1 is obtained from xi by changing
one row. Then, for all T ⊆ Y , since M is (ε, δ)-differentially private,

Pr[M(x0) ∈ T ] ≤ eε Pr[M(x1) ∈ T ] + δ

≤ eε (eε Pr[M(x2) ∈ T ] + δ) + δ

...

≤ ekε · Pr[M(xk) ∈ T ] + (1 + eε + e2ε + · · · + e(k−1)·ε) · δ
≤ ekε · Pr[M(xk) ∈ T ] + k · ekε · δ.

�
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Note that, when δ = 0, ε-differential privacy provides nontrivial guarantees for
datasets x, x′ even at distance n, namely (nε, 0)-indistinguishability, which in partic-
ular implies that M(x) and M(x′) have the same support. In contrast, when δ > 0,
we only get nontrivial guarantees for datasets at distance k ≤ ln(1/δ)/ε; when k is
larger, k · ekε · δ is larger than 1. This gap is a source of the additional power of
(ε, δ)-differential privacy (as we will see).

7.2.2 Answering Many Queries
Now we consider a different form of composition, where we independently execute
several differentially private mechanisms. Let M1,M2, . . . ,Mk be differentially
private mechanisms. Let

M(x) = (M1(x),M2(x), . . . ,Mk(x)),

where each Mi is run with independent coin tosses; for example, this is how we
might obtain a mechanism answering a k-tuple of queries.

The basic composition lemma says that the privacy degrades at most linearly with
the number of mechanisms executed.

Lemma 7.2.3 (Basic composition). If M1, . . . ,Mk are each (ε, δ)-differentially
private, then M is (kε, kδ)-differentially private.

However, if we are willing to tolerate an increase in the δ term, the privacy pa-
rameter ε only needs to degrade proportionally to

√
k:

Lemma 7.2.4 (Advanced composition [42]). If M1, . . . ,Mk are each (ε, δ)-differ-
entially private and k < 1/ε2, then for all δ′ > 0, M is

(
O(

√
k log(1/δ′)) ·ε, kδ+δ′

)
-

differentially private.

We now prove the above lemmas, starting with basic composition.
Proof of Lemma 7.2.3: We start with the case δ = 0. Fix datasets x, x′ such that
x ∼ x′. For an output y ∈ Y , define the privacy loss to be

Lx→x′
M (y) = ln

(
Pr[M(x) = y]
Pr[M(x′) = y]

)
= −Lx′→x

M (y).

When Lx→x′
M (y) is positive, the output y is “evidence” that the dataset is x rather than

x′; and conversely when it is negative.
Notice that ε∗-differential privacy of M is equivalent to the statement that, for

all x ∼ x′ and all y ∈ Supp(M(x)) ∪ Supp(M(x′)),

|Lx→x′
M (y)| ≤ ε∗.

Now, for M = (M1,M2, . . . ,Mk) and y = (y1, y2, . . . , yk), we have
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Lx→x′
M (y) = ln

(
Pr[M1(x) = y1 ∧M2(x) = y2 ∧ · · · ∧Mk(x) = yk]

Pr[M1(x′) = y1 ∧M2(x′) = y2 ∧ · · · ∧Mk(x′) = yk]

)
= ln

 ∏k
i=1 Pr[Mi(x) = yi]∏k
i=1 Pr[Mi(x′) = yi]


=

k∑
i=1

Lx→x′
Mi

(yi),

so ∣∣∣Lx→x′
M (y)

∣∣∣ ≤ k∑
i=1

∣∣∣Lx→x′
Mi

(yi)
∣∣∣ ≤ k · ε.

For the case that δ > 0, we use Lemma 7.1.5. Specifically, since Mi(xi) and
Mi(x′i ) are (ε, δ)-indistinguishable, there are events Ei and E′i of probability at least
1 − δ such that, for all yi, we have∣∣∣∣∣∣ln

(
Pr[M(xi) = yi|Ei]
Pr[M(x′i ) = yi|E′i ]

)∣∣∣∣∣∣ ≤ ε.
Thus, in the above analysis, we instead condition on the events E = E1∧E2∧· · ·∧Ek

and E′ = E′1 ∧ E′2 ∧ · · · ∧ E′k, redefining our privacy losses as

Lxi→x′i
Mi

(yi) = ln
(

Pr[Mi(xi) = yi|Ei]
Pr[M(x′i ) = yi|E′i ]

)
,

Lx→x′
M (y) = ln

(
Pr[M(x) = y|E]

Pr[M(x′) = y|E′]

)
.

Then we still have ∣∣∣Lx→x′
M (y)

∣∣∣ ≤ k∑
i=1

∣∣∣Lx→x′
Mi

(yi)
∣∣∣ ≤ k · ε.

By a union bound, the probability of the events E and E′ are at least 1 − k · δ, so by
Lemma 7.1.5, M(x) and M(x′) are (kε, kδ)-indistinguishable, as required. �

We now move on to advanced composition.
Proof sketch of Lemma 7.2.4: We again focus on the δ = 0 case; the extension
to δ > 0 is handled similarly to the proof of Lemma 7.2.3. The intuition for how we
can do better than the linear growth in ε is that some of the yi’s will have positive
privacy loss (i.e., give evidence for dataset x) while some will have negative privacy
loss (i.e., give evidence for dataset x′), and the cancellations between these will lead
to a smaller overall privacy loss.

To show this, we consider the expected privacy loss

E
yi←Mi(x)

[Lx→x′
Mi

(yi)].

By definition, this equals the Kullback–Leibler divergence (a.k.a. relative entropy)
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D(Mi(x) ‖Mi(x′)),

which is known to always be nonnegative.
We first prove the following claim, which shows that the expected privacy loss

of a differentially private mechanism is quite a bit smaller than the upper bound on
the maximum privacy loss of ε:

Claim 7.2.5. If Mi is ε-differentially private, where ε ≤ 1, then

E
yi←Mi(x)

[Lx→x′
Mi

(yi)] ≤ 2ε2.

Proof of claim: We will show that

D(Mi(x)‖Mi(x′)) + D(Mi(x′)‖Mi(x)) ≤ 2ε2,

and then the result follows by the nonnegativity of divergence. Now,

D(Mi(x)‖Mi(x′)) + D(Mi(x′)‖Mi(x)) = E
yi←Mi(x)

[Lx→x′
Mi

(yi)] + E
yi←Mi(x′)

[Lx′→x
Mi

(yi)]

= E
yi←Mi(x)

[Lx→x′
Mi

(yi)] − E
yi←Mi(x′)

[Lx→x′
Mi

(yi)],

and using the upper bound of ε on privacy loss we get that

E
yi←Mi(x)

[Lx→x′
Mi

(yi)] − E
yi←Mi(x′)

[Lx→x′
Mi

(yi)]

≤ 2 ·
(

max
yi∈Supp(Mi(x))∪Supp(Mi(x′))

∣∣∣Lx→x′
Mi

(yi)
∣∣∣) · SD(Mi(x),Mi(x′))

≤ 2ε · (1 − e−ε)
≤ 2ε2,

where SD is statistical distance, and we use the fact that (ε, 0)-indistinguishability
implies a statistical distance of at most 1 − e−ε. �

Thus by linearity of expectation, for the overall expected privacy loss, we have

E
y←M(x)

[Lx→x′
M (y)] = k · O(ε2) def

= µ.

Applying the Hoeffding bound for random variables whose absolute value is bounded
by ε, we get that, with probability at least 1 − δ′ over y←M(x),

Lx→x′
M (y) ≤ µ + O

( √
k log(1/δ′)

)
· ε ≤ O

( √
k log(1/δ′)

)
· ε

def
= ε′,

where the second inequality uses the assumption that k < 1/ε2 (so kε2 ≤
√

kε2 and
hence µ ≤ O(

√
k) · ε).

Now for any set T , we have
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Pr[M(x) ∈ T ] ≤ Pr
y←M(x)

[
Lx→x′
M (y) > ε′

]
+

∑
y∈T :Lx→x′

M (y)≤ε′

Pr[M(x) = y]

≤ δ′ +
∑

y∈T :Lx→x′
M (y)≤ε′

eε
′

· Pr[M(x′) = y]

≤ δ′ + eε
′

· Pr[M(x′) ∈ T ],

so M is indeed (ε′, δ′)-differentially private. �
It should be noted that, although Lemma 7.2.4 is stated in terms of queries being

asked simultaneously (in particular, nonadaptively), a nearly identical proof (appeal-
ing to Azuma’s inequality, instead of Hoeffding) shows that an analogous conclu-
sion holds even when the queries (i.e., mechanisms) are chosen adaptively (i.e., the
choice of Mi+1 depends on the outputs of M1(x), . . . ,Mi(x)).

Observe that, if we have a set Q of k = |Q| counting queries and we wish to
obtain a final privacy of (ε, δ′), then we can achieve this by first adding Laplace
noise to achieve an initial privacy guarantee of ε0 for each query and then use the
composition theorems. To use the basic composition lemma, we would have to set

ε0 =
ε

k
,

so the Laplace noise added per query has scale

O
(

1
ε0n

)
= O

(
k
εn

)
.

To obtain a bound on the maximum noise added to any of the queries, we can do
a union bound over the k queries. Setting β = 1/O(k) in Theorem 7.1.3, with high
probability, the maximum noise will be at most

α = O
(

k · log k
εn

)
.

Steinke and Ullman [99] showed how to save the log k factor by carefully correlating
the noise used for the k queries, and thus showed:

Theorem 7.2.6 (Arbitrary counting queries with pure differential privacy [99]).
For every set Q of counting queries and ε > 0, there is an ε-differentially private
mechanism M : X n → RQ such that, on every dataset x ∈ X n, with high probability
M(x) answers all the queries in Q to within additive error

α = O
(
|Q|
εn

)
.

Thus, taking ε to be constant, we can answer any |Q| = o(n) counting queries with
vanishingly small error, which we will see is optimal for pure differential privacy
(in Section 7.5.2).

Similarly, to use the advanced composition theorem, we would have to set
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ε0 =
ε

c ·
√

k · log(1/δ)
,

yielding a maximum error of

α = O
(

log k
ε0n

)
= O

 √
k · log(1/δ) · log k

εn

 .
Again, it is known how to (mostly) remove the log k factor:

Theorem 7.2.7 (Arbitrary counting queries with approximate differential pri-
vacy [99]). For every set Q of counting queries over data universe X , and ε, δ > 0,
there is an (ε, δ)-differentially private mechanism M : X n → Rk such that, on every
dataset x ∈ X n, with high probability M(x) answers all the queries to within error

α = O

 √
|Q| · log(1/δ) · log log |Q|

εn

 .
Again taking ε to be constant and δ to be negligible (e.g., δ = 2− log2(n)), we can
take k = |Q| = Ω̃(n) and obtain error o(1/

√
n) (smaller than the sampling error!),

which we will see is essentially optimal for any reasonable notion of privacy (in
Section 7.5.1). If we want error o(1), we can take k = Ω̃(n2), which is known to
be optimal for differential privacy if the answers are not coordinated based on the
queries [43] or if the data universe is large (as we will see in Section 7.5). However,
in Section 7.4, we will see some beautiful algorithms that can answer many more
than n2 queries if the data universe is not too large (forcing the queries to have some
implicit relationships) by carefully coordinating the noise between the queries.

Optimal composition. Remarkably, Kairouz, Oh, and Viswanath [64] have given an
optimal composition theorem for differential privacy, which provides an exact char-
acterization of the best privacy parameters that can be guaranteed when composing a
number of (ε, δ)-differentially private mechanisms. The key to the proof is showing
that an (ε, δ) generalization of randomized response (as defined in Section 7.1.5) is
the worst mechanism for composition. Unfortunately, the resulting optimal compo-
sition bound is quite complex, and indeed is even #P-complete to compute exactly
when composing mechanisms with different (εi, δi) parameters [82]. Thus, for the-
oretical purposes, it is still most convenient to use Lemmas 7.2.3 and 7.2.4, which
give the right asymptotic behavior for most settings of parameters that tend to arise
in theoretical applications.

7.2.3 Histograms
The bounds of Theorems 7.2.6 and 7.2.7 are for arbitrary, worst-case families of
counting queries. For specific families of counting queries, one may be able to
do much better. A trivial example is when the same query is asked many times;
then we can compute just one noisy answer, adding noise Lap(1/ε), and give the
same answer for all the queries. A more interesting example is the family Qpt of
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point functions on a data universe X , as defined in Section 7.1.3. Answering all |X |
queries in Qpt (i.e., estimating the histogram of the dataset) using the above theo-
rems would incur error at least

√
|X |/εn. However, it turns out that we can achieve

error O(log |X |)/εn.

Proposition 7.2.8 (Laplace histograms). For every finite data universe X , n ∈ N,
and ε > 0, there is an ε-differentially private mechanism M : X n → RX such that,
on every dataset x ∈ X n, with high probability M(x) answers all of the counting
queries in Qpt(X ) to within error

O
(

log |X |
εn

)
.

Proof sketch: Recall that Qpt(X ) contains a query qy for each y ∈ X , where on a
row w ∈ X , qy(w) is 1 iff w = y. The mechanism M adds independent noise dis-
tributed according to Lap(2/εn) to the result of each query qy ∈ Qpt. This ensures
that each individual noisy answer is ε/2-differentially private. To show that we ob-
tain ε-differential privacy overall, the key observation is that, for two neighboring
datasets x, x′, there are only two queries qy, qy′ ∈ Qpt on which x and x′ differ (cor-
responding to the values that x and x′ have in the row where they differ). Thus, the
proof of basic composition lemma (Lemma 7.2.3) implies that M(x) and M(x′) are
(2 · (ε/2), 0)-indistinguishable, as desired. �

We can also use the output of this mechanism to answer an arbitrary counting
query q : X → {0, 1}, noting that q(x) =

∑
y∈X qy(x) · q(y). The above mechanism

gives us ay = qy(x) + Lap(2/εn) for every y ∈ X , from which we can compute
the quantity a =

∑
y∈X ay · q(y), which has expectation q(x) and standard deviation

O(
√
|X |/εn). For answering multiple queries, we can apply Chernoff/Hoeffding and

union bounds,4 yielding the following:

Theorem 7.2.9 (Arbitrary counting queries via the Laplace histogram). For ev-
ery set Q of counting queries on data universe X , n ∈ N, and ε > 0, there is
an ε-differentially private mechanism M : X n → RQ such that on every dataset
x ∈ X n, with high probability M(x) answers all the queries to within error

O

 √
|X | · log |Q|

εn

 .
Note that the dependence on k = |Q| has improved from

√
k obtained by advanced

composition or Theorem 7.2.7 to
√

log k, at the price of introducing a (rather large)
dependence on |X |. Thus, for a family Q of counting queries on data universe X , it is

4 A bit of care is needed since the Lap(2/εn) noise random variables are not bounded. This can be
handled by first arguing that, with high probability, at most a 2−Θ(t) fraction of the noise random
variables have magnitude in the range [t/εn, 2t/εn). Then, conditioned on the magnitudes of the
noise random variables (but not their signs), we can group the random variables according to their
magnitudes (up to a factor of 2) and apply Hoeffding to each group separately.
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better to use the Laplace histogram when |X | � |Q| and it is better to use advanced
composition or Theorem 7.2.7 when |X | > |Q|.

Let us summarize the best error bounds we have seen so far for the example
families of counting queries given in Section 7.1.3.

Table 7.1: Error bounds for specific query families on a data universe X of size
D = 2d (e.g., X = {0, 1}d or X = {1, 2, . . . ,D}).

Query family Q |Q| (ε, 0)-dp Ref. (ε, δ)-dp Ref.

Qpt D O
(

d
εn

)
Prop. 7.2.8 O

(
d
εn

)
Prop. 7.2.8

Qthr D Õ(
√

D)
εn Thm. 7.2.9 Õ(

√
D)

εn Thm. 7.2.9

Qconj 3d Õ(
√

D)
εn Thm. 7.2.9 Õ(

√
D)

εn Thm. 7.2.9

Qmeans d O
(

d
εn

)
Thm. 7.2.6 O

( √
d log(1/δ)·log log d

εn

)
Thm. 7.2.7

Qconj
t for t � d O(dt) O

(
dt

εn

)
Thm. 7.2.6 O

(
dt/2 ·
√

log(1/δ)·log log d
εn

)
Thm. 7.2.7

We will see substantial improvements to most of these bounds in later sections.

7.3 Alternatives to Global Sensitivity
In this section, we consider the question of whether we can do better than adding
noise Lap(GSq /ε), where GSq denotes the global sensitivity of query q (cf. Theo-
rem 7.1.3).

As a first attempt, let us define a notion of “local sensitivity” at x:

LSq(x) = max
{
q(x) − q(x′)| : x′ ∼ x

}
.

The difference from global sensitivity is that we only take the maximum over
datasets x′ that are neighbors to our input dataset x, rather than taking the maxi-
mum over all neighboring pairs x′ x̃′′.

Naively, we might hope that M(x) = q(x) + Noise(O(LSq(x))) might provide
differential privacy. Indeed, the local sensitivity provides a lower bound on the error
we need to introduce:

Proposition 7.3.1 (Local sensitivity lower bound). Let q : X n → R be a real-
valued query and M : X n → Y be an (ε, δ)-differentially private mechanism. Then

1. For every x0 ∼ x1 ∈ X n, there is a b ∈ {0, 1} such that

Pr
[
|M(xb) − q(xb)| <

|q(x0) − q(x1)|
2

]
≤

1 + δ

1 + e−ε
=

1
2

+ O(δ + ε).
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2. For every x ∈ X n, there is some x′ at Hamming distance at most 1 from x such
that

Pr
[
|M(x′) − q(x′)| <

LSq(x)
2

]
≤

1 + δ

1 + e−ε
=

1
2

+ O(δ + ε).

Proof:
1. Let Gb =

{
y ∈ R : |y − q(xb)| < |q(x0)−q(x1)|

2

}
and

p = min {Pr [M(x0) ∈ G0] ,Pr [M(x1) ∈ G1]}. Then:

1 − p ≥ Pr [M(x0) < G0]
≥ Pr [M(x0) ∈ G1]
≥ e−ε · Pr [M(x1) ∈ G1] − δ
≥ e−ε · p − δ.

Solving, we deduce that p ≤ (1 + δ)/(1 + e−ε).
2. Follows from part 1 by taking x0 = x and x1 ∼ x such that LSq(x) = |q(x) −

q(x1)|. �

The problem with trying to use the local sensitivity to calibrate the noise is that
we do not want the amount of noise to itself distinguish between neighboring x and
x′. For instance, let x be such that q(x) = q(x′) = 0 for all x′ ∼ x, but where there
is one such neighbor x′ ∼ x where x′ has a neighbor x′′ such that q(x′′) = 109.
LSq(x) = 0, but LSq(x′) is large, and answering queries noisily based on LSq would
violate privacy because it distinguishes between x and x′.

Still, perhaps one could hope to provide only a small amount of noise if LSq

is small everywhere “near” x. For example, consider the query that asks for the
median of n points {x1, x2, . . . xn} ⊆ [0, 1]. The global sensitivity for this query is
high. Indeed, consider the instance x where (n + 1)/2 entries are 1 and (n − 1)/2
entries are 0 (and thus the median is 1), as compared with the neighboring instance
x′ where one entry is changed from 1 to 0 (and thus the median is 0).

On the other hand, if there are many data points near the median, then it would
follow that the local sensitivity is small, not only at x but also at all datasets close
to x. For such instances x, we could indeed get away with adding only a small
amount of noise, while maintaining privacy. This is the type of situation that we will
investigate. There are several related approaches that have been taken along these
lines, which we will discuss:

1. Smooth sensitivity [86]
2. Propose–test–release [34]
3. Releasing stable values [96]
4. Privately bounding local sensitivity [68]

We remark that yet another approach, called restricted sensitivity, aims to add even
less noise than the local sensitivity [12, 68, 27, 89]. The observation is that Propo-
sition 7.3.1 does not say that the error on x must be at least LSq(x)/2; rather it says
that the error must be at least LSq(x)/2 on x or one of its neighbors. Thus if we have
a hypothesis that our dataset belongs to some set H ⊆ X n (e.g. in the case of a social



7 The Complexity of Differential Privacy 369

network, we might believe that the graph is of bounded degree), it might suffice to
add noise proportional to the restricted sensitivity, where we maximize |q(x)−q(x′)|
over x ∼ x′ ∈ H, which can be much smaller than even the local sensitivity. The
noise will still need to be at least LSq(x)/2 on some neighbors x′ of x, but these can
be neighbors outside of H.

7.3.1 Smooth Sensitivity
Define smooth sensitivity of query q : X n → R at x as follows:

SSεq(x) = max{LSq(x′) · e−εd(x,x′) : x′ ∈ X n},

where d(x, x′) denotes Hamming distance. Intuitively, we are smoothing out the
local sensitivity, so that it does not change much between neighboring datasets.

Nissim, Raskhodnikova, and Smith [86] introduced the notion of smooth sensi-
tivity and showed that:

• Adding noise O(SSεq(x)/ε) (according to a Cauchy distribution) is sufficient for
ε-differential privacy.

• SSq can be computed efficiently when q is the median query (despite the fact
that it is defined as the maximum over a set of size |X |n), as well as for a variety
of graph statistics (under edge-level differential privacy, cf. Section 7.3.4).

Zhang et al. [111] gave an alternative approach to “smoothing out” local sensitivity,
which empirically provides improvements in accuracy.

7.3.2 Propose–Test–Release
A different way to provide less noise is to simply not allow certain queries. That
is: rather than using Laplace noise at a level that is high enough no matter what
possible dataset might be queried, an alternative is to initially propose an amount
of noise that seems tolerable, and then test whether answering a query with this
amount of noise would violate privacy (namely, if the noise magnitude is less than
the local sensitivity in a neighborhood of the current dataset). If the test passes, then
we release a noisy answer. But perhaps we detect that adding this (small) amount of
noise would violate privacy. In that case, we simply refuse to answer. Of course, we
should carry out the test in a differentially private manner.

More precisely, propose–test–release consists of the following three steps (pa-
rameterized by a query q : X n → R and ε, δ, β ≥ 0), yielding a mechanism
M : X n → R ∪ {⊥} that does the following on a dataset x ∈ X n:

1. Propose a target bound β on local sensitivity.
2. Let d̂ = d(x, {x′ : LSq(x′) > β})+Lap(1/ε), where d denotes Hamming distance.
3. If d̂ ≤ ln(1/δ)/ε, output ⊥.
4. If d̂ > ln(1/δ)/ε, output q(x) + Lap(β/ε).

Proposition 7.3.2 (Propose–test–release [34]). For every query q : X n → R and
ε, δ, β ≥ 0, the above algorithm is (2ε, δ)-differentially private.
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Proof: Consider any two neighboring datasets x ∼ x′. Because of the Laplacian
noise in the definition of d̂ and the fact that Hamming distance has global sensitivity
at most 1, it follows that

Pr[M(x) = ⊥] ∈ [e−ε · Pr[M(x′) = ⊥], eε · Pr[M(x′) = ⊥]]. (7.3)

Also, for those outputs that are not ⊥, we have two cases:

Case 1: LSq(x) > β. In this case, d(x, {x′′ : LSq(x′′) > β}) = 0, so the probability
that d̂ will exceed ln(1/δ)/ε is at most δ. Thus, for every set T ⊆ R ∪ {⊥}, we have

Pr[M(x) ∈ T ] ≤ Pr[M(x) ∈ T ∩ {⊥}] + Pr[M(x) , ⊥]
≤ eε · Pr[M(x′) ∈ T ∩ {⊥}] + δ

≤ eε · Pr[M(x′) ∈ T ] + δ,

where the second inequality follows from (7.3), noting that T ∩ {⊥} equals either
{⊥} or ∅.

Case 2: LSq(x) ≤ β. In this case, |q(x) − q(x′)| ≤ β, which in turn implies the (ε, 0)-
indistinguishability of q(x)+Lap(β/ε) and q(x′)+Lap(β/ε). Thus, by (7.3) and basic
composition, we have (2ε, 0)-indistinguishability overall. �

Notice that, like smooth sensitivity, the naive algorithm for computing d(x, {x′ :
LSq(x′) > β}) enumerates over all datasets x′ ∈ X n. Nevertheless, for the median
function, it can again be computed efficiently.

7.3.3 Releasing Stable Values
A special case of interest in propose–test–release is when β = 0. Then it can be
verified that d(x, {x′ : LSq(x′) > β}) = d(x, {x′ : q(x′) , q(x)}) − 1, so the algorithm
is testing whether the function q is constant in a neighborhood of x (of radius roughly
ln(1/δ)/ε), and if so, it outputs q with no noise; that is, if q is stable around x, then
we can safely release the value q(x) (exactly, with no noise!), provided our test of
stability is differentially private. This also applies to, and indeed makes the most
sense for, discrete-valued functions q : X n → Y . In more detail, the mechanism
works as follows on x ∈ X n:

1. Let d̂ = d(x, {x′ : q(x′) , q(x)})+Lap(1/ε), where d denotes Hamming distance.
2. If d̂ ≤ 1 + ln(1/δ)/ε, output ⊥.
3. Otherwise output q(x).

Similarly to Proposition 7.3.2, we have:

Proposition 7.3.3 (Releasing stable values). For every query q : X n → Y and
ε, δ > 0, the above algorithm is (ε, δ)-differentially private.

Consider, for example, the mode function q : X n → X , where q(x) is defined
to be the most frequently occurring data item in x (breaking ties arbitrarily). Then
d(x, {x′ : q(x′) , q(x)}) equals half of the gap in the number of occurrences between
the mode and the second most frequently occurring item (rounded up). So we have:



7 The Complexity of Differential Privacy 371

Proposition 7.3.4 (Stability-based mode). For every data universe X , n ∈ N, and
ε, δ ≥ 0, there is an (ε, δ)-differentially private algorithm M : X n → X such that,
for every dataset x ∈ X n where the difference between the number of occurrences of
the mode and the second most frequently occurring item is larger than 4dln(1/δ)/εe,
M(x) outputs the mode of x with probability at least 1 − δ.

If instead we had used the Laplace Histogram of Proposition 7.2.8 (outputting
the bin y ∈ X with the largest noisy count), we would require a gap of Θ(log |X |)/ε
in the worst case, so the stability-based method is better when |X | is large compared
with 1/δ. Indeed, let us now show how stability-based ideas can in fact produce
noisy histograms with an error bound of O(log(1/δ))/εn.

Theorem 7.3.5 (Stability-based histograms [24]). For every finite data universe
X , n ∈ N, ε ∈ (0, ln n), and δ ∈ (0, 1/n), there is an (ε, δ)-differentially private
mechanism M : X n → RX such that, on every dataset x ∈ X n, with high probability
M(x) answers all of the counting queries in Qpt(X ) to within error

O
(

log(1/δ)
εn

)
.

The intuition for the algorithm is that, if we only released noisy answers for point
functions qy that are nonzero on the dataset x, the error bound in Proposition 7.2.8
would improve from O(log |X |)/εn to O(log n)/εn ≤ O(log(1/δ))/εn, since at most
n point functions can be nonzero on any dataset (namely those corresponding to
the rows of the dataset). However, revealing which point functions are nonzero
would not be differentially private. Thus, we only release the point functions that
are far from being zero (i.e., ones where the query is nonzero on all datasets at
noisy distance at most O(log(1/δ)/ε) from the given dataset, analogously to Propo-
sition 7.3.3).
Proof: The algorithm is the same as the Laplace histogram of Proposition 7.2.8,
except that we do not add noise to counts that are zero, and reduce all noisy counts
that are smaller than O(log(1/δ)/εn to zero.

Specifically, given a dataset x ∈ X n, the algorithm works as follows:

1. For every point y ∈ X :

a. If qy(x) = 0, then set ay = 0.
b. If qy(x) > 0, then:

i. Set ay ← qy(x) + Lap(2/εn).
ii. If ay < 2 ln(2/δ)/εn + 1/n, then set ay ← 0.

2. Output (ay)y∈X .

Now let us analyze this algorithm.

Utility: The algorithm gives exact answers for queries qy where qy(x) = 0. There
are at most n queries qy with qy(x) > 0 (namely, ones where y ∈ {x1, . . . , xn}). By
the tails of the Laplace distribution and a union bound, with high probability, all
of the noisy answers qy(x) + Lap(2/εn) computed in step 1(b)i have error at most
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O((log n)/εn) ≤ O(log(1/δ)/εn). Truncating the small values to zero in step 1(b)ii
introduces an additional error of up to 2 ln(1/δ)/εn + 1/n = O(log(1/δ)/εn).

Privacy: Consider two neighboring datasets x ∼ x′, where dataset x′ is obtained
by replacing row xi with x′i . Then the only point queries that differ on x and x′ are
qxi and qx′i . Since the answers to different queries qy are independent, we can an-
alyze the answer to each query separately and then apply composition. Consider
the answers axi (x) and axi (x′) to query qxi on datasets x and x′, respectively. We
know that qxi (x) > 0 (since row xi is in x). If we also have qxi (x′) > 0, then axi (x)
and axi (x′) are (ε/2, 0)-indistinguishable by the differential privacy of the Laplace
mechanism. (We can view the truncation step as postprocessing.) If qxi (x′) = 0,
then axi (x′) is always 0, and qxi (x) = 1/n (since x and x′ agree on all other rows),
which means that Pr[axi (x) , 0] = Pr[Lap(2/εn) ≥ 2 ln(2/δ)/εn] ≤ δ/2 and we
have (0, δ/2)-indistinguishability. Thus, in all cases, axi (x) and axi (x′) are (ε/2, δ/2)-
indistinguishable. By symmetry the same holds for the answers ax′i (x) and ax′i (x′).
On all other queries y, ay(x) and ay(x′) are identically distributed. By basic compo-
sition, the joint distributions of all answers are (ε, δ)-indistinguishable. �

7.3.4 Privately Bounding Local Sensitivity
Rather than proposing (arbitrarily) a threshold β as in propose–test–release, more
generally we might try to compute a differentially private upper bound on the local
sensitivity. That is, we will try to compute a differentially private estimate β̂ = β̂(x)
such that, with probability at least 1−δ, LSq(x) ≤ β̂. If we can do this, then outputting
q(x) + Lap(β̂/ε) will give an (ε, δ)-differentially private algorithm, by an analysis as
in the previous section.

The setting in which we will explore this possibility is where our dataset is a
graph and we want to estimate the number of triangles in the graph.

There are (at least) two notions of privacy that one might wish to consider for
graph algorithms:

• Edge-level privacy. In this setting, we say that G ∼ G′ if the graphs G and G′

differ on one edge. This is a special case of the setting we have been studying,
where we think of an n-vertex graph as a dataset consisting of

(
n
2

)
rows from

universe X = {0, 1} .
• Node-level privacy. In this setting, we say that G ∼ G′ if the graphs G and G′

differ only on edges that are adjacent to one vertex. This does not quite fit in
the tuple-dataset setting we have been studying, but the concept of differential
privacy naturally generalizes to this (as well as any other family of “datasets”
with some notion of “neighbors”).

In applications (e.g., to social networks), node-level privacy is a preferable notion
of privacy, since it simultaneously protects all of the relationships associated with
a vertex (which typically represents an individual person), rather than just a single
relationship at a time. However, since our goal is only to illustrate the method of
privately bounding local sensitivity, we will consider only edge-level privacy. Let
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q∆(G) be the number of triangles in G (where the ∆ is meant to be evocative of a
triangle). It can be verified that

LSq∆ (G) = max{ j : ∃u∃v u and v have j common neighbors}.

This, in turn, is no more than the maximum degree of G. In contrast the global
sensitivity is GSq∆ = n − 2. However, if we consider the global sensitivity of the
local sensitivity, we have GSLSq∆

= 1. (If we think of the local sensitivity as a
discrete analogue of a derivative, then this is the analogue of having a bounded
second derivative, despite the derivative sometimes being large.)

Consider the following mechanism M(G):

• Compute β̂ = LSq∆ (G) + Lap(1/ε) + ln(1/δ)/ε.
• Output q∆(G) + Lap(β̂/ε).

This mechanism can be shown to be (2ε, δ)-differentially private, and the total
noise is of magnitude

O
(

LSq∆ (G) + (1 + log(1/δ))/ε
ε

)
.

Note that this approach is computationally efficient if we can efficiently evaluate
the query q, can efficiently calculate LSq (which can be done using m · (|X | − 1)
evaluations of q when the dataset is in Xm), and have an upper bound on GSLSq .

7.4 Releasing Many Counting Queries with Correlated
Noise

We have seen (in Theorems 7.2.6, 7.2.7, and 7.2.9) that any set Q of counting queries
over data universe X can be answered with differential privacy and an error of at
most

α ≤ O

min

 |Q|εn
,

√
|Q| · log(1/δ) · log log |Q|

εn
,

√
|X | · log |Q|

εn




on each of the queries (with high probability). When both |Q| and |X | are larger than
n2, the amount of error is larger than 1, and hence these approaches provide nothing
useful (recall that the true answers lie in [0, 1]).

In this section, we will see two methods that can answer many more than n2

counting queries on a data universe of size much larger than n2. Both use ideas from
learning theory.

7.4.1 The SmallDB Algorithm
Theorem 7.4.1 (The smallDB algorithm, Blum et al. [14]). For every set Q of
counting queries on a data universe X and every ε > 0, there exists an ε-
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differentially private mechanism M such that, for all datasets x ∈ X n, with high
probability M(x) answers all queries in Q to within error at most

α = O
(

log |Q| log |X |
εn

)1/3

.

Moreover, M(x) outputs a “synthetic dataset” y ∈ Xm with m = O(log |Q|/α2) such
that, with high probability, we have |q(y) − q(x)| ≤ α for all q ∈ Q, i.e., we can
calculate all the answers using the (smaller) synthetic dataset.

In fact, the bounds can be improved to α = Õ(VC(Q) · log |X |/εn)1/3 and m =

VC(Q) · Õ(1/α2), where VC(Q) is the Vapnik–Chervonenkis dimension of the class
Q.5

The key point is that the error grows (less than) logarithmically with the number
|Q| of queries and the size |X | of the data universe; this allows us to handle even
exponentially many queries. (On the other hand, the error vanishes more slowly
with n than the earlier results we have seen — like 1/n1/3 rather than 1/n.) Let us
compare the implications of the smallDB algorithm for concrete query families with
the bounds we saw in Section 7.2 for pure differential privacy (Table 7.1):

Table 7.2: Error bounds for specific query families under (ε, 0)-differential privacy
on a data universe X of size D = 2d (e.g. X = {0, 1}d or X = {1, 2, . . . ,D}).
Highlighted cells indicate the best bounds in the regime where n ≤ Do(1) or n ≤ do(t).

Query family Q |Q| VC(Q) Previous bound Ref. Theorem 7.4.1

Qpt D 1 O
(

d
εn

)
Prop. 7.2.8 Õ

(
d
εn

)1/3

Qthr D 1 Õ(
√

D)
εn Thm. 7.2.9 Õ

(
d
εn

)1/3

Qconj 3d d Õ(
√

D)
εn Thm. 7.2.9 O

(
d2

εn

)1/3

Qmeans d blog2 dc O
(

d
εn

)
Thm. 7.2.6 O

(
d log d
εn

)1/3

Qconj
t for t � d O(dt) O(t log d) O

(
dt

εn

)
Thm. 7.2.6 O

(
t·d log d
εn

)1/3

We see that there is an exponential improvement in the dependence on D =

2d = |X | for the case of threshold functions and conjunctions (and similarly in
the dependence on t for t-way conjunctions). In particular, we only need n to be
polynomially large in the bit-length d of the rows to have vanishingly small error;
in such a case, we can produce and publish a differentially private synthetic dataset
that accurately summarizes exponentially many (2Θ(d)) statistics about the original
dataset (e.g., the fractions of individuals with every combination of attributes, as in
Qconj(d)). It is amazing that such a rich release of statistics is compatible with strong
privacy protections.

5 VC(Q) is defined to be the largest number k such that there exist x1, . . . , xk ∈ X for which
{(q(x1), . . . , q(xk)) : q ∈ Q} = {0, 1}k. Clearly, VC(Q) ≤ log |Q|.
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These improvements also hold compared with the bounds we had for (ε, δ)-
differential privacy (where the dependence on |Q| was only quadratically better than
for pure differential privacy). On the other hand, for point functions and attribute
means, our earlier bounds (even for pure differential privacy) are better than what is
given by Theorem 7.4.1.
Proof of Theorem 7.4.1: We begin by establishing the existence of at least one
accurate m-row synthetic dataset y∗: Let y∗ be a random sample of m rows from x,
say with replacement for simplicity. By the Chernoff bound,

Pr[ ∃q ∈ Q s.t. |q(y∗) − q(x)| > α )] ≤ 2−Ω(mα2) · |Q| < 1 ,

for an appropriate choice of m = O(log |Q|/α2). This is similar to “Occam’s razor”
arguments in computational learning theory (cf. [70]). In fact, it is known that m =

O(VC(Q) · log(1/α)/α2) suffices.
Of course, outputting a random subsample of the dataset will not be differentially

private. Instead, we use (a special case of) the exponential mechanism of McSherry
and Talwar [79]. Specifically, consider the following mechanism M(x):

1. For each y ∈ Xm, define weightx(y) = exp
(
−εn ·max

q∈Q
|q(y) − q(x)|

)
.

2. Output y with probability proportional to weightx(y). That is,

Pr[M(x) = y] =
weightx(y)∑

z∈Xm weightx(z)
.

Notice that, if x ∼ x′, then weightx(y) and weightx′ (y) differ by a multiplicative
factor of at most eε. That is, we smoothly vary the weight put on different synthetic
datasets according to the amount of error they will give us, with low-error synthetic
datasets receiving the highest weight.

Let us now formally analyze this algorithm.

Privacy: Fix x ∼ x′ ∈ X n, y ∈ Xm. Then,

Pr[M(x) = y] =
weightx(y)∑
y′ weightx(y′)

≤
eε · weightx′ (y)∑

y′ e−ε · weightx′ (y′)
≤ e2ε · Pr[M(x′) = y].

Thus, we have 2ε-differential privacy.

Accuracy: Define an output y ∈ Xm to be β-accurate if maxq∈Q |q(y) − q(x)| ≤ β.
Our goal is to show that, with high probability, M(x) is 2α-accurate. Recall that
earlier we showed that there exists an α-accurate output y∗. We have
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Pr[M(x) is not 2α-accurate] =
∑

y∈Xm,
y not 2α-accurate

weightx(y)∑
z weightx(z)

≤
∑

y∈Xm,
y not 2α-accurate

weightx(y)
weightx(y∗)

≤ |X |m · exp (−εn · 2α)
exp (−εn · α)

� 1 (if αεn > 2m log |X |).

Recall that m = O(log |Q|)/α2. Solving for α gives the theorem. �
The exponential mechanism is quite general and powerful, and can be used to de-

sign differentially private mechanisms for sampling “good” outputs from any output
space Y . Specifically, we can replace the expression

−max
q∈Q
|q(y) − q(x)|

with an arbitrary “score function” score(x, y) indicating how good y is as an output
on dataset x, and replace the factor of n in the exponent with a bound B on the recip-
rocal of maxz GSscore(·,z) . That is, we obtain the following mechanism Mscore,B(x):

1. For each y ∈ Y , define weightx(y) = exp (ε · score(x, y)/B).
2. Output y with probability proportional to weightx(y). That is,

Pr[M(x) = y] =
weightx(y)∑

z∈Y weightx(z)
.

Similarly to the proof of Theorem 7.4.1, it can be shown that:

Proposition 7.4.2 (The exponential mechanism, McSherry and Talwar [79]).
For every function score : X n × Y → R such that Y is finite, ε ≥ 0, and B > 0,

1. If B ≥ maxz GSscore(·,z), then the mechanism Mscore,B is 2ε-differentially private,
and

2. For every dataset x ∈ X n, with high probability, Mscore,B(x) outputs y such that

score(x, y) ≥ argmaxy∗ score(x, y∗) − O(log |Y |) · B/ε.

The downside. While the exponential mechanism is very powerful, it can be com-
putationally very expensive, as a direct implementation requires enumerating over
all y ∈ Y . Indeed, in the application of Theorem 7.4.1, the computation time is
roughly

|Y | = |X |m = exp
(

log |Q| log |X |
α2

)
,

so it is very slow. For example, we get runtime exp(d2/α2) for the query family Qconj

of conjunctions on {0, 1}d.
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7.4.2 Private Multiplicative Weights
We now present a state-of-the-art algorithm for general queries:

Theorem 7.4.3 (Private multiplicative weights, Hardt and Rothblum [58]). For
every set Q of counting queries on a data universe X and every ε, δ > 0, there exists
an (ε, δ)-differentially private mechanism M such that, for all datasets x ∈ X n, with
high probability M(x) answers all queries in Q to within error at most

α = O

 √
log |X | · log(1/δ) · log |Q|

εn

1/2

.

Moreover, M(x) can answer the queries in an online fashion (answering each query
as it arrives) and runs in time poly(n, |X |) per query.

The algorithm can also be modified to produce a synthetic dataset, though we will
not show this here.

Note that the error vanishes more quickly with n than in Theorem 7.4.1 (as 1/n1/2

rather than 1/n1/3), and the log |X | has been replaced by
√

log |X | · log(1/δ). Com-
paring with the results we have seen for our example query families, we have

Table 7.3: Error bounds for specific query families under (ε, δ)-differential privacy
on a data universe X of size D = 2d (e.g., X = {0, 1}d or X = {1, 2, . . . ,D}).
Highlighted cells indicate the best bounds in the regime where n ≤ Do(1) or n ≤ do(t)

and δ ≥ 2− polylog(n). In the case of incomparable bounds, both are highlighted.

Query family Q Sect. 7.2 Ref. Thm. 7.4.1 Thm. 7.4.3

Qpt O
(

d
εn

)
Prop. 7.2.8 O

(
d3/2 ·
√

log(1/δ)
εn

)1/2

Qthr Õ(
√

D)
εn Thm. 7.2.9 Õ

(
d
εn

)1/3
O

(
d3/2 ·
√

log(1/δ)
εn

)1/2

Qconj Õ(2d/2)
εn Thm. 7.2.9 O

(
d2

εn

)1/3
O

(
d3/2 ·
√

log(1/δ)
εn

)1/2

Qmeans O
( √

d log(1/δ)·log log d
εn

)
Thm. 7.2.7 O

( √
d log(1/δ)·log d

εn

)1/2

Qconj
t for t � d O

(
dt/2 ·
√

log(1/δ)·log log d
εn

)
Thm. 7.2.7 O

(
t·d log d
εn

)1/3
O

(
t log d
√

d log(1/δ)
εn

)1/2

For Qconj and Qconj
t , we obtain a saving in the dependence on |X | = 2d. In par-

ticular, for answering all conjunctions on {0, 1}d with error tending to zero, we only
need n = ω(d3/2 ·

√
log(1/δ)/ε) rather than n = ω(d2/ε) as in Theorem 7.4.1. The

running time has improved too, but is still at least |X | · |Q|, which is exponential in
d. (Of course, in this generality, one needs |X | · |Q| bits to specify an arbitrary set of
counting queries on {0, 1}d.)
Proof: The algorithm views the dataset x as a distribution on types r ∈ X :
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x(r) =
#{i ∈ [n] : xi = r}

n
.

Then,
q(x) = E

r←x
[q(r)].

The algorithm will maintain a distribution h on X , some hypothesis for what the
data distribution is. It will try to answer queries with h, and update h when it leads
to too much error. It will turn out that only a small number of updates are needed,
and this will imply that the overall privacy loss is small. Here are the details:

1. INITIALIZE the hypothesis h to the uniform distribution on X .
2. REPEAT at most O(log |X |)/α2 times (outer loop)

a. RANDOMIZE the accuracy threshold: α̂ = α/2 + Lap(1/ε0n), where ε0 is
a parameter that will be set later in the proof.

b. REPEAT (inner loop)
i. Receive next query q.

ii. If |q(x)−q(h)|+Lap(1/ε0n) < α̂, then output a = q(h) and CONTINUE
inner loop. Otherwise, output a = q(x) + Lap(1/ε0n) (with fresh noise)
and EXIT inner loop.

c. UPDATE the hypothesis h:

i. Reweight using query q: ∀w ∈ X g(w) =

h(w)e(α/8)·q(w) if a > q(h),
h(w)e−(α/8)·q(w) if a < q(h).

ii. Renormalize: ∀w ∈ X h(w) =
g(w)∑

v∈X g(v)
.

d. CONTINUE outer loop.

Utility analysis: By the exponentially vanishing tails of the Laplace distribution,
with high probability none of the (at most 3|Q|) samples from Lap(1/ε0n) used in
steps 2a and 2(b)ii has magnitude larger than

O
(

log |Q|
ε0n

)
≤
α

8
,

provided we set ε0 ≥ c log |Q|/αn for a sufficiently large constant c. By the triangle
inequality, this implies that all answers that we provide are within ±3α/4 of q(x).

Now, we must show that the mechanism will not stop early.

Claim 7.4.4. Assuming all the samples from Lap(1/ε0n) have magnitude at most
α/8, the outer loop cannot exceed its budget of O(log |X |)/α2 iterations.

Proof sketch: We use the Kullback–Leibler divergence D(x||h) as a potential func-
tion. At the start, h is the uniform distribution on |X |, so

D(x||h) = log |X | − H(x) ≤ log |X |,

where H(x) is the Shannon entropy of the distribution x. Suppose that, in some
iteration, we do an update (i.e., reweight and renormalize) to go from hypothesis h
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to hypothesis h′. Since all the noise samples have magnitude at most α/8, we must
have |q(x) − q(h)| ≥ α/4 in order to do an update, and in this case b − q(h) has
the same sign as q(x) − q(h). By a tedious but standard calculation (used in typical
analyses of the multiplicative weights method), this implies that

D(x||h′) ≤ D(x||h) − Ω(α2).

Since divergence is always nonnegative, we can have at most log |X |/Ω(α2) updates.
�

Privacy analysis: The mechanism takes a dataset x and outputs a sequence
(a1, . . . , ak) of noisy answers to a sequence of queries (q1, . . . , qk) (which we will
treat as fixed in this analysis). Note that the output (a1, . . . , ak) is determined by the
sequence (b1, . . . , bk) where bi = ⊥ if there is no update on query qi and bi = ai

otherwise. (This information suffices to maintain the hypothesis h used by the algo-
rithm, as the update to h done in step 2c depends only on the current query qi and
the noisy answer ai = bi.) Thus, by closure under postprocessing (Lemma 7.2.1), it
suffices to show that the mechanism that outputs the sequence (b1, . . . , bk) is (ε, δ)-
differentially private. This mechanism, in turn, is obtained by (adaptively) com-
posing O(log |X |)/α2 submechanisms, each corresponding to one execution of the
outer loop. Specifically, each such submechanism is parameterized by the output of
the previous submechanisms, which is of the form (b1, . . . , bi−1) with bi−1 , ⊥, and
produces the output (bi, . . . , b j) corresponding to one more execution of the outer
loop — so bi = bi+1 = · · · = b j−1 = ⊥ and b j , ⊥ (unless j = k, in which case we
may also have b j = ⊥).

We will argue below that each such submechanism is 4ε0-differentially private
(even though the number of queries it answers can be unbounded). Given this claim,
we can apply advanced composition to deduce that the overall mechanism satisfies
(ε, δ)-differential privacy for

ε = O

√ log |X | log(1/δ)
α2 · ε0

 .
Substituting ε0 = c log |Q|/αn (as needed in the utility analysis above) and solving
for α yields the theorem.

So now we turn to analyzing a submechanism M corresponding to a single exe-
cution of the outer loop (after a fixed prior history (b1, . . . , bi−1)). Since it suffices to
verify pure differential privacy with respect to singleton outputs, it suffices to show
that, for every hypothesis h (determined by the prior history (b1, . . . , bi−1)) and ev-
ery possible output sequence b = (bi, . . . , b j) with bi = bi+1 = · · · = b j−1 = ⊥, the
following mechanism Mh,b(x), which tests whether the output of the next iteration
of the outer loop is b, is 4ε0-differentially private:

1. SAMPLE να, νi, νi+1, . . . , ν j, νa ← Lap(1/ε0n). (Making all random choices at
start.)

2. RANDOMIZE the accuracy threshold: α̂ = α/2 + να.
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3. REPEAT for t = i to j (inner loop)

a. Receive next query qt.
b. If bt = ⊥ and |qt(x) − qt(h)| + νt ≥ α̂, then HALT and OUTPUT 0.
c. If bt , ⊥ (which implies t = j), then:

i. If |qt(x) − qt(h)| + νt < α̂, HALT and OUTPUT 0.
ii. If qt(x) + νa , b j, HALT and OUTPUT 0.

4. OUTPUT 1 (if we have not halted with output 0 so far).

Let us consider the case when b j , ⊥; the case when b j = ⊥ is similar but
simpler. We will argue 4ε0-differential privacy even when νi, νi+1, . . . , ν j−1 are fixed
to arbitrary values (so the only randomness is from να, ν j, νa); averaging over these
independent random variables will preserve differential privacy.

To show this, we will show that we can compute the output of Mh,b from the
composition of three algorithms, which are ε0-, 2ε0-, and ε0-differentially private,
respectively.

To determine whether we ever halt and output 0 in step 3b it suffices to calculate

β = α̂ −max
i≤t< j

(|qt(x) − qt(h)| + νt) = α/2 + να −max
i≤t< j

(|qt(x) − qt(h)| + νt).

We halt and output 0 in one of the executions of step 3b iff β ≤ 0. The calcu-
lation of β is ε0-differentially private by the Laplace mechanism because α/2 −
maxi≤t< j(|qt(x)− qt(h)|+ νt) has sensitivity at most 1/n as a function of the dataset x
(recalling that h and the νt’s for i ≤ t < j are all fixed) and να is distributed according
to Lap(1/ε0n). This argument is the key to why the private multiplicative weights
can answer so many queries—we are only paying once for privacy despite the fact
that this condition involves an unbounded number of queries.

Given β, to determine whether or not we halt and output 0 in step 3(c)i, it suffices
to test whether |q j(x) − q j(h)| + ν j ≥ α̂ = β + maxi≤t< j(|qt(x) − qt(h)| + νt). This is
2ε0-differentially private by the Laplace mechanism because |q j(x) − q j(h)| − β −
maxi≤t< j(|qt(x) − qt(h)| + νt) has sensitivity at most 2/n as a function of x and ν j is
independently distributed according to Lap(1/ε0n).

Finally, step 3(c)ii is ε0-differentially private by the Laplace mechanism (with
fresh randomness νa). �

Remark 7.4.5.

• The hypothesis h maintained by the private multiplicative weights algorithm
can be thought of as a fractional version of a synthetic dataset. Indeed, with
a bit more work it can be ensured that at the end of the algorithm, we have
|q(h) − q(x)| ≤ α for all q ∈ Q. Finally, random sampling from the distribution
h can be used to obtain a true, integral synthetic dataset y ∈ Xm of size m =

O(log |Q|/α2) just like in Theorem 7.4.1.
• The algorithm works in an online fashion, meaning that it can answer query

qi without knowing the future queries qi+1, qi+2, . . .. However, if all queries are
given simultaneously, the algorithm can be sped up by using the exponential
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mechanism (Proposition 7.4.2) to identify queries that will generate an update
(rather than wasting time on queries that do not generate an update) [61].

7.5 Information-Theoretic Lower Bounds
In the previous section, we have seen differentially private algorithms that can an-
swer many counting queries with good accuracy. Now we turn to lower bounds, with
the goal of showing that these algorithms are nearly optimal in terms of the number
of queries and accuracy they can achieve. These lower bounds will be information-
theoretic, meaning that they apply regardless of the computational resources of the
mechanism M.

7.5.1 Reconstruction Attacks and Discrepancy
7.5.1.1 Reconstruction

We begin by defining a very weak standard for privacy, namely avoiding an attack
that reconstructs almost all of the dataset:

Definition 7.5.1 (Blatant nonprivacy, Dinur and Nissim [31]). A mechanism M :
X n → Y is called blatantly nonprivate if, for every x ∈ X n, one can use M(x) to
compute an x′ ∈ X n, such that x′ and x differ in at most n/10 coordinates (with high
probability over the randomness of M).

It can be shown that a mechanism that is (1, 0.1)-differentially private cannot be
blatantly nonprivate (if |X | > 1). Indeed, if we run an (ε, δ)-differentially private
mechanism M on a uniformly random dataset X ← X n, then the expected fraction
of rows that any adversary can reconstruct is at most eε/|X | + δ (since if we replace
any row Xi with an independent row X′i , M(X−i, X′i ) reveals no information about
Xi and thus does not allow for reconstructing Xi with probability larger than 1/|X |).

We now give some fundamental lower bounds, due to Dinur and Nissim [31], on
the tradeoff between the error and the number of counting queries that can be an-
swered while avoiding blatant nonprivacy. These lower bounds predate, and indeed
inspired, the development of differential privacy.

Let X = {0, 1}. Then a dataset of n people is simply a vector x ∈ {0, 1}n. We
will consider (normalized) inner-product queries specified by a vector q ∈ {0, 1}n:
the intended answer to the query q is 〈q, x〉/n ∈ [0, 1]. Think of the bits in x as
specifying a sensitive attribute of the n members of the dataset and q as specifying
a subset of the population according to some publicly known demographics. Then
〈q, x〉/n measures the correlation between the specified demographic traits and the
sensitive attribute.

These are not exactly counting queries, but they can be transformed into counting
queries as follows: Let X̃ = [n] × {0, 1} be our data universe, map an inner-product
query q ∈ {0, 1}n to the counting query q̃((i, b)) = qi · b, and consider datasets of
the form x̃ = ((1, x1), (2, x2), . . . , (n, xn)), q̃((i, b)) = qi · b. Then q̃(x̃) = 〈q, x〉/n, and
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reconstructing x is equivalent to reconstructing x̃, which again contradicts (1, 0.1)-
differential privacy.

Theorem 7.5.2 (Reconstruction from many queries with large error [31]). Let
x ∈ {0, 1}n. If we are given, for each q ∈ {0, 1}n, a value yq ∈ R such that∣∣∣∣∣yq −

〈q, x〉
n

∣∣∣∣∣ ≤ α,
then one can use the yq’s to compute x′ ∈ {0, 1}n such that x and x′ differ in at most
4α fraction of coordinates.

Corollary 7.5.3. If M(x) is a mechanism that outputs values yq as above with α ≤
1/40, then M is blatantly nonprivate.

Thus at least Ω(1) additive error is needed for privately answering all 2n normalized
inner-product queries, which as noted correspond to 2n counting queries on a data
universe of size 2n.

The smallDB mechanism (Theorem 7.4.1) can answer exp(Ω̃(n)) counting queries
over a data universe X with ε-differential privacy and error α provided |X | ≤
exp(polylog(n)) and ε, α ≥ 1/ polylog(n). Corollary 7.5.3 says that we cannot push
this further to answer 2n queries.
Proof of Theorem 7.5.2: Pick any x′ ∈ {0, 1}n such that, for all q ∈ {0, 1}n,∣∣∣∣∣yq −

〈q, x′〉
n

∣∣∣∣∣ ≤ α.
(We know that at least one such x′ exists, namely x.)

We need to prove that x and x′ differ on at most a 4α fraction of coordinates.
Let q1 = x and let q0 be the bitwise complement of x. Then, the relative Hamming
distance between x and x′ equals

d(x, x′)
n

=
|〈q0, x〉 − 〈q0, x′〉| + |〈q1, x〉 − 〈q1, x′〉|

n

≤

∣∣∣∣∣ 〈q0, x〉
n
− yq0

∣∣∣∣∣ +

∣∣∣∣∣yq0 −
〈q0, x′〉

n

∣∣∣∣∣ +

∣∣∣∣∣ 〈q1, x〉
n
− yq1

∣∣∣∣∣ +

∣∣∣∣∣yq1 −
〈q1, x′〉

n

∣∣∣∣∣
≤ 4 · α.

�
Of course we can avoid the above attack by restricting the adversary to fewer

than 2n queries. The next theorem will say that, even for much fewer queries (indeed
O(n) queries), we must incur a significant amount of error, α ≥ Ω(1/

√
n). This is

tight, matching Theorem 7.2.7 up to a factor of O(
√

log(1/δ) · log log n). We will in
fact study the more general question of what additive error is needed for privately
answering any set Q of counting queries.

Let q1, . . . , qk ∈ {0, 1}n be a collection of vectors, which we view as specify-
ing inner-product queries 〈q, x〉/n as above. Suppose we have a mechanism M
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that answers these queries to within error α, i.e., with high probability outputs
y1, . . . , yk ∈ [0, 1] with ∣∣∣∣∣∣y j −

〈q j, x〉
n

∣∣∣∣∣∣ ≤ α.
Let us try to show that M is blatantly nonprivate. Our privacy-breaking strategy is
the same: take any x′ ∈ {0, 1}n with∣∣∣∣∣∣y j −

〈q j, x′〉
n

∣∣∣∣∣∣ ≤ α
for each j.

Then, by the triangle inequality, we have |〈q j, x− x′〉|/n ≤ 2α for all j = 1, . . . , k.
For blatant nonprivacy, we want to use this to deduce that x and x′ have Hamming
distance at most n/10, i.e., ‖x − x′‖1 ≤ n/10. Suppose not. Let z = x − x′. Let Q
denote the k × n matrix whose rows are the q j. Thus, we have

1. z is a {0,+1,−1} vector with ‖z‖1 > n/10,
2. ‖Qz‖∞ ≤ 2αn.

Thus, we have a contradiction (and hence can conclude that M is blatantly nonpri-
vate) if the partial discrepancy of Q, defined as follows, is larger than 2αn:

Definition 7.5.4 ((Partial) discrepancy). For a k × n matrix Q, we define its dis-
crepancy Disc(Q) and its partial discrepancy PDisc(Q) as

Disc(Q) = min
z∈{±1}n

‖Qz‖∞, and

PDisc(Q) = min
z∈{0,+1,−1}n,
‖z‖1>n/10

‖Qz‖∞.

The qualifier “partial” refers to the fact that we allow up to 90% of z’s coordinates
to be zero, in contrast to ordinary discrepancy which only considers vectors z ∈
{±1}n. A more combinatorial perspective comes if we think of the rows of Q as
characteristic vectors of subsets of X , and z as a partial ±1-coloring of the elements
of X . Then ‖Qz‖∞ measures the largest imbalance in coloring over all the sets in
Q, and PDisc(Q) refers to minimizing this maximum imbalance over all partial
colorings z.

Summarizing the discussion before Definition 7.5.4, we have:

Theorem 7.5.5 (Reconstruction via partial discrepancy). Let q1, . . . , qk ∈ {0, 1}n

and Q be the k × n matrix whose rows are the q j’s. Then any mechanism M :
{0, 1}n → Rk that answers all of the normalized inner-product queries specified by
q1, . . . , qk to within additive error α smaller than PDisc(Q)/2n is blatantly nonpri-
vate.

We note that Theorem 7.5.5 is a generalization of Theorem 7.5.2. Indeed, if Q
is the 2n × n matrix whose rows are all bitstrings of length n (i.e., the family of all
subsets of [n]), then the partial discrepancy of Q is greater than n/20. (For a partial



384 Salil Vadhan

coloring z with greater than n/10 nonzero entries, either the set of coordinates on
which z is 1 or the set of coordinates on which z is −1 will have imbalance greater
than n/20.)

Let us now use Theorem 7.5.5 to deduce the second theorem of Dinur and Nissim
[31].

Theorem 7.5.6 (Reconstruction from few queries with small error [31]). There
exists c > 0 and q1, . . . , qn ∈ {0, 1}n such that any mechanism that answers the nor-
malized inner-product queries specified by q1, . . . , qn to within error at most c/

√
n

is blatantly nonprivate.

In fact, the theorem holds for a random set of queries, as follows from combining
the following lemma (setting k = s = n) with Theorem 7.5.5:

Lemma 7.5.7 (Discrepancy of a random matrix). For all integers k ≥ s ≥ 0, with
high probability, a k × s matrix Q with uniform and independent entries from {0, 1}
has partial discrepancy at least

Ω
(
min

{ √
s · (1 + log(k/s)), s

})
.

Up to the hidden constant, this is the largest possible discrepancy for a k × s matrix.
Indeed, a random coloring achieves discrepancy at most O(

√
s · log k) (by a Cher-

noff bound and union bound). The celebrated “six standard deviations suffice” result
of Spencer [97] improves the log k to log(k/s).
Proof sketch: Pick the rows q1, . . . , qk ∈ {0, 1}s uniformly at random. Fix
z ∈ {0,+1,−1}s with ‖z‖1 > s/10. Then for each j, 〈q j, z〉 is a difference of two
binomial distributions, at least one of which is the sum of more than s/20 indepen-
dent, unbiased {0, 1} random variables (since z has more than s/20 coordinates that
are all 1 or all −1). By anticoncentration of the binomial distribution (cf. [76, Prop.
7.3.2]), we have for every t ≥ 0

Pr
q j

[∣∣∣〈q j, z〉
∣∣∣ ≥ min{t

√
s, s/20}

]
≥ max

{
1 − O(t), Ω

(
e−O(t2)

)}
.

Thus, for each z we have

Pr
[
∀ j ∈ [k],

∣∣∣〈q j, z〉
∣∣∣ < min{t

√
s, s/20}

]
≤ min

{
O(t), 1 − Ω

(
e−O(t2)

)}k
.

By a union bound, we have

Pr
[
∃z ∈ {−1, 0,+1}s : ‖z‖1 > s/10 and ∀ j ∈ [k],

∣∣∣〈q j, z〉
∣∣∣ < min{t

√
s, s/20}

]
< 3s ·min

{
O(t), 1 − Ω

(
e−O(t2)

)}k
.

We now choose t to ensure that this probability is small. For every k ≥ s, taking t
to be a small enough constant suffices to ensure that 3s · O(t)k � 1. However, once
k/s is sufficiently large, we can take a larger value of t (corresponding to higher
discrepancy) if we use the other term in the min. Specifically, we can take t =

c
√

log(ck/s) for a sufficiently small constant c, and obtain
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3s ·
(
1 − Ω

(
e−O(t2)

))k
≤ 3s ·

(
1 − Ω

( s
ck

))k
= 3s · e−Ω(s/c) � 1.

In all cases, we can take t = Ω
( √

1 + log(k/s)
)
, as needed for the lemma. �

The reconstruction attacks we gave in the proof of the above theorems take time
more than 2n, because they require searching for a vector x′ ∈ {0, 1}n such that

∀ j

∣∣∣∣∣∣y j −
〈q j, x′〉

n

∣∣∣∣∣∣ ≤ α. (7.4)

However, it is known how to obtain a polynomial-time reconstruction attack for
certain query families. In particular, a polynomial-time analogue of Theorem 7.5.6
can be obtained by using a linear program to efficiently find a fractional vector
x′ ∈ [0, 1]n satisfying Condition (7.4) and then rounding x′ to an integer vector.
To show that this attack works, we need to lower-bound the fractional analogue of
partial discrepancy, namely

inf
z∈[−1,1]n,
‖z‖1>n/10

‖Qz‖∞,

which again can be shown to be Ω(
√

n) for a random n × n matrix Q, as well as for
some explicit constructions [37].

One can consider a relaxed notion of accuracy, where the mechanism is only
required to give answers with at most c/

√
n additive error for 51% of the queries, and

for the remaining 49% it is free to make arbitrary error. Even such a mechanism can
be shown to be blatantly nonprivate. If one wants this theorem with a polynomial-
time privacy-breaking algorithm, then this can also be done with the 51% replaced
by about 77%. (This is a theorem of Dwork, McSherry, and Talwar [39], and is
based on connections to compressed sensing.)

7.5.1.2 Discrepancy Characterizations of Error for Counting Queries

We now work towards characterizing the error required for differential privacy for
answering a given set of counting queries. Let q1, . . . , qk ∈ {0, 1}X be a given set of
counting queries over a data universe X (viewed as vectors of length |X |). We will
abuse notation and use Q to denote both the set {q1, . . . , qk} of counting queries as
well as the k × |X | matrix whose rows are the q j. For a set S ⊆ X , we let QS denote
the restriction of Q to the columns of S .

Then we have:

Theorem 7.5.8 (Partial discrepancy lower bound). Let Q = {q : X → {0, 1}} be a
set of counting queries over data universe X , and let M : X n → RQ be a (1, 0.1)-
differentially private mechanism that with high probability answers every query in
Q with error at most α. Then

α ≥ max
S⊆X ,|S |≤2n
|S | even

PDisc(QS )/2n.
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Proof sketch: Suppose for contradiction that α < PDisc(QS )/2n for some set S
of size at most 2n. Let us restrict attention to datasets x of the following form: the
first |S |/2 rows of x, denoted y, consist of |S |/2 distinct elements of S , and the rest
are fixed to an arbitrary value w ∈ X . Then for a counting query q : X → {0, 1}, we
have

q(x) =
〈qS , χ(y)〉 + (n − |S |/2) · q(w)

n
,

where qS ∈ {0, 1}S is the vector (q(s))s∈S (one of the rows in QS ) and χ(y) ∈ {0, 1}S

is the characteristic vector of y (i.e., the indicator of which elements of S are in
y). Thus, an estimate of q(x) to within additive error at most α yields an estimate
of the normalized inner product 〈qS , χ(y)〉/|S | to within additive error αn/|S | <
PDisc(QS )/2. If we have such estimates for every query q ∈ Q, then by Theo-
rem 7.5.5, we can reconstruct at least 90% of the coordinates of the characteristic
vector χ(y), which can be shown to contradict (1, 0.1)-differential privacy. �

If we do not fix n but require the error to scale linearly with n, then this lower
bound can be phrased in terms of hereditary partial discrepancy, which is defined
to be

HerPDisc(Q) def
= max

S⊆X
PDisc(QS ).

In this language, we have the theorem of Muthukrishnan and Nikolov [83]:

Theorem 7.5.9 (Hereditary discrepancy lower bound [83]). For every set Q =

{q : X → {0, 1}} of counting queries over data universe X , the following holds for
all sufficiently large n (in particular for all n ≥ |X |/2): Let M : X n → RQ be
a (1, 0.1)-differentially private mechanism that with high probability answers every
query in Q with error at most α. Then

α ≥ (HerPDisc(Q) − 1)/2n.

(We subtract 1 from the hereditary partial discrepancy to compensate for the fact
it removes the constraint that |S | is even from Theorem 7.5.8.) Put differently, the
hereditary partial discrepancy is a lower bound on the non-normalized error (αn)
needed to answer the queries with differential privacy (for sufficiently large n). Re-
markably, Nikolov, Talwar, and Zhang [85] showed that this bound is nearly tight:

Theorem 7.5.10 (Hereditary discrepancy upper bound [85]). For every set Q =

{q : X → {0, 1}} of counting queries over data universe X , every ε, δ > 0, and
n ∈ N, there is an (ε, δ)-differentially private mechanism M : X n → RQ that
answers every query in Q with error

α ≤
HerPDisc(Q) · polylog(|Q|) ·

√
log(1/δ)

εn

with high probability.

We will not prove the latter theorem, but will get a taste of its techniques in Sec-
tion 7.7.3. We note that the distinction between partial discrepancy and ordinary
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discrepancy becomes less significant once we move to the hereditary versions. In-
deed, if we define HerDisc(Q) def

= maxS⊆X Disc(QS ), then it is known that

HerPDisc(Q) ≤ HerDisc(Q) ≤ HerPDisc(Q) · O(min{log |X |, log |Q|}). (7.5)

(See the book by Matoušek [75] for proofs.) Hereditary discrepancy is a well-studied
concept in combinatorics, and a remarkable byproduct of the aforementioned work
on differential privacy was a polylogarithmic approximation algorithm for heredi-
tary discrepancy, solving a long-standing open problem [85].

7.5.1.3 Discrepancy Lower Bounds for Specific Query Families

Note that Theorems 7.5.9 and 7.5.10 only provide a nearly tight characterization
in case we look for error bounds of the form f (Q)/n, which scale linearly with n
(ignoring the dependence on ε and log(1/δ) for this discussion). In particular, the
lower bound of Theorem 7.5.9 only says that HerPDisc(Q) is a lower bound on the
function f (Q) for sufficiently large n. If our dataset size n is below the point at which
this lower bound kicks in, we may be able to achieve significantly smaller error.

For finite dataset sizes n, we can use the lower bound of Theorem 7.5.8:

α ≥ max
S⊆X ,|S |≤2n
|S | even

PDisc(QS )/2n.

Unfortunately, partial discrepancy is a combinatorially complex quantity, and can
be hard to estimate. Fortunately, there are several relaxations of it that can be easier
to estimate and thereby prove lower bounds:

Proposition 7.5.11. Let Q be a k × |X | query matrix (with {0, 1} entries). Then:

1. For every S ⊆ X and T ⊆ [k], we have

PDisc(QS )) >
1

10

√
|S |
|T |
· σmin(QT

S ),

where QT
S denotes the |T | × |S | submatrix of QS with rows indexed by T , and

σmin(QT
S ) denotes the smallest singular value of QT

S .
2.

max
S⊆X ,|S |≤2n
|S | even

PDisc(QS ) >
min{VC(Q) − 1, 2n}

20
.

Proof:

1. We have
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PDisc(QS ) ≥ PDisc(QT
S )

= min
z∈{−1,1}|S |,
‖z‖1>|S |/10

‖QT
S z‖∞

> inf
z,0

‖QT
S z‖∞

‖z‖1 · 10/|S |

≥ inf
z,0

‖QT
S z‖2/

√
|T |

(‖z‖2 ·
√
|S |) · 10/|S |

=
1

10

√
|S |
|T |
· σmin(QT

S ).

2. By definition of VC dimension, there is an even-sized set S of at least
min{(VC(Q) − 1, 2n} columns for which the rows of QS contain all 2k binary
strings of length k. The partial discrepancy of this set of vectors is thus greater
than k/20.

�

Combining Proposition 7.5.11 with Theorem 7.5.8, we obtain lower bounds on
the error α needed by differentially private mechanisms in terms of least singular
values of submatrices QT

S and in terms of the VC dimension VC(Q). The lower
bound on error in terms of least singular values is due to Kasiviswanathan et al. [66],
and the lower bound on error in terms of VC dimension is due to Blum et al. [14].
An advantage of using the singular-value relaxation in place of partial discrepancy is
that it allows for a polynomial-time reconstruction attack, similarly to the discussion
after the proof of Theorem 7.5.6. The attack based on VC dimension is based on
brute-force enumeration, just like Theorem 7.5.2, but the search space is of size
2VC(Q) ≤ |Q|.

Recall that the largest possible discrepancy among k × s matrices (with k ≥ s)
is achieved (up to constant factors) by a random matrix, with the bound stated in
Lemma 7.5.7. To apply this for lower bounds on differentially private release of
counting queries, we can take Q to be a family of k random counting queries over
a data universe X , and S ⊆ X to be an arbitrary subset of size s = min{|Q|, |X |, n}.
Then QS is a random matrix, and combining Lemma 7.5.7 and Theorem 7.5.8, we
obtain:

Theorem 7.5.12 (Largest possible discrepancy lower bound). For every data uni-
verse X and n, k ∈ N, there is a family of k counting queries Q over X such that, if
M : X n → RQ is a (1, 0.1)-differentially private mechanism that with high proba-
bility answers every query in Q with error at most α, we have

α ≥ Ω

min


√
|Q|
n

,

√
|X | · (1 + log(|Q|/|X |))

n
,

√
log(|Q|/n)

n
, 1


 .
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Let us compare this with the upper bounds that we have for (ε, δ)-differential
privacy given by Theorems 7.2.7, 7.2.9, and 7.4.3. For every family of counting
queries, choosing the best of these algorithms will give an error bound of

α ≤ O

min


√
|Q| · log(1/δ) · log log |Q|

εn
,

√
|X | · log |Q|

εn
,

√ √
log |X | · log(1/δ) · log |Q|

εn
, 1


 .

Ignoring factors of log(1/δ) and 1/ε, the first two bounds nearly match the first
two lower bounds of Theorem 7.5.12. The third bound, however, differs by the√

log |X | factor that appears in the error bound of private multiplicative weights but
does not appear in the lower bound (which leaves open the possibility of having van-
ishingly small error whenever |Q| ≤ f (n) for some f (n) = exp(Ω̃(n)), independent
of the size of the data universe). In Section 7.5.3, we will see different lower-bound
techniques that can yield this

√
log |X | factor.

Let us now turn to the concrete families of counting queries from Section 7.1.3:

• Point functions (Qpt): Here PDisc(QS ) = 1 for every S (since all the sets are
of size 1), so we do not obtain any interesting lower bound.

• Threshold functions (Qthr): Here also PDisc(QS ) = 1 for every S , because if
we write S = {s1 < s2 < · · · < st} and color s j according to the parity of j,
every subset of S defined by a threshold function (i.e., every prefix of S ) has
imbalance at most 1.

• Attribute means on {0, 1}d (Qmeans(d)): Here we can analyze PDisc(QS ) for
a uniformly random subset S ⊆ {0, 1}d of size s = min{n, d}. Then QS is sta-
tistically close to a uniformly random {0, 1} matrix of size d × s, which by
Lemma 7.5.7, has partial discrepancy Ω

( √
s · (1 + log(d/s))

)
with high prob-

ability. So when d < n, we have an error lower bound of Ω
(√

d/n
)
, which

is nearly tight, matching the upper bound of Theorem 7.2.7 up to a factor of√
log(1/δ) · log log d/ε. But when d > n, the lower bound is no better than

Ω
( √

(log d)/n
)
, which leaves quite a large gap from the upper bound, which

remains O
( √

d · log(1/δ) log log d/ε
)
. In particular, the upper bound is useless

when d = ω(n2), but the lower bound leaves open the possibility of having
vanishingly small error for any d = 2o(n).

• t-way conjunctions on {0, 1}d (Qconj
t (d)): The VC dimension of this class is at

least t · blog(d/t)c, so we have an error lower bound of Ω(min{t log(d/t)/n, 1}).
For t = O(1), Kasiviswanathan et al. [66] showed that, for the subset T ⊂
Qconj

t (d) consisting of the
(

d
t

)
monotone conjunctions (without negations), if

we pick a random set S of size min{n, dt/ polylog(d)}, we have σmin(QT
S ) ≥

Ω(dt/2/ polylog(n)) with high probability. Consequently, we have

PDisc(QS ) ≥
1

10
·

√
|S |(
d
t

) · Ω (
dt/2

polylog(n)

)
= Ω̃

( √
min{n, dt}

)
.
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When n > dt, we get an error bound of α ≥ Ω̃(dt/2)/n, which is tight up to
polylogarithmic factors, but when n = o(dt), we are again quite far from the
upper bounds of Theorem 7.2.7.

• All conjunctions on {0, 1}d (Qconj(d)): The VC dimension of this class is at
least d, yielding an error lower bound of Ω(min{d/n, 1}). Matoušek et al. [77]
showed that the hereditary discrepancy of Q = Qconj(d) is Θ̃((2/

√
3 )d) and thus

the same is also true for the partial hereditary discrepancy (by Inequality (7.5)).
To use Theorem 7.5.8 when n < 2d−1, we can restrict attention to the first d′ =

blog2 nc variables, and obtain

max
S⊆X ,|S |≤2n
|S | even

PDisc(QS ) ≥ Ω̃

min


(

2
√

3

)d

,

(
2
√

3

)d′

 ≥ Ω̃ (

min
{
20.21d, n0.21

})
.

This yields an error lower bound of

α ≥ Ω̃

(
min

{
20.21d

n
,

1
n0.79

})
.

By the hereditary discrepancy upper bound (Theorem 7.5.10), there is an algo-

rithm that achieves error α ≤
Õ((2/

√
3 )d)·
√

log(1/δ)
εn ≈

20.21d ·
√

log(1/δ)
εn , so the bounds

are nearly matching when n � 20.21d. But when n = 2o(d), the lower bound of
1/n0.79 is quite far from the upper bound of O(d3/2

√
log(1/δ)/εn)1/2 given by

private multiplicative weights (Theorem 7.4.3).

Table 7.4 summarizes these lower bounds and compares them with the upper
bounds we have seen.

Table 7.4: Error bounds for specific query families under (ε, δ)-differential privacy
on a data universe X of size D = 2d (e.g., X = {0, 1}d or X = {1, 2, . . . ,D}). Lower
bounds apply for (1, 0.1)-differential privacy.

Query family Q Upper bounds Ref. Lower bounds from Thm. 7.5.8

Qmeans O
( √

d log(1/δ)·log log d
εn

)
Thm. 7.2.7 Ω

( √
d

n

)
if d ≤ n

Ω

(√
1+log(d/n)

n

)
if d > n

Qconj
t , t � d O

(
dt/2 ·
√

log(1/δ)·log log d
εn

)
Thm. 7.2.7 min

{
Ω̃(dt/2)

n , Ω̃
(

1
√

n

)}
if t = O(1)

O
(

t log d
√

d log(1/δ)
εn

)1/2

Thm. 7.4.3 Ω
(
min

{
t log(d/t)

n , 1
})

Qconj Õ(20.21d )
n Thm. 7.5.10 min

{
Ω̃(20.21d)

εn , Ω̃
(

1
n0.79

)}
O

(
d3/2 ·
√

log(1/δ)
εn

)1/2

Thm. 7.4.3 Ω
(
min

{
d
n , 1

})
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7.5.2 Packing Lower Bounds
We will now see a geometric approach to lower bounds that often gives tight lower
bounds on (ε, 0)-differential privacy, and can separate it from (ε, δ)-differential pri-
vacy. In particular, we will prove that answering k arbitrary counting queries with
(ε, 0)-differential privacy requires an error of α ≥ Ω(k/εn), whereas we saw in The-
orem 7.2.7 that we can achieve error O(

√
k · log(1/δ)/εn) with (ε, δ)-differential

privacy.
The approach is not specific to counting queries, and can be applied to virtu-

ally any computational problem that we might try to solve with differential privacy.
Suppose that, for every dataset x ∈ X n, we have a set Gx ⊆ Y of outputs that
are “good” for x. Then the lower bound says that, if we have a “large” collection
of datasets x such that the sets Gx are disjoint, then any (ε, 0)-differentially private
mechanism must fail to produce a good output with high probability on at least one
of the datasets in this collection.

Theorem 7.5.13 (Packing lower bound [59, 10]). Let C ⊆ X n be a collection of
datasets all at Hamming distance at most m from some fixed dataset x0 ∈ X n, and
let {Gx}x∈C be a collection of disjoint subsets of Y . If there is an (ε, δ)-differentially
private mechanism M : X n → Y such that Pr[M(x) ∈ Gx] ≥ p for every x ∈ C,
then

1
|C|
≥ p · e−m·ε − δ.

In particular, when p = 1/2 and δ = 0, we have |C| ≤ 2 · emε.

Proof: By group privacy (Lemma 7.2.2), for every x ∈ C, we have

Pr[M(x0) ∈ Gx] ≥ p · e−mε − mδ.

Since the sets Gx are disjoint, we have

1 ≥ Pr

M(x0) ∈
⋃
x∈C

Gx


=

∑
x∈C

Pr [M(x0) ∈ Gx]

≥ |C| · (p · e−mε − mδ).

�

Note that, when δ = 0, the theorem (setting m = n) says that we can only have
roughly eεn � |X |n datasets on which a differentially private mechanism’s behavior
is really distinct.

But for δ > 0, the theorem says nothing when m > ln(1/δ)/ε (because p · e−mε −

mδ < 0). The reason is the use of group privacy (Lemma 7.2.2), which tells us
nothing when considering datasets that are at distance larger than ln(1/δ)/ε.
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Let us now see how packing implies a lower bound ofΩ(min{log |X |, log(1/δ)}/εn)
for nonredundant classes of counting queries, namely ones where all elements of the
data universe are distinguishable by the queries.

Theorem 7.5.14 (Packing lower bound for nonredundant queries). Let Q = {q :
X → {0, 1}} be any class of counting queries that distinguish all the elements of
X . That is, for all w , w′ ∈ X , there is a query q ∈ Q such that q(w) , q(w′).
Suppose M : X n → RQ is an (ε, δ)-differentially private mechanism that with high
probability answers every query in Q with error at most α. Then

α ≥ min
{
Ω

(
log |X |
εn

)
, Ω

(
log(1/δ)
εn

)
,

1
2

}
.

Note that an error bound of 1/2 is achievable by the trivial (0, 0)-differentially pri-
vate algorithm that answers 1/2 for all queries.

The hypothesis holds for all of the concrete query families we have consid-
ered (point functions, threshold functions, attribute means, and t-way conjunc-
tions). In particular, for the class of point functions Qpt({0, 1}d), the lower bound
of α ≥ Ω(min{d/εn, log(1/δ)/εn}) is tight, matched by Proposition 7.2.8 and Theo-
rem 7.3.5 (which algorithm is better depends on whether d or log(1/δ) is larger). In
particular, this shows that approximate differential privacy can achieve smaller error
(namely Õ(

√
d) ·

√
log(1/δ)/εn) than is possible with pure differential privacy when

log(1/δ) < d/ polylog(d).
For attribute means over {0, 1}d (i.e., Qmeans(d)), we obtain a tight lower bound

of Ω(d/εn) when δ = 0, which matches the upper bound for arbitrary sets of k = d
counting queries given by Theorem 7.2.6. By Theorem 7.2.7, approximate differen-
tial privacy can achieve asymptotically smaller error when k > log(1/δ).
Proof: For a dataset x ∈ X n, let Gx be the closed `∞ ball of radius α around the
vector (q(x))q∈Q. The assumption about M implies that, for every dataset x ∈ X n,
we have Pr[M(x) ∈ Gx] ≥ 1/2.

We will now construct a set C of |X | datasets for which the Gx’s are disjoint.
Specifically, for each w ∈ X , let x(w) ∈ X n be the dataset whose first m = b2αn + 1c
rows are all equal to w, and whose remaining n − m rows are all equal to w0 for a
fixed element w0 ∈ X . We will take C = {x(w) : w ∈ X }. To see that Gx(w) and Gx(w′)
are disjoint for every w , w′, let q be a query such that q(w) , q(w′) (which exists
by hypothesis). Then |q(x(w)) − q(x(w′))| = m/n > 2α. The datasets in C are all at
distance at most m from the dataset x(w0). Thus by Theorem 7.5.13, we deduce that

1
|X |
≥ e−εm/2 − δ,

which implies that either δ ≥ e−εm/4, in which case α ≥ Ω(ln(1/δ)/εn), or 1/|X | ≥
e−εm/4, in which case α ≥ Ω(log |X |/εn). �

Now, let us see how the packing lower bound can be applied to arbitrary sets Q
of counting queries to obtain tight bounds on the sample complexity—how large n
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needs to be to achieve an arbitrarily small, but constant error α—with the matching
upper bound coming from an instantiation of the exponential mechanism.

To formalize this, let X be our data universe, and consider the |X | vectors in RQ

corresponding to the tuples of answers that can be achieved on individual elements
on X ; that is, for each w ∈ X , let aw = (q(w))q∈Q. Now, following Hardt and Talwar
[59], we consider the convex body K = ConvexHull({aw : w ∈ X }) that is the convex
hull of all of these vectors. Notice that, for any dataset x ∈ X , the tuple of answers
on x is ax = (1/n)

∑n
i=1 axi ∈ K.

Define the packing number Pα(K) to be the largest number of points we can fit
in K such that all the pairwise `∞ distances are greater than α. (That is, the closed
`∞ balls of radius α/2 centered at the points are disjoint. But we do not require
that the balls themselves are entirely contained within K; this notion of packing is
sometimes referred to as metric entropy.)

Theorem 7.5.15 (Packing characterization of sample complexity).

1. For all sufficiently small β > 0, there is an α > 0 such that the following holds
for all sets Q = {q : X → {0, 1}} of counting queries, n ∈ N, and ε ∈ (0, 1):
If M : X n → RQ is an (ε, 0)-differentially private mechanism that, on every
dataset x ∈ X n, answers all of the queries in Q to within error at most α with
high probability, then

n ≥
log(Pβ(K))

βε
,

where K is the convex body corresponding to Q as defined above.
2. For every α > 0, there is a β > 0 such that the following holds for all sets

Q = {q : X → {0, 1}} of counting queries, n ∈ N, and ε ∈ (0, 1): If

n ≥
log(Pβ(K))

βε
,

where K is the convex body corresponding to Q, then there is an (ε, 0)-
differentially private mechanism that, on every dataset x ∈ X n, answers all
of the queries in Q to within error at most α with high probability.

Thus, to achieve error α = o(1), it is necessary and sufficient to have n =

ω(Po(1)(K)). The above theorem is based on ideas from [93, Lecture 6].6

Proof:

1. Let M = Pβ(K) and let a1, . . . , aM be the corresponding points in K, all at
pairwise `∞ distance greater than β.
Our first step will be to approximate the points a j by points ay( j) for datasets of
size m = βn/2, so that ‖a j − ay( j)‖∞ ≤ β/3. The definition of K tells us that, for

6 In [93, Lecture 6], the bounds are stated in terms of the discrete set of points Kn = {ax : x ∈
X n} rather than the convex body K. An advantage of Theorem 7.5.15 is that the set K does not
depend on n (since we are trying to characterize n in terms of it), but the formulation in [93] has
the advantage of applying even to arbitrary low-sensitivity families (rather than just counting or
statistical queries).



394 Salil Vadhan

each point a j there is a distribution D j on X such that a j = Ew←D j [aw], where
aw = (q(w))q∈Q is the vertex of K corresponding to the answers on w ∈ X .
We will probabilistically construct the dataset y( j) ∈ Xm by randomly sam-
pling m rows according to D j. As mentioned in the proof of Theorem 7.4.1,
if m ≥ O(VC(Q) · log(1/β)/β2), then standard results in learning theory show
that with high probability we have ‖a j − ay( j)‖∞ ≤ β/3, as desired. By Proposi-
tion 7.5.11 and Theorem 7.5.8, we know that n ≥ Ω(VC(Q)/α) (for sufficiently
small α), and thus m = βn/2 ≥ Ω(βVC(Q)/α). Thus we can take α small
enough (depending on β), to ensure that we have m ≥ O(VC(Q) · log(1/β)/β2)
as needed.
Given the datasets y( j) ∈ Xm, observe that the points ay( j) are at pairwise distance
greater than β − 2β/3 = β/3 (by the triangle inequality). Now we construct
datasets x( j) ∈ X n of size n by padding the y( j)’s with n − m copies of a fixed
row w from X ; the points ax( j) are now at pairwise distance greater than (m/n) ·
(β/3) = β2/6. So if for every x ∈ X n, we take the set Gx to be a closed `∞
ball of radius β2/12, then the sets {Gx( j) }1≤ j≤M are disjoint. Moreover we can
take α ≤ β2/12, and then the α-accuracy hypothesis on M says that, for every
x ∈ X n, Pr[M(x) ∈ Gx] ≥ 1/2.
So all the conditions of Theorem 7.5.13 are satisfied (with p = 1/2, δ = 0) and
we obtain

2(log e)·(βn/2)·ε = em·ε ≥
M
2
≥ M(log e)/2,

where the latter inequality uses M ≥ 1/(2β) ≥ 23.6 ≥ 21/(1−(log e)/2) for any
Q containing a nonconstant query and sufficiently small β. This implies that
n ≥ log(Pβ(K)/βε, as desired.

2. Let M = Pβ(K), and let a1, . . . , aM be the corresponding points in K all at pair-
wise distance greater than β from each other. By the maximality of the packing,
every point in K is at `∞ distance at most β from at least one of the ai’s (other-
wise we could add the point to obtain a larger packing).7 On a dataset x ∈ X n,
we will use the exponential mechanism (Proposition 7.4.2) to sample a point a j

that is close to ax in `∞ distance, in a manner similar to Theorem 7.4.1. Specif-
ically,

M(x) : output a j with probability ∝ e−εn·‖a j−ax‖∞ .

Indeed, Theorem 7.4.1 is a special case of this mechanism where we take the
a j’s to be the answer vectors ay that we get from small datasets y ∈ Xm. By
Proposition 7.4.2 (with score(x, a j) = −‖a j − ax‖∞), this mechanism is 2ε-
differentially private, and achieves error at most β + O(log M)/εn with high
probability. Thus, if n ≥ (log M)/β(2ε) and β is sufficiently small (depending
on α), we obtain error at most α with high probability.

�

Note that there is a significant loss in the dependence on the error α in the proofs,
so this theorem does not determine the rate at which we can get the error to decay

7 In other words {a1, . . . , aM} form a β-net of K with respect to `∞ norm.
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as a function of the other parameters (for example, whether we can get it to decay
linearly in n or

√
n). If we work with `2 rather than `∞ error, then tighter charac-

terizations of the rate of error decay are known (up to factors polylog(|Q|, |X |)), by
applying more sophisticated geometric methods to the convex body K [59, 11, 85].

7.5.3 Fingerprinting Lower Bounds
The lower bounds from Sections 7.5.1 and 7.5.2 above address two extreme ranges
of δ. Reconstruction attacks prove lower bounds even for constant δ (e.g., δ = .1),
and packing (mainly) proves lower bounds for δ = 0. Recall that, for satisfactory
privacy guarantees, the desired range of δ is that it should be cryptographically neg-
ligible, i.e., δ = n−ω(1), as (ε, δ)-differential privacy allows for leaking each row
with probability δ. In particular, when δ ≥ 1/n, we can output a subsample consist-
ing of a δ fraction of the rows of the dataset, which in turns allows for answering
any family Q of counting queries to within accuracy α = O

( √
(log |Q|)/δn

)
(by a

Chernoff Bound). (When δ is constant, this matches the best lower bound we can
get from discrepancy in the regime where n � min{|Q|, |X |}, cf. Theorem 7.5.12.)
Thus, to prove lower bounds of the form α = Ω(1), we need to focus on the regime
δ ≤ O(log |Q|)/n.

It turns out that a very well-suited tool for this task is fingerprinting codes, which
were developed in the cryptography literature by Boneh and Shaw [15] for a com-
pletely different task. Specifically, they were designed for preventing piracy of dig-
ital content. Imagine a digital movie distribution company that wants to deliver
copies of a movie to n different customers, and the company wants to mark each
copy so that, if one of the customers or a coalition S of the customers released a
pirated copy of the movie created from their own copies, the distribution company
would be able to point a finger at one of the pirates in S . There are d scenes in the
movie, and each of the scenes can be watermarked by either 0 or 1 (say by choosing
one of two slightly different angles from which the movie was shot). The colluding
pirates may splice their copies to evade detection. The fingerprinting code should
help protect the movie by specifying for each scene and each customer whether it
should be watermarked by 0 or 1. An associated tracing algorithm should determine
one of the colluding pirates with high probability from the code and a pirated copy.

Definition 7.5.16 (Fingerprinting codes, syntax). A fingerprinting code of length
d = d(n) for n users consists of two randomized algorithms:

1. A generating algorithm Gen that takes the number n of users and produces an
n × d binary fingerprinting matrix C where Ci, j ∈ {0, 1} determines the water-
mark of customer i in scene j along with a tracing key tk. (It turns out that
without loss of generality we can take tk = C.)

2. A tracing algorithm Trace that takes as input the tracing key tk and watermarks
w ∈ {0, 1}d from a potentially pirated movie and outputs an element of [n]∪ {⊥}
(which we interpret as an accused customer or “fail”).

For a generating matrix C and a coalition S ⊆ {1, . . . , n}, we say that w ∈ {0, 1}d

is feasible for S if, for every j ∈ {1, . . . , d}, w j equals to ci, j for some i ∈ S . Put
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differently, if CS , the submatrix of C consisting of the rows in S , is constant on value
b j on some column j, then we require that w j = b j. This captures the constraint that
the coalition produces its pirated movie by splicing its copies together.

That is, a coalition S can deploy an arbitrary (randomized) pirating algorithm P :
{0, 1}|S |×d → {0, 1}d that takes as its input CS for a generating matrix C and produces
a watermark sequence w that is feasible for S . (So we will require security even
against pirates who are able to determine the watermarks in their movie copies.)

Definition 7.5.17 (Fingerprinting codes, security). A fingerprinting code
(Gen,Trace) is secure if, for every n, every S ⊆ {1, . . . , n} and every randomized
pirating algorithm P : {0, 1}|S |×d → {0, 1}d, we have

Pr
C←Gen(1n)
w←P(CS )

[w is feasible for C and S , and Trace(C,w) < S ] ≤ neg(n).

(Recall that neg(n) denotes a negligible probability, i.e., n−ω(1).)

An optimal construction of fingerprinting codes was given by Tardos [101]:

Theorem 7.5.18 (Optimal fingerprinting codes [101]). For every n, there is a fin-
gerprinting code of length d = Õ(n2) for n users.

We will not prove this theorem, but will instead show a simpler but suboptimal
construction from the original paper of Boneh and Shaw [15].

A fingerprinting code of length Õ(n3): Gen(1n) outputs a matrix obtained by ran-
domly permuting columns of the matrix



0 block 1st block 2nd block . . . n-th block
111 . . . 111 111 . . . 111 111 . . . 111
000 . . . 000 111 . . . 111 111 . . . 111

000 . . . 000 111 . . . 111

0 0 0 . . . 1
000 . . . 000


Each block spans Õ(n2) identical columns. For such a randomly generated matrix, a
coalition S that does not include the i-th user cannot distinguish columns that come
from the (i − 1)-th and the i-th blocks of the matrix, as these columns are identical
in the submatrix CS . The tracing algorithm takes advantage of this observation. The
tracing algorithm Trace(C,w) outputs the first i such that

Avg
j in block i

[w j] − Avg
j in block i − 1

[w j] ≥
1
n
,

where Avg j∈T f ( j) denotes the average of f ( j) over j in set T . For a feasible code-
word w, such an index i is guaranteed to exist since Avg j in block 0[w j] = 0 and
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Avg j in block n[w j] = 1. The correctness of the tracing algorithm follows from the
following claim, which ensures that the probability we falsely accuse a user outside
the coalition S is negligible:

Claim 7.5.19. For a given coalition S and pirate P , a randomly generated C ←
Gen(1n) and w← P(CS ), with probability greater than 1− neg(n), for all i < S , we
have

Avg
j in block i

[w j] − Avg
j in block i − 1

[w j] <
1
n
.

Proof: Fix i < S , and condition on the codeword w ← P(CS ). Since columns
from block i and i − 1 are identical in CS , it is still not determined which permuted
columns are from block i and which are from block i− 1. More precisely, if we con-
dition additionally on the entire submatrix CS of the (permuted) codebook C as well
as the permuted locations of all columns other than those from blocks i and i − 1,
then the blocks i and i − 1 are still a uniformly random partition of their union into
two equal-sized sets. The averages Avg j in block i[w j] and Avg j in block i − 1[w j] have the
same expectation over the choice of the partition (namely Avg j in block i or i − 1[w j]).
Since each is the average over Õ(n2) coordinates (selected without replacement from
the union), Chernoff-type bounds imply that, with all but negligible probability (de-
pending on the choice of the polylog(n) factor in the Õ(·)), they will each deviate
from the expectation by less than 1/2n (and hence will differ from each other by
less than 1/n). �

While the analysis of optimal fingerprinting codes, with d = Õ(n2), is more
involved, the description of the codes is very simple. Following generalizations and
simplifications given in Dwork et al. [47], for every j ∈ [d], we can pick a bias p j ←

[0, 1] uniformly at random, and then generate the j-th column as n independent
samples from the Bernoulli distribution with expectation p j. In fact, any sufficiently
“smooth” and “spread out” distribution on the p j’s can be used.

Now, we will use fingerprinting codes to derive lower bounds on differential
privacy, following Bun et al. [21]:

Theorem 7.5.20 (Fingerprinting codes ⇒ for attribute means [21]). If there is
a fingerprinting code with codewords of length d for n + 1 users then there is no
(1, 1/10n)-differentially private mechanism M : ({0, 1}d)n → [0, 1]d for answering
all d attribute means (i.e., the counting queries Qmeans(d)) with error α < 1/2.

Proof: Suppose for contradiction that there exists a (1, 1/10n)-differentially private
mechanism M for answering attribute means with error α < 1/2. Without loss of
generality, we may assume that, for every dataset x, the output distribution of M(x)
does not depend on the order of the rows of x (else M can randomly permute them
first).

Use the hypothesized fingerprinting code to generate a (random) codebook C for
n + 1 users. Let S = {1, . . . , n} (i.e., the coalition consisting of all users except user
n + 1). Let (a1, . . . , ad) be attribute means obtained from M on the data set CS .
Define a vector w ∈ {0, 1}d by rounding vector (a1, . . . , ad) to the nearest integer.
Since M makes error less than 1/2 (with high probability), w is a feasible pirated
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codeword for CS . That is, we think of P(·) = Round(M(·)) as the pirate for the
fingerprinting code. Since M is differentially private, so is P .

By the properties of the fingerprinting code

Pr[Trace(tk,P(CS )) ∈ {1, . . . , n}] ≥ 1 − neg(n),

where the probability is taken over (C, tk)← Gen(1n+1) and the coin tosses of P .
Hence, for n large enough, there is an i∗ such that

Pr[Trace(tk,P(CS )) = i∗] ≥
1

2n
.

Let S ′ = {1, . . . , n + 1} − {i∗}. Since CS and CS ′ are neighboring datasets (after an
appropriate permutation of the rows), the differential privacy of P tells us that

Pr[Trace(tk,P(CS )) = i∗] ≤ e1 · Pr[Trace(tk,P(CS ′ )) = i∗] +
1

10n
.

Thus, we have

Pr[Trace(tk,P(CS ′ )) = i∗] ≥
1

2en
−

1
10en

≥ Ω(1/n),

which contradicts the security of the fingerprinting code, as with nonnegligible prob-
ability we are accusing someone not in the coalition S ′. �

Notice that the “good guys” and “bad guys” have switched roles in this relation
between fingerprinting codes and differential privacy. The mechanism M, which is
supposed to protect privacy, plays the role of the adversarial pirate P for the finger-
printing code. And the Trace algorithm from the fingerprinting code (corresponding
to the “authorities”) plays the role of the privacy adversary. Tracing attacks (deter-
mining whether an individual was in the dataset or not) are not quite as devastating
as the reconstruction attacks, but they still can be quite significant—for example,
if the dataset consists of a collection of individuals who were all diagnosed with
a particular disease. Indeed such tracing attacks (on releases of exact rather than
approximate statistics) led the US National Institutes of Health to remove online ac-
cess to summary statistics of certain genomic datasets [63, 110]. For a fingerprinting
code to give a “realistic” attack, the tracing should not require extensive auxiliary
information (captured by the tracing key tk) and should be fairly robust to the distri-
bution according to which the codebook was generated. These issues are explored
in [47].

Combining Theorems 7.5.18 and 7.5.20, we see that estimating d attribute means
on a dataset of size n = Ω̃(

√
d) requires an error of α ≥ 1/2 for (1, 1/10n)-

differential privacy. Simple reductions imply that, in general, we need error α >
Ω̃(
√

d)/εn. Steinke and Ullman [99] have tightened the lower bound to nearly match
Theorem 7.2.7 (up to a factor of O

( √
log log d

)
):

Theorem 7.5.21 (Fingerprinting lower bound for attribute means [99]). The
following holds for every d ∈ N, ε ∈ (0, 1), and δ ∈ (2−d, 1/n1.1). Suppose
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M : ({0, 1}d)n → [0, 1]d is an (ε, δ)-differentially private mechanism that with high
probability answers every attribute mean query in Qmeans(d) with error at most α.
Then

α ≥ Ω

min


√

d log(1/δ)
εn

, 1


 .

Recall from Table 7.4 that partial discrepancy gave a lower bound ofΩ(
√

d/n) when
d < n, and otherwise gave a lower bound no better than

√
(log d)/n. Packing (The-

orem 7.5.14) gave a lower bound of Ω(min{d, log(1/δ)}/εn). Theorem 7.5.21 sub-
sumes all of these bounds.

The fingerprinting lower bound above is for a particular family of counting
queries—attribute means—in which the number of queries (|Qmeans(d)| = d) is log-
arithmic in the size of the data universe (X = {0, 1}d), but it can be composed with
reconstruction attacks of Section 7.5.1 to also yield nearly tight lower bounds for
the case in which the number |Q| of queries is much larger:

Theorem 7.5.22 (Lower bounds for arbitrary counting queries [21]). For every
d, n, k ∈ N such that n2.1 ≤ k ≤ 22d/3

, there is a family Q of k counting queries on
data universe X = {0, 1}d such that the following holds: If M : (X )n → RQis an
(ε, 1/10n) differentially private mechanism that with high probability answers all
queries in Q within error at most α, then

α ≥ Ω̃

 √
log |X | · log(|Q|)

εn

1/2

.

This theorem mostly closes the gap between the largest discrepancy-based lower
bounds (Theorem 7.5.12) and the upper bound given by private multiplicative
weights (Theorem 7.4.3). So, we have a nearly tight understanding of the accu-
racy with which we can answer a worst-case set Q of counting queries, as a func-
tion of |X |, |Q|, n, and the privacy parameters. In fact, a similar lower bound
is also known for the special case of t-way marginals, by composing the finger-
printing lower bound for attribute means with reconstruction lower bounds for
marginals [14, 66, 29]:

Theorem 7.5.23 (Lower bound for t-way marginals [21]). For every constant ` ∈
N, the following holds for all d, n, t ∈ N such that n ≤ d2`/3/ε and ` + 1 ≤ t ≤ d:
If M : ({0, 1}d)n → RQ

conj
t (d) is an (ε, 1/10n)-differentially private mechanism that

with high probability answers all queries in Qconj
t (d) to within error at most α, then

α ≥ min

Ω̃
 t
√

d
εn

1/2

, Ω(1)

 .
However, as we have seen for point functions (Proposition 7.2.8 and Theo-

rem 7.3.5), for some families of queries Q, one can do much better than these
bounds. Ideally, we would understand the best accuracy achievable in terms of the



400 Salil Vadhan

combinatorial structure of the query family, similarly to what the hereditary dfis-
crepancy bounds (Theorems 7.5.9 and 7.5.10) give, but for a given value of n and
ideally without extra polylog(|Q|) factors.

Open Problem 7.5.24. For an arbitrary family Q = {q : X → {0, 1}} of counting
queries, n ∈ N, ε > 0, and δ = o(1/n), characterize (to within “small” approxima-
tion factors) the smallest achievable error by (ε, δ)-differentially private mechanisms
M : X n → RQ.

A potentially easier task, advocated by Beimel et al. [10], is to characterize the
“sample complexity” for constant error, as we did for pure differential privacy in
Theorem 7.5.15:

Open Problem 7.5.25. For an arbitrary family Q = {q : X → {0, 1}} of counting
queries, ε > 0, and δ = o(1/n), characterize (to within “small” approximation fac-
tors) the sample complexity (i.e., smallest value of n) needed by (ε, δ)-differentially
private mechanisms M : X n → RQ to answer all the queries in Q to within an
arbitrarily small constant error α > 0.

We note that there is a partial converse to the connections between fingerprinting
codes and differential privacy [21]; that is, if answering a set Q of counting queries
is impossible with differential privacy for a given set of parameters (α, n, ε, δ), this
implies a weak form of a fingerprinting code that is defined with respect to the
query family Q and the given parameters. It would be very interesting to tighten this
relationship; this would be one approach to Open Problems 7.5.24 and 7.5.25.

Open Problem 7.5.26. Identify a variant of fingerprinting codes whose existence is
equivalent to the impossibility of answering a family Q accurately with differential
privacy (up to some loss in parameters).

7.6 Computational Lower Bounds
Now we turn to computational lower bounds, giving evidence that some tasks
that are information-theoretically possible with differential privacy are nevertheless
computationally intractable. Specifically, recall that both the smallDB and private
multiplicative weights algorithms of Section 7.4 can accurately answer (many) more
than n2 counting queries over data universe X = {0, 1}d with differential privacy,
provided that n is large enough compared with d (e.g., n ≥ d2), but use computation
time exponential in d. Below we will see evidence that this exponential computation
is necessary in the worst case.

7.6.1 Traitor-Tracing Lower Bounds
Our first hardness results will be based on traitor-tracing schemes, which were in-
troduced by Chor et al. [28] as a cryptographic tool for preventing piracy of digital
content, like fingerprinting codes. Their benefit over fingerprinting codes is that they
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allow for distributing an unbounded amount of content over a broadcast channel (af-
ter a setup phase where private keys are sent to the users). The price is having com-
putational rather than information-theoretic security. The notion of traitor-tracing
schemes predated the notion of fingerprinting codes, and their application to lower
bounds for differential privacy also came first, in Dwork et al. [40].

To motivate the definition of traitor-tracing schemes, imagine a video-streaming
company that distributes software or hardware that is capable of decoding their (en-
crypted) streaming signal. Each customer gets his own decryption program that has
a unique decryption key, so that copying can be detected. However, we are also
concerned that S customers might collude to create (and sell) unauthorized pirate
decryption programs. They can build their pirate program using the decryption keys
found in their own decryption program in an arbitrary way, so we may not be able to
explicitly read off any of the keys from the pirate program. The goal of the traitor-
tracing scheme is to be able to identify at least one of the colluding customers who
contributed his decryption key. We can formalize this setup as follows:

Definition 7.6.1. A traitor-tracing scheme consists of four algorithms (Gen,Enc,
Dec,Trace) as follows:

1. The (randomized) key generation algorithm Gen(1d, 1n) takes as input 1d, 1n,
where d is a security parameter and n is a number of customers, and outputs
(k1, . . . , kn, bk, tk), where ki ∈ {0, 1}d is the decryption key for user i, bk is the
broadcast key, and tk is the tracing key.

2. The (randomized) encryption algorithm Encbk(m) takes as input the broadcast
key bk and a message m ∈ {0, 1} and outputs a ciphertext c.

3. The decryption algorithm Decki (c) takes as input a user key ki and a cipher-
text c and outputs a message m ∈ {0, 1}. We require that it always holds that
Decki (Encbk(m)) = m for keys (ki, bk) that are output by Gen.

4. The syntax of the (randomized) tracing algorithm Trace will be described below
(as there are two variants).

We will consider two different scenarios for tracing, depending on the type of
pirates that we wish to trace and the access that Trace has to those pirates. Each will
give us different types of lower bounds for differential privacy.

Stateless pirates Here the tracer can run the pirate decryption program many times
from its same initial state, but on different ciphertexts as input. For example, this
models the scenario where the pirate decryption program is a piece of software
whose code is given to the tracer. We want to be able to trace given any pirate
program that is correctly able to decrypt proper encryptions with high probabil-
ity (though the tracer will feed the pirate malformed ciphertexts that are neither
encryptions of 0 or 1 to help in identifying one of the colluders). This is the
original and most standard notion of traitor tracing in the literature.

Stateful but cooperative pirates Here the tracer can submit a sequence of cipher-
texts to the pirate, but the pirate may answer them in a correlated fashion,
for example, changing its behavior to evade tracing if it receives and detects
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a malformed ciphertext. However, we will only require tracing for “coopera-
tive” pirates, which still correctly distinguish encryptions of 0 from 1 even if
they receive some other malformed ciphertexts. Tracing stateful pirates is well-
motivated for traitor tracing; the “cooperativeness” condition is less natural in
that context, but arises naturally in our application to differential privacy lower
bounds.

We now formalize these two requirements.

Definition 7.6.2 (Tracing stateless pirates). A traitor-tracing scheme (Gen,Enc,
Dec,Trace) is secure against stateless pirates if the following holds for every n =

poly(d) and every S ⊆ [n]: let P be a probabilistic poly(d)-time algorithm that
given the keys (ki)i∈S outputs a Boolean circuit P̃. Then,

Pr[Trace(P̃, tk) < S and P̃ is a useful decryptor] ≤ neg(d),

where the probabilities are taken over (k1, . . . , kn, bk, tk) ← Gen(1d, 1n), P̃ ←
P((ki)i∈S ), and the coins of Trace and P . The condition that P̃ is a useful decryptor
means that, for every m ∈ {0, 1}, Pr[P̃(Encbk(m)) = m] = 1, where the probability is
taken over the coin tosses of Enc. (In the literature, tracing is typically required even
for pirates that have just a nonnegligible advantage in distinguishing encryptions of
0 from encryptions of 1, but tracing pirate decoders that always decrypt correctly
will suffice for our purposes.)

Definition 7.6.3 (Tracing stateful pirates). A traitor-tracing scheme (Gen,Enc,
Dec,Trace) is secure against stateful but cooperative pirates if there is a polynomial
function k(·, ·) (called the tracing query complexity) such that, for every n = poly(d)
and every S ⊆ [n], the following holds for k = k(d, n): Let P be any probabilis-
tic poly(d)-time algorithm that, given the keys (ki)i∈S and a sequence (c1, . . . , ck) of
ciphertexts, outputs a sequence (m1, . . . ,mk) ∈ {0, 1}k. Then,

Pr[TraceP((ki)i∈S ,·)(tk) < S and P cooperates] ≤ neg(d),

where the probabilities are taken over (k1, . . . , kn, bk, tk) ← Gen(1d, 1n) and the
coins of Trace. We require that Trace makes only one query (c1, . . . , ck) to P
(amounting to feeding k = k(d, n) nonadaptively chosen ciphertexts to P), and say
that P cooperates if, for every coordinate j where c j is in the support of Encbk(b j)
for some b j ∈ {0, 1}, we have b j = m j.

We note that tracing stateless pirates is easier than tracing stateful but cooperative
pirates, because whenever P̃ is a useful decryptor, using it to decrypt each ciphertext
will qualify as cooperating.

Theorem 7.6.4 (Traitor-tracing schemes against stateful pirates [28, 103]). As-
suming one-way functions exist, there exists a traitor-tracing scheme secure against
stateful but cooperative pirates with tracing query complexity k(n, d) = Õ(n2).
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Proof sketch: The key generation, encryption, and decryption are as in the orig-
inal construction of Chor et al. [28] (which was for stateless pirates). Fix a secure
private-key encryption system (Enc0,Dec0) (which exists if one-way functions ex-
ist). Gen(1d, 1n) generates independently keys k1, . . . , kn for the encryption system
(Enc0,Dec0) and sets tk = bk = (k1, k2, . . . , kn). Encoding is given by

Encbk(b) = (Enc0
k1

(b),Enc0
k2

(b), . . . ,Enc0
kn

(b))

and decryption for user i by

Decki (c1, . . . , cn) = Dec0
ki

(ci).

The tracing algorithm is from Ullman [103], and utilizes fingerprinting codes in
order to minimize the tracing query complexity and handle stateful but cooperative
pirates. TraceP(tk, bk) first generates a fingerprinting codebook, namely an n × k
matrix C ← Genf.p.(1n). (Recall from Theorem 7.5.18 that we can take k = Õ(n2).)
It then creates ciphertexts c(1), c(2), . . . , c(k) by

c( j)
i = Enc0

ki
(Ci, j).

The tracing algorithm queries its oracle P((ki)i∈S , c(1), c(2), . . . , c(k)) to get answers
w = (w1, . . . ,wk), and runs the tracing algorithm of the fingerprinting code
Tracef.p.(C,w) to get a suspect i. It outputs this i.

We sketch the correctness of this tracing scheme: if the pirate algorithm is com-
putationally bounded, then it cannot learn any information about the messages en-
crypted by private keys of users not participating in S , so w essentially depends only
on the rows of C in S . We now observe that w is feasible when P is cooperative,
except with negligible probability. Indeed, if all entries of column j of CS agree on
value b j, then to P , c( j) is indistinguishable from a valid encryption of b j, and hence
w j = b j with all but negligible probability. �

We now show that such traitor-tracing schemes imply the hardness of answering
many counting queries with differential privacy, a result due to Ullman [103].

Theorem 7.6.5. (Tracing stateful pirates⇒hardness of answering many queries
[103]). If there exists a traitor-tracing scheme secure against stateful but coopera-
tive pirates with tracing query complexity k(d, n), then every (1, 1/10n)-differentially
private mechanism for answering k = k(n + 1, d) efficiently computable counting
queries with error α < 1/2 on datasets with n individuals from X = {0, 1}d must run
in time superpolynomial in d. Here the queries are given as input to the mechanism,
as Boolean circuits of size poly(n, d).

Proof sketch: Suppose M is a differentially private mechanism like in the state-
ment of the theorem. We will show how to construct a pirate for the traitor-tracing
scheme using M and conclude from the security of the scheme that M must have a
runtime big enough to break the scheme.

Start by setting up the traitor-tracing scheme with n + 1 users and take a dataset
x containing the keys of a coalition of n users obtained by removing one user at ran-
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dom. We consider counting queries on this dataset given by ciphertext decryption:
for a ciphertext c, the query qc evaluates to qc(ki) = Decki (c), where we identify
the row corresponding to the i-th user with its key ki. Therefore, when query qc is
answered accurately by M on the dataset x we obtain an ±α-approximation a to
the number of users in x whose key decrypts c to 1. If c is a valid encryption of a
message m ∈ {0, 1}, then |a − m| ≤ α < 1/2, so rounding a will equal m. With this
notation, we define our pirate as follows:

P((ki)i∈S , c(1), . . . , c(k)) = Round(M(x = (ki)i∈S , qc(1) , . . . , qc(k) )),

where Round : [0, 1]k → {0, 1}k denotes componentwise rounding.
As discussed above, the accuracy of M implies that P is cooperative. On the

other hand, the fact that M is differentially private implies that P is also differ-
entially private. As in the proof of Theorem 7.5.20, tracing contradicts differential
privacy. Thus, P must not be traceable, and hence must have superpolynomial run-
ning time. �

Combining the above two theorems we get:

Corollary 7.6.6 (Hardness of answering many counting queries). Assume one-
way functions exist. Then for every n = poly(d), there is no polynomial-time
(1, 1/10n)-differentially private algorithm for answering more than Õ(n2) efficiently
computable counting queries with error α < 1/2 (given as Boolean circuits input to
the mechanism) over data universe X = {0, 1}d.

This lower bound is nearly tight, in that we can answer k = Ω̃(n2) efficiently
computable counting queries in polynomial time with differential privacy using the
Laplace mechanism and advanced composition (or Theorem 7.2.7).

Let us review the above proof’s translation between objects in the traitor-tracing
scheme and those in differential privacy:

user keyspace {0, 1}d 7→ data universe X = {0, 1}d

ciphertext c 7→ counting query qc(k) = Deck(c)
pirate P ← [ mechanism M

tracing algorithm Trace 7→ privacy adversary

In particular, mechanisms that take a sequence of counting queries as input and
produce a vector of answers correspond very naturally to stateful but cooperative
pirates. On the other hand, a common application of the algorithms of Section 7.4
is not to specify the queries as input, but rather to fix some large family of counting
queries over data universe {0, 1}d (for example, the family of 3d conjunction queries)
and then take n large enough so that we can produce a compact representation of the
answers to all of these queries (e.g., a synthetic dataset). What does this translate
to in the traitor-tracing world? Since we are interested in a family Q of efficiently
computable counting queries, we ideally should have ciphertexts that are of length
poly(d) (so that the queries have polynomial description length), not growing lin-
early with n as in Theorem 7.6.4. Second, the pirate P should no longer directly
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produce answers to the queries (i.e., decrypt ciphertexts), but rather it should use
its keys (ki)i∈S to produce a summary (which we can view as an algorithm or data
structure) P̃ that can then be used to estimate the answer to any query in the class
(i.e., decrypt any properly generated ciphertext). This leads us naturally to traitor
tracing with stateless pirates, as used in the original connection of Dwork et al. [40]:

Theorem 7.6.7 (Tracing stateless pirates ⇒ hardness of differentially private
summaries [40]). If there is a traitor-tracing scheme secure against stateful pirates
with ciphertexts of length `(n, d), then for every d and n = poly(d), there is a family
Q of efficiently computable counting queries of description length `(n + 1, d) (and
size 2`(n+1,d)) over data universe {0, 1}d, such that no polynomial-time (1, 1/10n)-
differentially private mechanism can accurately summarize the answers to all of the
queries in Q on datasets of size n.

We note that this theorem is only interesting if ` � n. Indeed, Theorem 7.5.2
shows that there is a family of 2n efficiently computable counting queries over a
data universe of size 2n that is information-theoretically impossible to answer accu-
rately with differential privacy. So we need traitor-tracing schemes with ciphertext
length that is smaller than n, the number of users, unlike in the construction of
Theorem 7.6.4. At the time that Theorem 7.6.7 was proven, the best known con-
struction of traitor-tracing schemes against stateless pirates had ciphertext length
`(n, d) =

√
n · poly(d) [17] (under hardness assumptions about bilinear maps on

certain groups), and this already implied an interesting hardness result for differ-
ential privacy. But it left open the possibility that producing differentially private
summaries is possible for any efficiently computable family Q of counting queries
provided that n ≥ (log |X |) · (log |Q|)2.

Recently, however, there are candidate constructions of traitor-tracing schemes
with ciphertext length ` = poly(d), independent of n, assuming the existence of
one-way functions and either “secure multilinear maps” or “indistinguishability ob-
fuscation” [51, 16]. This yields a family Q of 2` = 2poly(d) counting queries over a
data universe X of size 2d for which no poly(d)-time algorithm can produce an ac-
curate differentially private summary (for any n = poly(d)). More recently, Kowal-
czyk et al. [72] showed that the same hardness result holds when either |Q| or |X | is
poly(n), by constructing traitor-tracing schemes where either the ciphertexts or the
keys are of length O(log n), albeit with a weaker security property that still suffices
to show hardness of differential privacy. Specifically, the theorem says:

Theorem 7.6.8 (iO ⇒ hardness of differential privacy [72]). Assuming the exis-
tence of indistinguishability obfuscation and one-way functions:

1. For every d ∈ N and every n = poly(d), there is a family Q of O(n7) efficiently
computable counting queries over data universe X = {0, 1}d (specified by a
uniform poly(d)-time evaluation algorithm that takes an `-bit description of a
query q, for ` = 7 log n + O(1), and an input y ∈ {0, 1}d and outputs q(y))
such that no polynomial-time differentially private mechanism can accurately
answer all of the queries in Q on datasets of size n.
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2. For every ` ∈ N and every n = poly(`), there is a family Q of 2` efficiently
computable counting queries over data universe X = {0, 1}d for d = 7 log n +

O(1) (specified by a uniform poly(`)-time evaluation algorithm that takes an `-
bit description of a query q and an input y ∈ {0, 1}d and outputs q(y)) such that
no polynomial-time differentially private mechanism can accurately summarize
the answers to all of the queries in Q on datasets of size n.

We note that, when |Q| and |X | are both of size poly(n), the algorithm of Theo-
rem 7.4.3 can answer all of the queries in polynomial time (so we cannot hope to
prove hardness in this case). If, in part 1, the |Q| could be reduced to n2+o(1), then
the hardness result would be stronger than that of Corollary 7.6.6 (albeit under a
stronger complexity assumption). Indeed, here the set of queries is fixed and each
query is described by O(log n) bits, whereas in Corollary 7.6.6, the queries have de-
scription length larger than n and need to be provided as input to the mechanism. It
would also be interesting to reduce |X | to n2+o(1) in part 2; this too would be optimal
because, when |X | ≤ n2−Ω(1), the Laplace histogram is a poly(n)-time computable
summary that is simultaneously accurate for up to 2nΩ(1)

queries (Theorem 7.2.9).

Open Problem 7.6.9. Can either |Q| or |X | in Theorem 7.6.8 be reduced to n2+o(1)?

The existence of “indistinguishability obfuscation”, as assumed in Theorem 7.6.8,
is still very unclear, and thus it would be significant to replace it with a more well-
understood complexity assumption:

Open Problem 7.6.10. Can a hardness result like Theorem 7.6.8 be established un-
der a more standard and widely believed complexity assumption? This is open even
for the case where we do not require either |Q| or |X | to be of size poly(n), but rather
we allow n and the mechanism running time to be poly(d, `).

Similarly to (but earlier than) the case with fingerprinting codes, there is a par-
tial converse to the connection between traitor-tracing schemes and the hardness of
differential privacy [40], and it would be very interesting to tighten this relationship.

Open Problem 7.6.11. Identify a variant of traitor-tracing schemes whose existence
is equivalent to the hardness of answering (or summarizing) counting queries with
differential privacy (up to some loss in parameters, but ideally having a relationship
holding per-query family Q).

7.6.2 Lower Bounds for Synthetic Data
The lower bounds of the previous section provide families of efficiently computable
counting queries that are hard to answer with differential privacy. However, these
families consist of rather complicated functions that evaluate cryptographic algo-
rithms (namely, the decryption algorithm for traitor-tracing schemes). We do not
know similar results for simple/natural function classes of interest, such as the set
of all 3d conjunctions on data universe {0, 1}d.
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However, we can prove a hardness result for differentially private algorithms that
work by producing a synthetic dataset, as do the algorithms of Section 7.4. (This is
explicitly stated for the smallDB algorithm, and the private multiplicative weights
algorithm can be modified to produce synthetic data.) In fact, the result will hold
even for the family Qconj

2 of 2-way marginals.

Theorem 7.6.12 (Hardness of synthetic data for simple queries [104]). Assum-
ing one-way functions exist, there exists a constant α > 0 such that there is no
n = poly(d) and polynomial-time (1, 1/10n)-differentially private mechanism that
given a dataset with n individuals over X = {0, 1}d outputs a synthetic dataset ap-
proximating all the counting queries in Qconj

2 (d) (i.e., all the 2-way marginals) to
within additive error at most α.

We note that the requirement that the mechanism produces a synthetic dataset
cannot be removed from the theorem. Indeed, recall that the Laplace mechanism and
advanced composition will approximate all k = Θ(d2) 2-way conjunctions within
error α = Õ(

√
k)/εn = Õ(d)/εn in time poly(n, d). So for n = poly(d), we get

vanishingly small error in polynomial time.
Proof: The main ingredients in the proof are digital signature schemes and prob-
abilistically checkable proofs (PCPs). We will use digital signatures to construct
datasets for which it is hard to generate synthetic data that preserves the answer
to a cryptographically defined query, and then we will use PCPs to transform this
cryptographic query into a collection of 2-way conjunctions.

Recall that a digital signature scheme is given by a triple of polynomial-time
algorithms as follows:

1. A randomized key generation algorithm Gen(1d) = (pk, sk) that produces a
public key pk and a private key sk given a security parameter d as input.

2. A randomized signing algorithm that, given a message m ∈ {0, 1}d and a secret
key sk, produces a signature σ = Signsk(m) ∈ {0, 1}d.

3. A deterministic verification algorithm Verpk(m, σ) that always accepts a signa-
ture for m generated using the secret key sk corresponding to pk.

Informally, we say that the scheme is secure if, given access to examples (mi, σi =

Signsk(mi)) signed with the same secret key, any algorithm running in time poly(d)
cannot generate a new message m′ < {mi} and a signatureσ′ such that Verpk(m′, σ′) =

1.
We now describe how to use digital signatures to construct datasets for which it is

hard to generate synthetic data preserving the answer to a cryptographically defined
counting query. This construction is due to Dwork et al. [40]:

The dataset: Generate (pk, sk) ← Gen(1d) and construct a dataset x with n indi-
viduals, where each row contains a pair (mi, σi) with mi selected uniformly at
random from {0, 1}d and σi ← Signsk(mi).

The query: Consider the counting query q(·) = Verpk(·). This query is efficiently
computable and evaluates to 1 on the whole dataset.
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The hardness: Now suppose for contradiction that there exists a polynomial-time
differentially private mechanism M that given x produces a synthetic dataset
x̂ ∈ ({0, 1}d)n̂ which is accurate with respect to q with high probability. By
accuracy, x̂ must contain at least one row x̂ j = (m̂ j, σ̂ j) such that Verpk(m̂ j, σ̂ j) =

q(x̂ j) = 1. To derive a contradiction, we consider two cases:

• If m̂ j < x, then M succeeded in creating a forgery for the signature scheme
in polynomial time, contradicting its security.

• If m̂ j ∈ x, then M intuitively has violated privacy, as it has copied part
of a row (which is independent from all other rows) entirely in the output.
More precisely, for every i ∈ [n], the probability that an (ε, δ)-differentially
private mechanism M outputs mi is at most eε/2d + δ, since it could output
mi with probability at most 1/2d if we replaced the i-th row with all zeroes.
Thus, the probability M outputs any mi is at most n · (eε/2d + δ) < 1/20 for
ε = 1 and δ = 1/10n.

We now describe how to use PCPs to replace the cryptographic query Verpk with
2-way conjunctions. Actually, we will only describe how to get a result for 3-way
conjunctions, as it uses a more familiar type of PCP theorem.

Recall that Circuit SAT is an NP-hard problem. Then, by a strong form of the
PCP theorem there exist a constant α > 0 and three polynomial time algorithms
Red, Enc, Dec satisfying the following:

1. Red is a randomized reduction that, given a circuit C, outputs a 3-CNF formula
Red(C) = φ = φ1 ∧ . . .∧φm such that if C is satisfiable then φ is satisfiable, and
otherwise there is no assignment satisfying more than (1 − α)m clauses of φ.

2. If w is a satisfying assignment for C, then z = Enc(C,w) is a satisfying assign-
ment for φ.

3. If z is an assignment for φ satisfying more than (1 − α)m clauses, then w =

Dec(C, z) is a satisfying assignment for C.

Item 1 is the standard formulation of the PCP theorem in terms of the hardness
of approximating MAX-3SAT; it asserts a Karp reduction from Circuit SAT to the
promise problem Gap-MAX-3SAT. Items 2 and 3 are saying that this reduction is
actually a Levin reduction, meaning we can efficiently transform witnesses between
the Circuit SAT instance and the corresponding Gap-MAX-3SAT instance.

Here is our modified construction:

The dataset: Let x be the dataset constructed above using digital signatures. We
write z for the dataset with n individuals obtained by encoding each row xi of
x with the encoding algorithm given by the PCP theorem, relative to the circuit
C = Verpk. That is, zi = Enc(Verpk, xi).

The queries: Our set of queries is all 3-way conjunctions, but we will only exploit
accuracy with respect to the clauses of the 3-CNF formula φ = φ1 ∧ · · · ∧ φm

output by Red(Verpk). Note that for every row zi in z we have φ(zi) = 1 (since
Verpk(xi) = 1), so for every clause φ j in φ we have φ j(z) = n−1 ∑

i∈[n] φ j(zi) = 1.
The hardness: Suppose for contradiction that M is a polynomial-time differen-

tially private mechanism that produces synthetic datasets that are α-accurate
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with respect to 3-way conjunctions and let ẑ = M(z). Then for every j ∈ [m]
we have φ j(ẑ) ≥ 1 − α. By averaging, this implies that there exists some row
ẑi of ẑ that satisfies at least (1 − α) · m clauses from φ. Therefore, using this
row from the sanitized dataset we can obtain (m̂, σ̂) = Dec(Verpk, ẑ) such that
Verpk(m̂, σ̂) = 1. Now the same argument used earlier shows that either (m̂, σ̂)
is a forgery (in case m̂ < x) or a violation of privacy (in case m̂ ∈ x).

�

The hardness results we have seen either apply to contrived (cryptographic)
queries (Corollary 7.6.6 and Theorem 7.6.8) or constrain the form of the mecha-
nism’s output to synthetic data (Theorem 7.6.12). Obtaining a hardness result for
any “natural” family of queries without restricting the form of the mechanism’s out-
put remains an intriguing open problem.

Open Problem 7.6.13. Give evidence of hardness of accurately answering any
“natural” family of counting queries under differential privacy, without constrain-
ing the form of the mechanism’s output.

At the same time, the lack of such a hardness result should provide some hope
in looking for algorithms, and suggests that we should look for output representa-
tions other than synthetic data. We can gain hope from computational learning the-
ory, where proper learning (where the learner’s output is constrained to come from
the same representation class as the concept it is learning) is often computationally
harder than unconstrained, improper learning. Indeed, we will see the benefits of
moving beyond synthetic data for conjunctions in the next section.

7.7 Efficient Algorithms for Specific Query Families
In this section, we will see that, for some specific, natural families of queries, one
can in fact obtain efficient algorithms for answering more than n2 queries.

7.7.1 Point Functions (Histograms)
We have already seen that, for the class Qpt = Qpt(X ) of point functions on X ,
we can achieve a better accuracy–privacy tradeoff than is possible with an ar-
bitrary class Q of efficiently computable queries. Indeed, Proposition 7.2.8 and
Theorems 7.3.5 and 7.5.14 show that the optimal error achievable for Qpt(X ) is
Θ(min{log |X |, log(1/δ), εn}/εn), whereas for an arbitrary query family with |Q| =
|X |, there is a lower bound of Ω((log |X |)3/2/εn)1/2 for a wide range of parameters
(Theorem 7.5.22).

Now we will see that in fact the optimal algorithms for point functions can be
implemented in polynomial time, and can be modified to generate synthetic data.

Theorem 7.7.1 (Point functions with differential privacy [2]). For every data uni-
verse X , n ∈ N, and ε, δ > 0 such that δ < 1/n, there is a poly(n, log |X |)-time
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(ε, δ)-differentially private algorithm that takes a dataset of n rows from data uni-
verse X = {0, 1}d and outputs a synthetic dataset approximating the value of all
counting queries in Qpt(X ) up to an additive error of

α = O
(
min

{
log |X |
εn

,
log(1/δ)
εn

, 1
})

with high probability.

Proof sketch: The stability-based histogram of Theorem 7.3.5 with error
O(log(1/δ)/εn) already runs in polynomial time, as it outputs nonzero values only
for points that occur in the dataset. However, the basic Laplace-based histogram
of Proposition 7.2.8 adds noise Lap(2/ε) to the value of all |X | = 2d point func-
tions, and thus does not run in polynomial time. Thus, to obtain a polynomial-
time algorithm with error α = O(log |X |/εn), first we consider a modification of
the Laplace-based histogram algorithm that only uses the largest O(1/α) noisy
fractional counts and treats the rest as zero. This modification maintains differen-
tial privacy by closure under postprocessing, and can be shown to maintain error
O(log |X |/εn). (Note that there can only be at most 1/β points whose exact frac-
tional counts are at least β = Ω(α), and outputting zero for the remaining points
introduces an error of at most β.) With this modification, to implement the mecha-
nism efficiently, we can first add (discrete) Laplace noise to the m ≤ n point func-
tions qy for the points y that occur at least once in the dataset, and then sample the
distribution of the top d1/αe values of |X | − m discrete Lap(2/ε) random variables.
Sampling the latter distribution to within sufficient accuracy to maintain differential
privacy (with some additional modifications to the mechanism) can be done in time
poly(log |X |, 1/ε, d1/αe) = poly(n, log |X |).

To obtain synthetic data in both cases, we can simply use the noisy answers to
determine how many copies of each point to put in the synthetic dataset. With a
synthetic dataset of size O(1/α), the errors due to rounding will only increase the
error by a constant factor. �

7.7.2 Threshold Functions (CDFs)
For the class of threshold functions Qthr([2d]) on domain [2d], for pure differential
privacy (δ = 0), again the best possible accuracy is Θ(d/εn), matching the lower
bound of Theorem 7.5.14, and it can be achieved in polynomial time:

Theorem 7.7.2 (Thresholds with pure differential privacy [41, 45]). For every
n, d ∈ N, ε > 0, there is a poly(n, d)-time (ε, 0)-differentially private algorithm
that takes a dataset of n rows from data universe X = [2d] and outputs a synthetic
dataset maintaining the value of all threshold-function counting queries up to an
error of

α = max
{

O(d)
εn

, Õ
(

1
εn

)}
with high probability.
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Interestingly, in the case of approximate differential privacy, there is an inherent
dependence on log∗ d in the error.

Theorem 7.7.3 (Thresholds with approximate differential privacy [9, 22]). For
every n, d ∈ N, ε, δ > 0 such that exp(−εn/ log∗ n) ≤ δ ≤ 1/n2:

1. There is a poly(n, d)-time (ε, δ)-differentially private algorithm that takes a
dataset of n rows from data universe X = [2d] and outputs a synthetic dataset
maintaining the value of all threshold-function counting queries up to an error
of

α = max
{

2(1+o(1)) log∗ d · log(1/δ)
εn

, Õ
(

1
εn

)}
.

2. Every (ε, δ)-differentially private algorithm for answering all threshold func-
tions on datasets of n rows from data universe X = [2d] must incur an error of
at least

α = Ω

(
min

{
(log∗ d) · log(1/δ)

εn
, 1

})
.

We will not cover the proofs of these results, except to note that the log∗ d lower
bound has a Ramsey-theoretic proof [18], raising the possibility that there is a more
general Ramsey-theoretic combinatorial quantity that can help in characterizing the
optimal accuracy or sample complexity for differentially private algorithms (Open
Problems 7.5.24 and 7.5.25).

Note that our understanding of threshold functions is not as tight as for point
functions, and it would be interesting to close the gap between the upper and lower
bounds. In particular:

Open Problem 7.7.4. Does the optimal error for releasing threshold functions over
X = [2d] with approximate differential privacy grow linearly or exponentially with
log∗ d, or something in between?

7.7.3 Conjunctions (Marginals)
Unlike point functions and thresholds, the class Qconj of conjunctions is unlikely
to have a polynomial-time differentially private algorithm for generating synthetic
data, by Theorem 7.6.12. This suggests that we should look to other ways of sum-
marizing the answers to conjunction queries.

Indeed, we will sketch two algorithms that beat the barrier of Theorem 7.6.12
by avoiding synthetic data. One algorithm summarizes the answers to all conjunc-
tion queries in subexponential (2Õ(

√
d)) time (using a subexponential-sized dataset),

using low-degree approximations to Boolean functions. (Assuming the existence of
digital signature schemes with exponential security and nearly linear-time verifica-
tion, the proof of Theorem 7.6.12 can be extended to show that generating synthetic
data requires time at least 2d1−o(1)

, even when n = 2d1−o(1)
.) The other algorithm an-

swers all k = Θ(d2) 2-way conjunctions in polynomial time with error Õ(
√

d)/εn,
in particular allowing us to answer k = Ω̃(n4) � n2 such queries, using ideas from
convex geometry and optimization.



412 Salil Vadhan

Theorem 7.7.5 (Marginals via low-degree approximation [102]). There is a con-
stant c such that for all ε, α > 0, d, n, t ∈ N with d ≥ t and n ≥ dc

√
t·log(1/α)/ε, there

is an ε-differentially private algorithm running in time poly(n) that takes a dataset
x ∈ ({0, 1}d)n and, with high probability, outputs a “summary” (say, as a Boolean
circuit) that allows for approximating the answer to all the queries in Qconj

t (d) to
within additive error α.

A more sophisticated algorithm from [26] reduces the amount of data needed to
nearly optimal (n = O(t · d0.51)) at the cost of a larger (but still slightly subexponen-
tial) running time of 2o(d).
Proof sketch: Starting with our dataset x with n rows in X = {0, 1}d, the mecha-
nism M will produce a “summary” S that will approximate the function fx defined
as fx(q) = q(x). S will be a polynomial of low degree.

By introducing new variables for negative literals and negating our functions, it
suffices to handle monotone t-way disjunctions, which can conveniently be specified
by bit strings y ∈ {0, 1}d:

qy(w) =
∨

i:yi=1

wi , w ∈ X . (7.6)

For a t-way disjunction, y has Hamming weight t, and the value of qy(w) is deter-
mined by the value of

∑t
i=1 wiyi ∈ {0, . . . , t}. Specifically

qy(w) =

1
∑t

i=1 wiyi ∈ {1, . . . , t},
0

∑t
i=1 wiyi = 0.

(7.7)

Given a dataset x, we are interested in producing a (differentially private) approx-
imation to the function fx(·) defined as

fx(y) = qy(x) =
1
n

n∑
i=1

qy(xi) =
1
n

n∑
i=1

fxi (y).

We will approximate fx by a low-degree polynomial by approximating each fxi by a
low-degree polynomial. We do the latter using a standard technique based on Cheby-
chev polynomials:

Fact 7.7.6 For all t ∈ N and α > 0, there exists a univariate (real) polynomial g of
degree at most s = O

(√
t log(1/α)

)
such that g(0) = 0 and for all i ∈ {1, . . . , t}, 1 −

α ≤ g(i) ≤ 1 + α. Moreover, g can be constructed in time poly(t, log(1/α)) and all
of the coefficients of g have magnitude at most 2s.

Given g as in the fact and a row w ∈ X , consider the following function:

hw(y) = g

 d∑
j=1

w jy j

 , (7.8)
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where g is from Fact 7.7.6. hw is a multivariate polynomial of degree O(
√

t ·
log(1/α)). It has at most C = dO(

√
t·log(1/α)) coefficients of magnitude at most

M = dO(
√

t·log(1/α)).
By construction, we have that, for all w ∈ X and all y ∈ X of Hamming weight

at most t,
|hw(y) − fw(y)| ≤ α .

Thus, if we define

hx =
1
n

n∑
i=1

hxi ,

we have that
|hx(y) − fx(y)| ≤ α.

To obtain differential privacy, we can now add Laplace noise to each coefficient of
hx. Each coefficient is an average of the corresponding coefficients of the hxi ’s, so has
global sensitivity at most 2M/n. By the Laplace mechanism and basic composition,
it suffices to add noise Lap(2MC/εn) to each of the C coefficients for the resulting
vector of coefficients to be differentially private. With high probability, none of the
coefficients will have noise more than (log C) · 2MC/εn, which will add up to an
error of at most C · log C · 2MC/εn = dO(

√
t)/(εn) when evaluating on any input y.

�
Now we turn to a different approach, which runs in polynomial time and can

answer nearly n4 low-order marginals.

Theorem 7.7.7 (Marginals via SDP projection [46]). Let t ∈ N be an even con-
stant. For all n, d ∈ N, ε, δ > 0, there is a polynomial-time (ε, δ)-differentially pri-
vate algorithm that takes a dataset x ∈ ({0, 1}d)n and answers all counting queries
in Qconj

t (d) on x to within additive error

α =
(
Õ(dt/4) ·

√
log(1/δ)/εn

)1/2
.

The most interesting case of this theorem is t = 2, when the error is (Õ(
√

d) ·√
log(1/δ)/εn )1/2, matching the lower bound of Theorem 7.5.23 up to a factor of

poly(log d, log(1/δ)) [21].
Proof sketch: The starting point for the algorithm is a beautiful geometric ap-
proach of Nikolov, Talwar, and Zhang [85] that was used to prove the hereditary
discrepancy upper bound (Theorem 7.5.10). We will use an instantiation of their
algorithm that provides near-optimal error bounds in terms of |Q|, like the private
multiplicative weights algorithm, but for `2 or `1 error rather than `∞.

We know that adding independent noise of magnitude O(
√
|Q|/εn) to the answers

to all the counting queries in a family Q provides privacy, but gives useless results
(that lie outside [0, 1]) when |Q| > n2. Remarkably, it turns out that simply project-
ing these answers back to be consistent with some dataset yields highly accurate
results.
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To formalize this, recall the convex body K used in the packing characterization
of sample complexity (Theorem 7.5.15). That is, K = ConvexHull({aw : w ∈ X }),
where aw = (q(w))q∈Q is the vector in RQ giving all the query answers on row
w ∈ X . Recall that, for every dataset x ∈ X , the tuple of answers on x is ax =

(1/n)
∑n

i=1 axi ∈ K.
This leads to the following algorithm M(x,Q):

1. Calculate the exact answers

y = ax = (q(x))q∈Q ∈ K.

2. Add Gaussian noise to the coordinates of y:

ỹ = y +
O(

√
|Q| · log(1/δ))

εn
·N (0, 1)|Q|.

(This can be shown to achieve (ε, δ)-differential privacy, and is more convenient
than Laplace noise for the geometric arguments we are about to make.)

3. Project back to K: Let
ŷ = argminz∈K ‖z − ỹ‖2.

This step maintains (ε, δ)-differential privacy by postprocessing.

Let us analyze the error introduced by this algorithm. Consider the line ` through
y and ŷ, and let p be the orthogonal projection of ỹ onto `. On `, p must be on the
ray from ŷ to infinity. (If p were on the segment between y and ŷ, then p would be a
point in K closer to ỹ than ŷ. If p were on the ray from y to infinity, then y would be
a point in K closer to ỹ than ŷ.)

‖y − ŷ‖22 = 〈ŷ − y, ŷ − y〉

≤ 〈ŷ − y, p − y〉 (because p is on the ray from ŷ to infinity)
= 〈ŷ − y, ỹ − y〉 (because ỹ − p is orthogonal to ŷ − y)
≤ (|〈ŷ, ỹ − y〉| + |〈y, ỹ − y〉|) (triangle inequality)
≤ 2 max

z∈K
|〈z, ỹ − y〉|.

Taking expectations, and writing ỹ−y = O(
√
|Q| · log(1/δ)/εn)·g for g ∼ N (0, 1)|Q|,

we have

E
[
‖y − ŷ‖22

]
≤

O
( √
|Q| · log(1/δ)

)
εn

· E
g

[
max
z∈K
|〈z, g〉|

]
.

The quantity
`∗(K) def

= E
g

max
z∈K
|〈z, g〉|

is known as the Gaussian mean width of the polytope K, an important and well-
studied quantity in convex geometry.
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Let us upper bound it for K defined by an arbitrary set Q of counting queries. For
every choice of g, the maximum of |〈z, g〉| over z ∈ K will be obtained at one of the
vertices of K. Recalling the definition of K, we have

max
z∈K
|〈z, g〉| = max

w∈X
|〈aw, g〉|.

By rotational symmetry of Gaussians, the random variable 〈aw, g〉 is distributed
as N (0, ‖aw‖2). We have ‖aw‖2 ≤

√
|Q| since aw is a {0, 1} vector. Thus, with prob-

ability at least 1 − β over g, we have |〈aw, g〉| ≤ O(
√
|Q| · log(1/β)). Taking a union

bound over w ∈ X , we have

max
w∈X
|〈aw, g〉| ≤ O

( √
|Q| · log(|X |/β)

)
.

with probability at least 1 − β, for every β > 0. This implies that

E
g

[
max
z∈K
|〈z, g〉|

]
= E

g

[
max
w∈X
|〈aw, g〉|

]
≤ O

( √
|Q| · log |X |

)
.

Putting it all together, we have

E
[
‖y − ŷ‖22

]
≤
|Q| · O(

√
log |X | · log(1/δ))
εn

.

So if we look at the average error (averaged over the |Q| queries), we have

E
coins of M, q ∈Q

[∣∣∣yq − ŷq

∣∣∣] ≤ (
E

coins of M, q ∈Q

∣∣∣yq − ŷq

∣∣∣2)1/2

=

(
E

coins of M

[
1
|Q|
· ‖y − ŷ‖22

])1/2

= O

 √
log(1/δ)
√
|Q| · εn

· `∗(K)

1/2

≤ O

 √
log |X | · log(1/δ)

εn

1/2

.

This exactly matches the (optimal) bound from the private multiplicative weights
algorithm, except that we only achieve small error on average for a random query
from Q. However, it can be generalized to obtain small average-case error on any
given distribution of queries (just weight the coordinates in RQ according to the dis-
tribution), and then combined with a differentially private algorithm for “boosting”
[42] to obtain small error on all queries with high probability (paying a factor of
polylog(|Q|) in the error).

Our interest in this algorithm, however, is that it does not appear to generate syn-
thetic data, and thus is not subject to the computational complexity lower bounds
of Theorem 7.6.12. Converting the output ŷ to synthetic data would amount to de-
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composing ŷ into a convex combination of the |X | vertices of K, which could take
time proportional to |X |. Unfortunately, this same reason means that the “Project
back to K” step might take time proportional to |X |, as the given description of K
is in terms of its |X | vertices. Indeed, projection onto a convex set is known to be
polynomially equivalent to optimizing linear functions on the set, and as we will see
below, optimizing over K is NP-hard for the cases we are interested in.

Let us see how to make this process more efficient for the case of 2-way
marginals. For t-way marginals with t > 2, the theorem follows by reduction to 2-
way marginals. (Create

(
d

t/2

)
≤ dt/2 variables representing the conjunctions on every

subset of t/2 variables; and then every t-way conjunction in the original variables
can be written as a 2-way conjunction in the new variables.)

Actually, releasing conjunctions of width at most 2 is equivalent to releasing
parities of width at most 2, so let us focus on the latter problem. It will also be
useful to work in ±1 notation, so the parity function qi j : {±1}d → {±1} on variables
i and j is given by qi j(v) = viv j. Thus we see that

K = ConvexHull({v ⊗ v : v ∈ {±1}d}).

Unfortunately, projecting onto and optimizing over K is known to be NP-hard, so
we will take a cue from approximation algorithms and look at a semidefinite pro-
gramming relaxation.

It is NP-hard to do this optimally. So instead, we will find a nicer L “close” to
K (where K ⊆ L) and optimize over L. We need to ensure that the Gaussian mean
width of L is comparable to that of K (or at least the bound we used on the Gaussian
mean width of K).

First, we will relax to:

L0 = ConvexHull({v ⊗ v′ : v, v′ ∈ {±1}d}).

To bound the Gaussian mean width of K, we only used the fact that K is the convex
hull of |X | = 2d vectors whose entries have magnitude at most 1, and the bound was
linear in

√
log |X | =

√
d. L0 is now the convex hull of 22d such vectors, so we only

lose a constant factor in our bound.
Optimizing over L0 is still NP-hard, but it has polynomial-time approximation

algorithms. Indeed, if we relax L0 to

L = {V ∈ Rd2
: ∃{ui}

d
i=1, {u

′
j}

d
j=1 unit vectors with Vi j = 〈ui, u′j〉},

then we can optimize linear functions on L by semidefinite programming, and con-
sequently we can project onto L. Moreover, Grothendieck’s inequality (see [71])
says that the maximum of any linear objective function on L is at most a factor of
KG < 1.783 larger than on L0, which implies that

`∗(L) ≤ KG · `
∗(L0) = O(

√
|Q| · d).

To summarize, the algorithm for the set Q of 2-way parities operates as follows:
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1. Calculate the exact answers

y = ax = (q(x))q∈Q ∈ K ⊆ Rd2
.

2. Add Gaussian noise to the coordinates of y:

ỹ = y +
O(

√
|Q| · log(1/δ))

εn
·N (0, 1)|Q|.

3. Project back to L: Let
ŷ = argminz∈L ‖z − ỹ‖2.

By the analysis we did earlier, the average error per query we obtain is at most

E
coins of M, q ∈Q

[∣∣∣yq − ŷq

∣∣∣] ≤ O

 √
log(1/δ)
√
|Q| · εn

· `∗(L)

1/2

≤ O

 √
d · log(1/δ)

εn

1/2

,

as desired. �
The theorems above show that we can bypass the intractability of producing

differentially private summaries by focusing on specific, structured query classes,
and by avoiding synthetic data. We summarize the state of knowledge about t-way
marginals in Table 7.5. (Results for all marginals, i.e., Qconj(d), roughly correspond
to the case t = d, but in some cases will be off by a logarithmic factor, and we do
not include the result based on the hereditary partial discrepancy of Qconj(d) being
Θ̃((2/

√
3 )d) [77].)

As can be seen from the table, there are still important gaps in our state of knowl-
edge, such as:

Open Problem 7.7.8. Is there a polynomial-time differentially private algorithm for
estimating all (higher-order) marginals with vanishing error α = o(1) on a dataset
with n = poly(d) rows from data universe X = {0, 1}d? Or at least all t-way
marginals for some t = ω(1)?

Open Problem 7.7.9. Is there a polynomial-time differentially private algorithm for
estimating all 3-way marginals with vanishing error α = o(1) on a dataset with
n = o(d) rows from data universe X = {0, 1}d?

Open Problem 7.7.10. For what other classes of queries can one bypass the in-
tractability of generating differentially private synthetic data and answer more than
n2 queries with polynomial- or subexponential-time algorithms?

7.8 Private PAC Learning
We now examine the possibility of machine learning in Valiant’s PAC model [106],
under differential privacy. (See [70] for background on the PAC model.)
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Table 7.5: Error bounds for Qconj
t (d) when t � d with (ε, δ)-differential privacy

on a dataset of size n. Computational lower bounds hold under plausible crypto-
graphic assumptions (e.g., exponentially secure digital signatures with linear-time
verification). “Synth?” indicates whether the entry refers to algorithms that generate
synthetic data.

Type Bound Constraints Runtime Synth? Ref.

Upper O
(

dt/2 ·
√

log(1/δ)·log log d
εn

)
poly(n, dt) no Thm. 7.2.7

Upper O
(

t log d
√

d log(1/δ)
εn

)1/2

poly(n, 2d) yes Thm. 7.4.3

Upper α n ≥ dc
√

t·log(1/α)/ε poly(n) no Thm. 7.7.5

Upper
(
Õ(dt/4) ·

√
log(1/δ)/εn

)1/2
t even poly(n, dt) no Thm. 7.7.7

Lower min
{
Ω̃(dt/2)

n , Ω̃
(

1
√

n

)}
t = O(1) any no [66]

Lower Ω
(
min

{
t log(d/t)

n , 1
})

any no [14]

Lower min
{
Ω̃

(
t
√

d
εn

)1/2
, Ω(1)

}
n ≤ dO(1)/ε any no Thm. 7.5.23

Lower Ω(1) t ≥ 2 ≤ 2d1−o(1)
yes Thm. 7.6.12

7.8.1 PAC Learning vs. Private PAC Learning
Recall that PAC learning considers, for each input length d, two sets of functions:

• A concept class C = Cd = {c : {0, 1}d → {0, 1}}, from which the unknown
concept c we are trying to learn comes.

• A hypothesis class H = Hd = {h : {0, 1}d → {0, 1}}, which contains the func-
tions we will use to try to represent our learned approximation of c.

Definition 7.8.1 (PAC learning). A concept class C is PAC-learnable if there exist
an algorithm L (called the learner) and a number n polynomial in d (called the
sample complexity) such that, for every distribution D on {0, 1}d and every c ∈ C,
if we sample points x1, . . . , xn, xn+1 chosen independently according to D, with high
probability L(x1, c(x1), · · · , xn, c(xn)) returns a function h ∈ H such that h(xn+1) =

c(xn+1).
If H = C, we call L a proper learner and say that C is properly PAC-learnable. If

L is poly-time computable as are the functions in H (given a poly(d)-bit description
of a function h ∈ H as output by L and an input w ∈ {0, 1}d, we can evaluate h(d) in
time poly(d)), then we say that L is an efficient learner and say that C is efficiently
PAC-learnable.

Definition 7.8.2 (Private PAC learning). Private PAC learning is defined in the
same way as PAC learning, but with the additional requirement that L is differen-
tially private. That is, for all sequences (x1, y1), . . . , (xn, yn) and (x′1, y

′
1), . . . , (x′n, y

′
n)

that differ in one coordinate i ∈ [n], L((x1, y1), . . . , (xn, yn)) and L((x′1, y
′
1), . . . , (x′n, y

′
n))
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are (ε, δ)-indistinguishable for some constant ε (e.g., ε = 1) and δ negligible in n
and d.

Taking ε to be a constant is without loss of generality due to a generic reduction
for improving ε (increase the sample size by a factor of ε/ε′, and run the orig-
inal learner on random subsample of the dataset). The success probability of the
learner can also be amplified via “boosting”, which has a differentially private ana-
logue [42].

Note that, while the definition of PAC learning only speaks of inputs that consist
of i.i.d. samples from an unknown distribution that is consistent with some concept
c ∈ C, we require privacy on all (worst-case) pairs of neighboring input sequences.
Indeed, if our modeling assumptions about the world are wrong, we naturally expect
that our learner might fail, but we do not want the privacy promises to the data
subjects to be broken. Also note that we consider the output of the learner to be the
entire description of the hypothesis h, not just its prediction h(xn+1) on the challenge
point.

Amazingly, there is no gap between PAC learning and Private PAC learning, if
we do not care about computation time:

Theorem 7.8.3 (Generic private learner [67]). If C is (nonprivately) PAC-learnable
(equivalently, VC(C) ≤ poly(d)), then it is privately and properly PAC-learnable
with sample complexity O(log |C|) ≤ O(d · VC(C)) = poly(d).

The relation log |C| ≤ d · VC(C) is the Perles–Sauer–Shelah lemma. (See [70].)
Proof: We use the exponential mechanism (Proposition 7.4.2). Let H = C. On
input (x1, y1) · · · (xn, yn), we

output h ∈ H with probability ∝ e−ε·|{i:h(xi),yi}| .

Since score(x, h) = −|{i : h(xi) , yi}| has sensitivity 1 as a function of the dataset x,
Proposition 7.4.2 tells us that this mechanism is 2ε-differentially private.

To prove that the learner succeeds with high probability, consider x1, · · · , xn that
are taken according to some unknown distribution D, and let yi = c(xi).

If n ≥ O(VC(C) · log(1/α)/α2), then Occam’s razor from learning theory (cf.
[70]) tells us that with high probability over x1 · · · xn, we have

∀h ∈ C
∣∣∣∣∣#{i : h(xi) = c(xi)}

n
− Pr

w∼D
[h(w) = c(w)]

∣∣∣∣∣ ≤ α.
Combining this with Proposition 7.4.2, we know that with high probability the

hypothesis h we output satisfies
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Pr
w∼D

[h(w) = c(w)] ≥
#{i : h(xi) = c(xi)}

n
− α

≥
argmaxh∗#{i : h∗(xi) = c(xi)} − O(log |C|)/ε

n
− α

=
n − O(log |C|)/ε

n
− α

≥ 1 − 2α,

provided n ≥ O(log |C|)/εα.
We are done when taking

n = O
(
max

{
log |C|
εα

,
VC(C) · log(1/α)

α2

})
� 1.

�

7.8.2 Computationally Efficient Private PAC Learning
Unfortunately, as is often the case with the exponential mechanism, Theorem 7.8.3
does not produce computationally efficient private learners. Thus, we now investi-
gate what can be learned in polynomial time under differential privacy.

Nonprivately, most examples of computationally efficient PAC learners are learn-
ers in the statistical query model of Kearns [69]. This is a model where the learner
does not get direct access to labeled samples (xi, c(xi)), but is allowed to obtain ad-
ditive approximations to the expectation of any (efficiently computable) function
f : {0, 1}d ×{0, 1} → [0, 1] on the labeled distribution. That is, on specifying statisti-
cal query f , the learner obtains an answer in the range Ew←D[ f (w, c(w))]±1/ poly(n).
Efficient statistical query learners can be simulated by efficient PAC learners because
expectations Ew←D[ f (w, c(w))] can be estimated to within ±1/ poly(n) by taking the
average of f (xi, c(xi)) over m = poly(n) random samples xi ← D. Such estimations
are also easily done with differential privacy, as an average of f (xi, yi) over m sam-
ples (xi, yi) has global sensitivity at most 2/m as a function of the dataset, and thus
can be estimated via the Laplace mechanism. Thus, we have the following:

Theorem 7.8.4 (Private SQ learning [13]). Every concept class that is efficiently
PAC learnable in the statistical query model (which includes Qpt, Qthr, and Qconj)
is efficiently and privately PAC learnable.

In fact, Kasiviswanathan et al. [67] showed that (efficient) statistical query learn-
ers are equivalent to (efficient) private learners in the “local model” of privacy
(which will be discussed more in the next section).

However, there are some concept classes that are efficiently PAC learnable that
are provably not learnable in the statistical query model, most notably the class of
parity functions, that is, the class of functions {0, 1}d → {0, 1} of the form x 7→
c · x, where c · x is taken modulo 2. It turns out that there is an elegant, efficient
private learner for this class, showing that efficient private learning goes beyond the
statistical query model:
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Theorem 7.8.5 (Private learning of parities [67]). The class Qpar = Qpar(d) of
parity functions on {0, 1}d is efficiently and privately PAC learnable, with sample
complexity n = O(d/ε) for (ε, 0)-differential privacy.

Since the class of parity functions on {0, 1}d has VC dimension d, the sample com-
plexity for private learning is within a constant factor of the sample complexity for
nonprivate learning.
Proof: We have a dataset (x, y) with n rows (xi, yi), where xi ∈ {0, 1}d and yi ∈ {0, 1}.
Assume that x1, . . . , xn are drawn independently from some distribution D, and that
there is some c ∈ {0, 1}d such that yi = c · xi for all 1 ≤ i ≤ n. We wish to determine
a hypothesis h ∈ {0, 1}d such that, if x is drawn from D, then h · x = c · x with
probability at least 0.99.

A simple (nonprivate) algorithm is to take any h such that yi = h · xi for all i. We
can do this by using Gaussian elimination to solve the system of linear equations
y = h · x. Standard calculations show that this succeeds with n = O(d) samples.

Now let us consider private learning, keeping in mind that we need to ensure
privacy even when the data is inconsistent with the concept class. Indeed, we need
to make sure that we do not leak information by revealing whether or not the data
is consistent! For instance, we need to make sure that the algorithm’s output distri-
bution only changes by ε (multiplicatively) if we add a single row (xi, yi) such that
yi , c · xi.

Our mechanism M works as follows; we use ⊥ to denote failure. We will start
by succeeding with probability about 1/2, and amplify this probability later.

1. Take n = O(d/ε) samples.
2. With probability 1/2, output ⊥.
3. For each 1 ≤ i ≤ n, set x̂i, ŷi independently as follows:

(x̂i, ŷi) =

(0d, 0) with probability 1 − ε ,
(xi, yi) with probability ε .

Call the resulting dataset (x̂, ŷ). This is effectively a random sample of the orig-
inal dataset, containing an expected fraction ε of the rows. The zero entries
(x̂i, ŷi) = (0d, 0) will have no effect on what follows.

4. Using Gaussian elimination, determine the affine subspace V of hypotheses h
that are consistent with (x̂, ŷ), i.e.,

V = {h | ∀i : ŷi = h · x̂i} .

Output an h chosen uniformly from V . If V = ∅ (i.e., if no consistent h exists),
then output ⊥.

Since the nonprivate algorithm described above succeeds with probability 0.99, if
the data is consistent then M succeeds with probability at least 0.49. We can amplify
by repeating this t times, in which case the sample complexity is n = O(td/ε).

Now we analyze M’s privacy. We willfully identify 1 ± ε with e±ε, neglecting
O(ε2) terms.
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Claim 7.8.6. M is (2ε, 0)-differentially private.

Proof of claim: Let x ∼ x′ be two neighboring datasets that differ at one row i. As-
sume that (x′i , y

′
i) = (0d, 0). Since we can get from any x to any x′′ by going through

such an x′, if we can show that M(x) and M(x′) are (ε, 0)-indistinguishable, then
M will be (2ε, 0)-differentially private.

With probability 1 − ε, we replace (xi, yi) with (0d, 0) in step 3 (assuming we
make it past step 2). In that case, (x̂, ŷ) = (x̂′, ŷ′), and the output probabilities are the
same. Thus for all possible outputs z,

Pr[M(x) = z] ≥ (1 − ε) Pr[M(x′) = z] . (7.9)

But we are not done. The problem is that x′ is special (by our assumption) so the
reverse inequality does not automatically hold. We also need to prove

Pr[M(x) = z] ≤ (1 + ε) Pr[M(x′) = z] . (7.10)

To prove (7.10), start by fixing (x̂ j, ŷ j) = (x̂′j, ŷ
′
j) for all j , i. (Thus, we are

coupling the algorithm’s random choices on the two datasets.) Let V−i be the affine
subspace consistent with these rows:

V−i = {h | ∀ j , i : ŷ j = h · x̂ j} .

As before, if we fail or if we set (x̂i, ŷi) = (0d, 0) = (x̂′i , ŷ
′
i), the output probabilities

are the same. On the other hand, with probability ε/2 we pass step 2 and set (x̂i, ŷi) =

(xi, yi) in step 3. In that case, M(x′) is uniform in V−i (or M(x′) =⊥ if V−i = ∅),
while M(x) is uniform in

V = V−i ∩ {h | yi = h · xi}

(or M(x) =⊥ if V = ∅).
Let us compare the probabilities that M(x) and M(x′) fail. If V−i = ∅, then

M(x) = M(x′) = ⊥. But if V−i , ∅ but V = ∅, the probability that M(x) fails is at
most 1/2 + ε/2; and since M(x′) fails with probability at least 1/2, we have

Pr[M(x) =⊥] ≤
1 + ε

2
≤ (1 + ε) · Pr[M(x′) =⊥] .

Finally, we come to the most interesting case: comparing the probabilities that
M(x) and M(x′) output some hypothesis h, where both V−i and V are nonempty
and contain h. Since V is obtained by adding one linear constraint to V−i, we have

|V | ≥
1
2
|V−i| .

Since M(x) and M(x′) are uniform in V and V−i, respectively, for every h ∈ V−i we
have
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Pr[M(x) = h] ≤
1
2

(
1 − ε
|V−i|

+
ε

|V |

)
≤

1
2
·

1 + ε

|V−i|
= (1 + ε) Pr[M(x′) = h] ,

which completes the proof. � �

Since linear algebra was essentially the only known technique for efficient pri-
vate learning outside the statistical query model, this result suggested that perhaps
every concept that is efficiently PAC learnable is also efficiently and privately PAC
learnable. Bun and Zhandry [20] recently gave evidence that this is not the case.

Theorem 7.8.7 (Hardness of private learning [20]). If “indistinguishability obfus-
cation” and “perfectly sound noninteractive zero-knowledge proofs for NP” exist,
then there is a concept class that is efficiently PAC learnable but not efficiently PAC
learnable with differential privacy.

7.8.3 The Sample Complexity of Private PAC Learning
Another gap between PAC learning and private PAC learning is in sample complex-
ity. The sample complexity of nonprivate learning is characterized by Θ(VC(C)),
whereas for private learning we have the upper bound O(log |C|) from Theorem 7.8.5,
which can be as large as d ·VC(C) on a domain of size 2d. Two classes that illustrate
this gap are the classes of point functions and threshold functions (Qpt and Qthr). In
both cases, we have VC(C) = 1 but log |C| = d.

For the class C = Qpt(d) of point functions on {0, 1}d and (ε, 0)-differentially pri-
vate proper learners, Beimel, Brenner, Kasiviswanathan, and Nissim [10] showed
that the best possible sample complexity is Θ(d), similarly to the situation with
releasing approximate answers to all point functions (Proposition 7.2.8 and Theo-
rem 7.5.14). If we relax the requirement to either improper learning or approximate
differential privacy, then, similarly to Theorem 7.3.5, the sample complexity be-
comes independent of d, namely O(1) or O(log(1/δ)), respectively [10, 9].

For the class C = Qthr([2d]) of threshold functions on {1, . . . , 2d}, again it is
known that Θ(d) sample complexity is the best possible sample complexity for
(ε, 0)-differentially private proper learners [10], similarly to Theorem 7.7.2. In con-
trast to point functions, however, it is known that relaxing to either (ε, δ)-differential
privacy or to improper learning is not enough to achieve sample complexity O(1).
For (ε, δ)-differentially private proper learners, the sample complexity is somewhere
between 2(1+o(1)) log∗ d) ·log(1/δ) andΩ(log∗ d), similarly to Theorem 7.7.3. For (ε, 0)-
differentially private learners, the sample complexity was recently shown to be Ω(d)
by Feldman and Xiao [50]. We present the proof of this result, because it uses beauti-
ful connections between VC dimension, private learning, and communication com-
plexity.

Every concept class C defines a one-way communication problem as follows:
Alice has a function c ∈ C, Bob has a string w ∈ {0, 1}d, and together they want
to compute c(w). The one-way communication complexity of this problem is the
length of the shortest message m that Alice needs to send to Bob that lets him com-
pute c(w). We will consider randomized, distributional communication complexity,
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where the inputs are chosen according to some distribution µ on C×{0, 1}d, and Bob
should compute c(w) correctly with high probability over the choice of the inputs
and the (shared) randomness between Alice and Bob. We write CC→,pub

µ,α (C) to de-
note the minimum message length over all protocols where Bob computes c(w) with
probability at least 1 − α.

It was known that maximizing this communication complexity over all product
distributions characterizes the sample complexity of nonprivate learning (i.e., VC
dimension):

Theorem 7.8.8 (CC characterization of nonprivate learning [73]). For every
constant α ∈ (0, 1/8),

VC(C) = Θ

(
max
µA,µB

CC→,pub
µA⊗µB,α

(C)
)
,

where µA and µB are distributions on C and {0, 1}d, respectively.

Building on Beimel et al. [8], Feldman and Xiao [50] showed that the sample
complexity of learning C with pure differential privacy is related to the one-way
communication complexity maximized over all joint distributions on C × {0, 1}d.

Theorem 7.8.9 (CC characterization of learning with pure differential pri-
vacy [50]). For all constants ε > 0, α ∈ (0, 1/2), the smallest sample complexity
for learning C under (ε, 0)-differential privacy is Θ(maxµ CC→,pub

µ,α (C)).

We note that, by Yao’s minimax principle, maxµ CC→,pub
µ,α (C) is simply equal to

the worst-case randomized communication complexity of C, where we want a pro-
tocol such that, on every input, Bob computes the correct answer with probability at
least 1 − α over the public coins of the protocol. Returning to threshold functions,
computing cy(w) is equivalent to computing the “greater than” function. Miltersen
et al. [80] showed that for this problem the randomized communication complex-
ity is Ω(d), proving that learning thresholds with pure differential privacy requires
sample complexity Ω(d).
Proof sketch of Theorem 7.8.9: We begin by showing that the communication
complexity is upper-bounded by the sample complexity of private learning. Let L
be an (ε, 0)-differentially private learner for C with a given sample complexity n; we
will use L to construct a communication protocol. Using their shared randomness,
Alice and Bob both run L on the all-zeroes dataset x(0). They do this M times for M
to be determined in a moment, giving a list of shared functions h1, . . . , hM ∈ H.

Since L is (ε, 0)-differentially private, by group privacy, the distribution of func-
tions returned by L “covers” the distribution on every other dataset x ∈ X n, in the
sense that, for each h ∈ H,

Pr[L(x(0)) = h] ≥ e−εn Pr[L(x) = h] .

Thus with M = eO(εn) samples, Alice and Bob can ensure that, with high probability,
at least one hi in their shared list is a good hypothesis for any particular dataset.
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In particular, let µ be a distribution on pairs (c,w), and let c0 ∈ C be Alice’s
function. Then there is some 1 ≤ i ≤ M such that hi is a good hypothesis for the
dataset x we would get by sampling the rows of x from the conditional distribution
µ(w | c = c0): that is, hi(w) = c0(w) with high probability in w. Alice can send Bob
this index i with communication complexity log M = O(εn).

Conversely, suppose that we have a randomized, public-coin protocol for C with
communication complexity at most n. Every setting r of the public randomness
and message m from Alice defines a hypothesis hr,m which Bob uses to com-
pute the output of the protocol (by applying it to his input w). Given a dataset
(x1, y1), . . . , (xn, yn), our differentially private learner will choose r uniformly at ran-
dom, and then use the exponential mechanism to select an m approximately max-
imizing |{i : hr,m(xi) = yi}|, similarly to the use of the exponential mechanism in
the proof of Theorem 7.8.3. The sample complexity n required by the exponential
mechanism is logarithmic in the size of the hypothesis class Hr = {hr,m}, so we have
n = O(|m|). �

While this provides a tight characterization of the sample complexity of learning
with pure differential privacy, the case of approximate differential privacy is still
very much open.

Open Problem 7.8.10. Does every concept class C over {0, 1}d have an (ε, δ)-
differentially private learner with sample complexity n = O(VC(C) · polylog(1/δ))
(for δ negligible in n and d)? Or are there concept classes where the sample com-
plexity must be n = Ω(d · VC(C))?

These questions are open for both proper and improper learning. In the case of
proper learning, there are concept classes known where the sample complexity is at
least Ω(log∗ d ·VC(C) · log(1/δ)), such as threshold functions [22], but this does not
rule out an upper bound of n = O(VC(C) · polylog(1/δ)) when δ is negligible in n
and d.

7.9 Multiparty Differential Privacy

7.9.1 The Definition
We now consider an extension of differential privacy to a multiparty setting, where
the data is divided among some m parties P1, . . . , Pm. For simplicity, we will assume
that m divides n and each party Pk has exactly n/m rows of the dataset, which we
will denote by xk = (xk,1, xk,2, . . . , xk,n/m). (Note the change in notation; now xk is a
subdataset, not an individual row.) We consider the case that Pk wants to ensure the
privacy of the rows in xk against an adversary who may control the other parties.

As in the studies of secure multiparty computation (cf. [52]), there are many
variants of the adversary model that we can consider:

• Passive versus active: for simplicity, we will restrict to passive adversaries —
ones that follow the specified protocol — but try to extract information from the
communication seen (also known as “honest-but-curious” adversaries). Since
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our emphasis is on lower bounds, this only strengthens the results. However, all
of the upper bounds we mention are also known to hold for active adversaries.

• Threshold adversaries: we can restrict the adversary to control at most t parties
for some t ≤ m − 1. For simplicity, we will only consider the case t = m − 1.
Consequently we may assume without loss of generality that all communication
occurs on a broadcast channel, as the adversary would anyhow see all commu-
nication on point-to-point channels.

• Computationally bounded versus unbounded: as in the basic definition of differ-
ential privacy, we will (implicitly) consider computationally unbounded adver-
saries. In the next section, we will discuss computationally bounded adversaries.

A protocol proceeds in a sequence of rounds until all honest parties terminate.
Informally, in each round, each party Pk selects a message to be broadcast based on
its input x(k), internal coin tosses, and all messages received in previous rounds. The
output of the protocol is specified by a deterministic function of the transcript of
messages exchanged. (As in secure multiparty computation, one can also consider
individual outputs computed by the parties Pk, which may depend on their private
input and coin tosses, but we do not do that for simplicity.) Given a particular ad-
versary strategy A, we write ViewA((A↔ (P1, . . . , Pm))(x)) for the random variable
that includes everything that A sees when participating in the protocol (P1, . . . , Pm)
on input x. In the case we consider, where A is a passive adversary controlling
P−k = (P1, P2, . . . , Pk−1, Pk+1, . . . , Pm), ViewA(A ↔ (P1, . . . , Pm)(x)) is determined
by the inputs and coin tosses of all parties other than Pk as well as the messages sent
by Pk.

Definition 7.9.1 (Multiparty differential privacy [7]). For a protocol P = (P1,
. . . , Pm) taking as input datasets (x1, . . . , xm) ∈ (X n/m)m, we say that P is (ε, δ)-
differentially private (for passive adversaries) if, for every k ∈ [m] and every two
datasets x, x′ ∈ (X n/m)m that differ on one row of Pk’s input (and are equal other-
wise), the following holds for every set T:

Pr[ViewP−k (P−k ↔ (P1, . . . , Pm)(x)) ∈ T ]
≤ eε · Pr[ViewP−k (P−k ↔ (P1, . . . , Pm)(x′)) ∈ T ] + δ.

7.9.2 The Local Model
Constructing useful differentially private multiparty protocols for m ≥ 2 parties is
harder than constructing them in the standard centralized model (corresponding to
m = 1), as a trusted curator could just simulate the entire protocol and provide
only the output. An extreme case is when m = n, in which case the individual data
subjects need not trust anyone else, because they can just play the role of a party in
the protocol. This is the local model that we’ve alluded to several times in earlier
sections. While this is the hardest model of distributed differential privacy, there are
nontrivial protocols in it, namely randomized response (as in Section 7.1.5):
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Theorem 7.9.2 (Randomized response). For every counting query q : X → {0, 1},
n ∈ N, and ε > 0, there is an (ε, 0)-differentially private n-party protocol in the
local model for computing q to within error α = O(1/(ε

√
n)) with high probability.

This can be extended to estimating statistical queries q : X → [0, 1] over the
dataset—first randomly round q(xk) to a bit bk ∈ {0, 1} with expectation q(xk) (i.e.,
set bk = 1 with probability q(xk)), and then apply randomized response to bk. This
gives some intuition for why everything that is PAC learnable in the statistical query
model is PAC learnable in the local model, as mentioned in Section 7.8.

Note that the error in Theorem 7.9.2 is significantly worse than the error O(1/εn)
we get with a centralized curator. Building on [7, 78], Chan et al. [25] proved that
the 1/

√
n decay is in fact optimal:

Theorem 7.9.3 (Randomized response is optimal in the local model [25]). For
every nonconstant counting query q : X → {0, 1}, n ∈ N, and (1, 0)-differentially
private n-party protocol P for approximating q, there is an input dataset x ∈ X n on
which P has error α = Ω(1/

√
n) with high probability.

Proof sketch: We first prove it for X = {0, 1}, and q being the identity function (i.e.,
we are computing the average of the input bits). Consider a uniformly random input
dataset X = (X1, . . . , Xn) ← {0, 1}n, let R = (R1, . . . ,Rn) denote the randomness of
the n parties, and let T = T (X,R) be the random variable denoting the transcript
of the protocol. Let t ∈ Supp(T ) be any value of T . We claim that, conditioned on
T = t:

1. The n random variables (X1,R1), . . . , (Xn,Rn) are independent, and in particular
X1, . . . , Xn are independent.

2. Each Pr[Xi = 1] ∈ (1/4, 3/4).

Item 1 is a general fact about interactive protocols—if the parties’ inputs start inde-
pendent, they remain independent conditioned on the transcript—and can be proven
by induction on the number of rounds of the protocol. Item 2 uses (ε = 1, 0)-
differential privacy and Bayes’ rule:

Pr[Xi = 1|T = t]
Pr[Xi = 0|T = t]

=
Pr[T = t|Xi = 1] · Pr[Xi = 1]/Pr[T = t]
Pr[T = t|Xi = 0] · Pr[Xi = 0]/Pr[T = t]

=
Pr[T = t|Xi = 1]
Pr[T = t|Xi = 0]

∈
[
e−ε, eε

]
.

This implies that

Pr[Xi = 1|T = t] ∈
[

1
eε + 1

,
eε

eε + 1

]
⊂ (1/4, 3/4)

for ε = 1.
Consequently, conditioned on T = t, (1/n)·(

∑
i Xi) is the average of n independent

{0, 1} random variables with bounded bias. In particular, the standard deviation of
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i Xi is Ω(1/

√
n), and by anticoncentration bounds, with high probability we will

have ∣∣∣∣∣∣∣(1/n)
∑

i

Xi − output(t)

∣∣∣∣∣∣∣ = Ω(1/
√

n),

where output(·) is the output function of the protocol. Since the protocol has error
Ω(1/

√
n) on a random dataset with high probability, there is some fixed dataset on

which it has error Ω(1/
√

n) with high probability.
To obtain the result for general nonconstant counting queries q : X → {0, 1},

fix two inputs w0,w1 ∈ X such that q(wb) = b, and restrict to datasets of the
form (wb1 , . . . ,wbn ) for b1, . . . , bn ∈ {0, 1}. Estimating the counting query q on such
datasets with differential privacy is equivalent to estimating the average function on
datasets of the form (b1, . . . , bn) with differential privacy. �

Effectively, what the above proof is using is a “randomness extraction” property
of the SUM function. Specifically, for every source Y consisting of n independent
bits Y = (Y1, . . . ,Yn) that are not too biased,

∑
i Yi has a lot of “randomness”—it

is not concentrated in any interval of width O(
√

n). (In the proof, Yi = Xi|T=t.) In
fact, a stronger statement is true:

∑
i Yi mod k can be shown to be almost uniformly

distributed in Zk for some k = Ω(
√

n). In the language of randomness extractors
(see [94, 105]), we would say that “the sum modulo k function is a (deterministic)
randomness extractor for the class of sources consisting of n independent bits with
bounded bias.”

7.9.3 Two-Party Differential Privacy
Now let us look at the case of m = 2 parties each holding n/2 rows of the dataset,
which seems closer to the trusted curator case than to the local model. Indeed, in this
model, any counting query can be computed with error O(1/εn): each party just adds
Lap(1/(ε · (n/2))) noise to the counting query on her own dataset and announces the
result; we average the two results to estimate the overall counting query. However,
there are other simple queries where again there is a quadratic gap between the
single curator (m = 1) and two-party case, namely the (normalized) inner product
function IP : {0, 1}n/2 × {0, 1}n/2 → [0, 1] given by IP(x, y) = 〈x, y〉/(n/2). IP has
global sensitivity 2/n, and hence can be computed by a single trusted curator with
error O(1/n)). But for two parties (one given x and one given y), the best possible
error is again Θ̃(1/

√
n):

Theorem 7.9.4 (Two-party DP protocols for inner product [81, 78]).

1. There is a two-party differentially private protocol that estimates IP to within
error O(1/ε ·

√
n) with high probability, and

2. Every two party (1, 0)-differentially private protocol for IP incurs error Ω̃(1/
√

n)
with high probability on some dataset.

Proof sketch: For the upper bound, we again use randomized response:

1. On input x ∈ {0, 1}n/2, Alice uses randomized response to send a noisy version
x̂ of x to Bob.
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2. Upon receiving x̂ and his input y ∈ {0, 1}n/2, Bob computes

z =
2
n

n/2∑
i=1

yi

ε
·

(
x̂i −

(1 − ε)
2

)
,

which will approximate IP(x, y) to within O(1/ε
√

n).
3. Bob sends the output z + Lap(O(1/ε2n)) to Alice, where this Laplace noise is to

protect the privacy of y, since z has global sensitivity O(1/εn) as a function of
y.

For the lower bound, we follow the same outline as Theorem 7.9.3. Let X =

(X1, . . . , Xn/2) and Y = (Y1, . . . ,Yn/2) each be uniformly distributed over {0, 1}n/2

and independent of each other. Then, conditioned on a transcript t of an (ε, 0)-
differentially private protocol, we have:

1. X and Y are independent, and
2. For every i ∈ [n/2], x1, . . . , xi−1, xi+1, . . . , xn,

Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn] ∈ (1/4, 3/4),

and similarly for Y .

Item 2 again follows from differential privacy and Bayes’ rule. (Consider the two
neighboring datasets (x1, . . . , xi−1, 0, xi+1, . . . , xn) and (x1, . . . , xi−1, 1, xi+1, . . . , xn).)
In the literature on randomness extractors, sources satisfying item 2 are known as
“Santha–Vazirani sources” or “unpredictable-bit sources”, because no bit can be
predicted with high probability given the others. (Actually, the usual definition only
requires that item 2 hold when conditioning on past bits X1 = x1, . . . , Xi−1 = xi−1,
so the sources we have are a special case.)

One of the early results in randomness extractors is that the (nonnormalized)
inner product modulo 2 function is an extractor for Santha–Vazirani sources [107].
This result can be generalized to the inner product modulo k = Ω̃(

√
n), so we know

that 〈X,Y〉 mod k is almost uniformly distributed in Zk (even conditioned on the
transcript t). In particular, it cannot be concentrated in an interval of width o(k)
around output(t). Thus the protocol must have error Ω(k) with high probability. �

The above theorems show there can be a Θ̃(
√

n) factor gap between the worst-
case error achievable with a centralized curator (which is captured by global sensi-
tivity) and multiparty (even two-party) differential privacy. Both lower bounds ex-
tend to (ε, δ)-differential privacy when δ = o(1/n). When δ = 0, the largest possible
gap, namely Ω(n), can be proven using a connection to information complexity. Be-
fore defining information-complexity, let us look at an information-theoretic conse-
quence of differential privacy.

Theorem 7.9.5 (Differential privacy implies low mutual information [78]). Let
M : X n → Y be an (ε, 0)-differentially private mechanism. Then for every random
variable X distributed on X n, we have

I(X;M(X)) ≤ 1.5εn,
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where I(·; ·) denotes mutual information.

Note that, without the DP constraint, the largest the mutual information could be
is when X is the uniform distribution and M is the identity function, in which case
I(X;M(X)) = n · log2 |X |, so the above bound can be much smaller. We remark
that, for approximate differential privacy, one can bound the mutual information
I(X;M(X)) in case the rows of X are independent [78, 92], but these bounds do not
hold for general correlated distributions [29].
Proof: The mutual information between X and M(X) is the expectation over
(x, y)← (X,M(X)) of the following quantity:

log2

(
Pr[M(X) = y|X = x]

Pr[M(X) = y]

)
.

By group privacy (Lemma 7.2.2), the quantity inside the logarithm is always at most
eεn, so the mutual information is at most (log2 e) · εn < 1.5εn. �

To apply this to two-party protocols, we can consider the mechanism M that
takes both parties’ inputs and outputs the transcript of the protocol, in which case
the mutual information is known as external information cost. Or we can fix one
party’s input x, and consider the mechanism Mx(y) that takes the other party’s input
y and outputs the former party’s view of the protocol, yielding a bound on internal
information cost. The information cost of two-party protocols has been very widely
studied in recent years (with initial motivations from communication complexity),
and there are a number of known, explicit Boolean functions f and input distribu-
tions (X,Y) such that any protocol computing f on (X,Y) has information cost Ω(n).
These can be leveraged to construct a low-sensitivity function g such that any two-
party differentially private protocol for g incurs error Ω(n ·GSg) [78]. This is within
a constant factor of the largest possible gap, since the range of g has size at most
n · GSg. It is open to obtain a similar gap for approximate differential privacy:

Open Problem 7.9.6. Is there a function f : X n → R such that any multiparty
(ε, δ)-differentially private protocol (with constant ε and δ = neg(n)) for f incurs
error ω(

√
n · GS f ) with high probability on some dataset? What about Ω(n · GS f )?

These are open in both the two-party and local models.

More generally, it would be good to develop our understanding of multiparty
differential privacy computation of specific functions such as IP and towards a more
general classification.

Open Problem 7.9.7. Characterize the optimal privacy–accuracy tradeoffs for esti-
mating a wide class of functions (more generally, solving a wide set of data analysis
tasks) in two-party or multiparty differential privacy.

As the results of Section 7.9.2 suggest, we have a better understanding of the
local model than for a smaller number of parties, such as m = 2. (See also [4] and
the references therein.) However, it still lags quite far behind our understanding of
the single-curator model, for example, when we want to answer a set Q of queries
(as opposed to a single query).
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7.10 Computational Differential Privacy

7.10.1 The Definition
The basic definition of differential privacy provides protection even against adver-
saries with unlimited computational power. It is natural to ask whether one can gain
from restricting to computationally bounded adversaries, given the amazing effects
of such a restriction in modern cryptography.

To obtain a computational analogue of differential privacy, we can simply take
the inequalities defining differential privacy, namely

∀T ⊆ Y , Pr[M(x) ∈ T ] ≤ eε · Pr[M(x′) ∈ T ] + δ

and restrict our attention to tests T defined by feasible algorithms.

Definition 7.10.1 (Computational differential privacy [7]). Let M = {Mn :
X n

n → Yn}n∈N be a sequence of randomized algorithms, where elements in Xn and
Yn can be represented by poly(n)-bit strings. We say that M is computationally
ε-differentially private if there is a superpolynomial function s(n) = nω(1) and a neg-
ligible function δ(n) = n−ω(1) such that, for all n, all pairs of datasets x, x′ ∈ X n

differing on one row, and all Boolean circuits T : X n → {0, 1} of size at most s(n),
we have

Pr[T (M(x)) = 1] ≤ eε · Pr[T (M(x′)) = 1] + δ(n).

We make a few remarks on the definition:

• We always allow for a nonzero δ = δ(n) term in the definition of computational
differential privacy. If we did not do so, then the definition would collapse to
that of ordinary (information-theoretic) (ε, 0)-differential privacy, because the
latter is equivalent to requiring (ε, 0)-differential privacy for sets T of size 1,
which are computable by Boolean circuits of size poly(n).

• We generally are only interested in computationally differentially private mech-
anisms M that are themselves computable by randomized polynomial-time al-
gorithms, as we should allow the adversary T to invest more computation time
than the privacy mechanism.

• For simplicity, we have used the number n of rows as a security parameter, but
it is often preferable to decouple these two parameters. We will often drop the
index of n from the notation, and make the asymptotics implicit, for sake of
readability.

7.10.2 Constructions via Secure Multiparty Computation
The most significant gains we know how to get from computational differential pri-
vacy are in the multiparty case. Indeed, by using powerful results on secure mul-
tiparty computation, everything that is achievable by a differentially private cen-
tralized curator can also be emulated by a multiparty protocol with computational
differential privacy.
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Theorem 7.10.2 (Computational differential privacy via cryptography [38, 7]).
Assume that oblivious transfer protocols exist. Let M : X n → Y be computationally
ε-differentially private for ε ≤ 1 and computable in time poly(n). Then for every m|n,
there is an m-party protocol P = (P1, . . . , Pm) : (X n/m)m → Y such that:

1. P is computationally ε-differentially private,
2. For every input x ∈ X n, the output distribution of P(x) is the same as that of

M : (X n/m)m → Y ,
3. P is computable in time poly(n).

Proof sketch: By classic results on secure multiparty computation [109, 53], there
exists an m-party protocol P for evaluating M that is secure against passive ad-
versaries, assuming the existence of oblivious transfer protocols. (See [? 52] for
full definitions and constructions of secure multiparty computation.) Items 2 and
3 are immediately guaranteed by the properties of secure multiparty computation
protocols. For item 1, we recall that each party learns nothing from a secure mul-
tiparty computation protocol other than what is implied by their own input and the
output of the function being evaluated (in this case M). More precisely, for every
poly(n)-size adversary A, controlling all parties other than Pk, there is a poly(n)-size
simulator S such that ViewA(A↔ (P1, . . . , Pm(x)) is computationally indistinguish-
able from S (M(x), x1, . . . , xk−1, xk+1, . . . , xm). Thus, for every x and x′ that differ
only by changing one row of the input to party j, and every poly(n)-size T , we have

Pr[T (ViewA(A↔ (P1, . . . , Pm)(x))) = 1]
≤ Pr[T (S (M(x), x1, . . . , xk−1, xk+1, . . . , xm)) = 1] + neg(n)

=
(
eε · Pr[T (S (M(x′), x′1, . . . , x

′
k−1, x

′
k+1, . . . , x

′
m)) = 1] + neg(n)

)
+ neg(n)

≤ eε ·
(
Pr[T (ViewA(A↔ (P1, . . . , Pm)(x′))) = 1] + neg(n)

)
+ neg(n) + neg(n)

= eε · Pr[T (ViewA(A↔ (P1, . . . , Pm)(x′))) = 1] + neg(n).

�
In particular, with computational differential privacy, we have n-party protocols for
computing any counting query or the normalized inner product function with error
O(1/εn), significantly better than the Θ̃(1/

√
n) error achievable with information-

theoretic differential privacy. It is interesting to understand to what extent general
secure multiparty computation (whose existence is equivalent to oblivious transfer)
is necessary for such separations between information-theoretic and computational
differential privacy. Haitner et al. [57] showed that black-box use of one-way func-
tions does not suffice to construct two-party protocols for the inner product function
with error smaller than Θ̃(1/

√
n), but a tight characterization remains open.

Open Problem 7.10.3. What is the minimal complexity assumption needed to con-
struct a computational task that can be solved by a computationally differentially
private protocol but is impossible to solve by an information-theoretically differen-
tially private protocol?

Recent works have made progress on understanding this question for comput-
ing Boolean functions with differential privacy, for example showing that achieving
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near-optimal accuracy requires oblivious transfer in some cases [54], but it remains
open whether there can be a separation based on a weaker assumption, and whether
oblivious transfer is needed to have an asymptotic separation in accuracy for a more
natural statistical task (e.g., estimating a function with bounded global sensitivity,
such as normalized inner product).

7.10.3 Usefulness with a Trusted Curator?
For the single-curator case (m = 1), computational and information-theoretic dif-
ferential privacy seem closer in power. Indeed, Groce et al. [56] showed that, in the
case of real-valued outputs, we can often convert computational differentially pri-
vate mechanisms into information-theoretically differentially private mechanisms.

Theorem 7.10.4 (From computational to information-theoretic differential pri-
vacy [56]). Let M : X n → R be an ε-computationally differentially private mech-
anism with the property that, for every dataset x ∈ X n, there is an interval Ix of
width at most w(n) such that Pr[M(x) < Ix] ≤ neg(n), and the endpoints of Ix are
rational numbers with poly(n) bits of precision. Define M′(x) to be the mechanism
that runs M(x) and rounds the result to the nearest multiple of α(n) = w(n)/nc, for
any desired constant c. Then M′ is (ε, neg(n))-differentially private.

Thus, the error incurred is an arbitrary polynomial small fraction of the “spread”
of M’s outputs.
Proof: Let I′x denote the rounding of all points in Ix to the nearest multiple of
α(n); notice that |I′x| ≤ w(n)/α(n) + 1 ≤ nc + 1. M′ is computationally differentially
private because M is, and we will use this to show that it is actually information-
theoretically differential private: For every x, x′ ∈ X n that differ on one row and
every T ⊆ R, we have

Pr[M′(x) ∈ T ] ≤

 ∑
y∈I′x∩T

Pr[M′(x) = y]

 + Pr[M′(x) < I′x]

≤

 ∑
y∈I′x∩T

(
eε · Pr[M′(x′) = y] + neg(n)

) + neg(n)

≤ eε · Pr[M′(x′) ∈ T ] + (nc + 1) · neg(n) + neg(n)
= eε · Pr[M′(x′) ∈ T ] + neg(n),

where the second inequality uses the fact that testing equality with a fixed value
y or testing membership in an interval can be done by polynomial-sized circuits,
provided the numbers have only poly(n) bits of precision. �

This proof technique extends to low-dimensional outputs (e.g., answering a log-
arithmic number of real-valued queries) as well as outputs in polynomial-sized dis-
crete sets [56, 23]. So to get a separation between computational and information-
theoretic differential privacy with a single curator, we need to use large or high-
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dimensional output spaces, or measure utility in a different way (not by a low-
dimensional metric). Such a separation was recently obtained by Bun et al. [23]:

Theorem 7.10.5 (Separating computational and information-theoretic differen-
tially private curators [23]). Assuming the existence of subexponentially secure
one-way functions and “exponentially extractable noninteractive witness indistin-
guishable (NIWI) proofs for NP”, there exists an efficiently computable utility func-
tion u : X n × Y → {0, 1} such that

1. There exists a polynomial-time CDP mechanism MCDP such that, for every
dataset x ∈ X n, we have Pr[u(x,MCDP(x)) = 1] ≥ 2/3.

2. There exists a computationally unbounded differentially private mechanism
Munb such that, for every dataset x ∈ X n, we have Pr[u(x,Munb(x)) = 1] ≥
2/3.

3. For every polynomial-time differentially private M, there exists a dataset x ∈
X n such that Pr[u(x,M(x)) = 1] ≤ 1/3.

Note that this theorem provides a task where achieving information-theoretic dif-
ferential privacy is infeasible—not impossible. Moreover, it is for a rather unnatural,
cryptographic utility function u. It would be interesting to overcome either of these
limitations:

Open Problem 7.10.6. Is there a computational task that is solvable by a single
curator with computational differential privacy but is impossible to solve with
information-theoretic differential privacy?

Open Problem 7.10.7. Can an analogue of Theorem 7.10.5 be proven for a more
“natural” utility function u, such as one that measures the error in answering or
summarizing the answers to a set of counting queries?

7.10.4 Relation to Pseudodensity
The definition of computational differential privacy is related to concepts studied in
the literature on pseudorandomness. For random variables Y,Z taking values in Y
and ρ ∈ [0, 1], we say that Y has density at least ρ in Z if, for every event T ⊆ Y , we
have

ρ · Pr[Y ∈ T ] ≤ Pr[Z ∈ T ].

For intuition, suppose that Y and Z are uniform on their supports. Then this defini-
tion says that Supp(Y) ⊆ Supp(Z) and |Supp(Y)| ≥ ρ · |Supp(Z)|. Additionally, if
Z is the uniform distribution on Y , then Y having density at least ρ in Z is equiv-
alent to Y having “min-entropy” at least log(ρ|Y |). Notice that a mechanism M is
(ε, 0)-differentially private iff, for every two neighboring datasets x ∼ x′, M(x) has
density at least e−ε in M(x′).

Just like computational analogues of statistical distance (namely, computational
indistinguishability and pseudorandomness) have proven to be powerful concepts
in computational complexity and cryptography, computational analogues of density
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and min-entropy have also turned out to be quite useful, with applications including
additive number theory [55], leakage-resilient cryptography [49], and constructions
of cryptographic primitives from one-way functions [62].

One of the computational analogues of density that has been studied, called pseu-
dodensity (or sometimes metric entropy when Z is uniform on Y) [3, 90], is precisely
the one used in the definition of computational differential privacy, namely that, for
every polynomial-sized Boolean circuit T , we have

ρ · Pr[T (Y) = 1] ≤ Pr[T (Z) = 1] + neg(n).

When considering a single pair of random variables (Y,Z), the dense model theorem
of [55, 100, 90] says that pseudodensity is equivalent to Y being computationally
indistinguishable from a random variable Ỹ that truly has density at least ρ in Z.
Mironov et al. [81] asked whether something similar can be said about (computa-
tionally) differentially private mechanisms, which require (pseudo)density simulta-
neously for all pairs M(x), M(x′) where x ∼ x′:

Open Problem 7.10.8. For every ε-computationally differentially private and poly-
nomial-time computable mechanism M : X n → Y , is there an (O(ε), neg(n))-
differentially private mechanism M̃ : X n → Y such that, for all datasets x ∈ X n,
M(x) is computationally indistinguishable from M̃(x)?

A positive answer to this question would imply a negative answer to Open Prob-
lem 7.10.6.

7.11 Conclusions
We have illustrated rich connections between the theory of differential privacy and
numerous topics in theoretical computer science and mathematics, such as learn-
ing theory, convex geometry and optimization, cryptographic tools for preventing
piracy, probabilistically checkable proofs and approximability, randomness extrac-
tors, information complexity, secure multiparty computation, and notions of pseu-
doentropy. There have also been very fruitful interactions with other areas. In par-
ticular, in both game theory and in statistics, differential privacy has proved to be
a powerful tool for some applications where privacy is not the goal—such as de-
signing approximately truthful mechanisms [79, 87] and preventing false discovery
in adaptive data analysis [44]. Remarkably, both positive and negative results for
differential privacy (including both information-theoretic and computational lower
bounds as we have seen in this tutorial) have found analogues for the false discov-
ery problem [44, 60, 98, 6], suggesting that it will also be a very fertile area for
complexity-theoretic investigation.

We now mention some more directions for future work in differential privacy,
beyond the many open problems stated in earlier sections. As illustrated in previous
sections, there has been a thorough investigation of the complexity of answering
counting queries under differential privacy, with many algorithms and lower bounds
that provide nearly matching results. While there remain numerous important open
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questions, it would also be good to develop a similar kind of understanding for
other types of computations. There is now a wide literature on differentially private
algorithms for many types of data analysis tasks, but what is missing are negative
results to delineate the border between possible and impossible.

Open Problem 7.11.1. Classify large classes of problems (other than counting
queries) in differential privacy according to their privacy–utility tradeoffs and their
computational tractability.

Two areas of particular interest, both in theory and in practice, are:

Statistical inference and machine learning. In this tutorial, we have mostly been
measuring accuracy relative to the particular (worst-case) dataset that is given
as input to our differentially private algorithm. However, in statistical inference
and machine learning, the goal is usually to infer properties of the population
from which the dataset is (randomly) drawn. The PAC model studied in Sec-
tion 7.8 is a theoretically appealing framework in which to study how such tasks
can be done with differential privacy, but there are many inference and learning
problems outside the PAC model that are also of great interest. These problems
include tasks like hypothesis testing, parameter estimation, regression, and dis-
tribution learning, and a variety of utility measures such as convergence rates, p
values, risk minimization, and sizes of confidence intervals. Moreover, the data
distributions are often assumed to have a significant amount of structure (or
enough samples are taken for central limit theorems to provide such structure),
in contrast to the worst-case distributions considered in the PAC model. Some
broad positive results are provided in Smith [95] and Bassily et al. [5] and some
negative results in [32, 21, 5], but our understanding of these types of problems
is still quite incomplete.

Graph privacy. As mentioned in Section 7.3, there has been some very interesting
work on differentially private graph analysis, where our dataset is a graph and
we are interested in protecting either relationships (edge-level privacy) or ev-
erything about an individual/vertex (node-level privacy). We refer to Raskhod-
nikova and Smith [88] for a broader survey of the area. Again, most of the work
to date has been algorithmic, and we still lack a systematic understanding of
impossibility and intractability.

If the existing study of differential privacy is any indication, these studies are likely
to uncover a rich theoretical landscape, with even more connections to the rest of
theoretical computer science.
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[101] Gábor Tardos. Optimal probabilistic fingerprint codes. In Proceedings of the
Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03,
pages 116–125, New York, NY, USA, 2003. ACM.

[102] Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. Faster algorithms for
privately releasing marginals. In ICALP (1), pages 810–821, 2012. doi:
10.1007/978-3-642-31594-7\ 68.

[103] Jonathan Ullman. Answering n2+o(1) counting queries with differential pri-
vacy is hard. In Proceedings of the 45th annual ACM Symposium on Theory
of Computing, pages 361–370. ACM, 2013.

[104] Jonathan Ullman and Salil Vadhan. PCPs and the hardness of generating
private synthetic data. In Theory of Cryptography, pages 400–416. Springer,
2011.

[105] Salil P. Vadhan. Pseudorandomness, volume 7 (1–3) of Foundations and
Trends in Theoretical Computer Science. now publishers, December 2012.
336 pages.

[106] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[107] Umesh V. Vazirani. Strong communication complexity or generating quasir-
andom sequences from two communicating semirandom sources. Combina-
torica, 7(4):375–392, 1987.

[108] Stanley L. Warner. Randomized response: A survey technique for eliminat-
ing evasive answer bias. Journal of the American Statistical Association, 60
(309):63–69, 1965.

[109] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science,
Chicago, Illinois, USA, 3-5 November 1982, pages 160–164. IEEE Com-
puter Society, 1982. doi: 10.1109/SFCS.1982.38. URL http://dx.doi.
org/10.1109/SFCS.1982.38.

[110] Elias A. Zerhouni and Elizabeth G. Nabel. Protecting aggregate genomic
data. Science, 322(5898):44–44, 2008. ISSN 0036-8075. doi: 10.1126/

http://dx.doi.org/10.2307/2000258
http://jmlr.org/proceedings/papers/v40/Steinke15.html
http://jmlr.org/proceedings/papers/v40/Steinke15.html
http://dx.doi.org/10.1007/s11511-008-0032-5
http://dx.doi.org/10.1007/s11511-008-0032-5
http://dx.doi.org/10.1109/SFCS.1982.38
http://dx.doi.org/10.1109/SFCS.1982.38


448 Salil Vadhan

science.1165490. URL http://science.sciencemag.org/content/
322/5898/44.1.

[111] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and
Xiaokui Xiao. Private release of graph statistics using ladder functions. In
Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives, editors, Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 731–745.
ACM, 2015. ISBN 978-1-4503-2758-9. doi: 10.1145/2723372.2737785.
URL http://doi.acm.org/10.1145/2723372.2737785.

http://science.sciencemag.org/content/322/5898/44.1
http://science.sciencemag.org/content/322/5898/44.1
http://doi.acm.org/10.1145/2723372.2737785


7 The Complexity of Differential Privacy 449

Nomenclature
Avg j∈T f ( j) The average of f ( j) over j in the set T , page 396
M A (randomized) mechanism M : X n ×Q→ Y or M : X n → Y , page 349
Q A k×|X |matrix with {0, 1} entries whose rows correspond to a set of count-

ing queries over X . Abusing notation, we also denote this set of counting
queries by Q, page 385

Q A set of queries q : X n → Y , page 349
QS The restriction of counting query family (i.e. {0, 1} matrix) Q to the data

universe elements (i.e. columns) in S , page 385
X A data universe for dataset rows, page 349
Y A (discrete) output space for a mechanism, page 349
δ The additive privacy parameter of differential privacy, page 351
Disc(Q) The discrepancy of matrix Q, i.e. minz∈{±1}n‖Qz‖∞, page 383
`∗(K) The Gaussian mean width of K: Expg maxz∈K |〈z, g〉|, page 414
ε The multiplicative privacy parameter of differential privacy, page 351
GSq The global sensitivity of q, i.e. maxx∼x′ |q(x) − q(x′)|, page 353
HerDisc(Q) The hereditary discrepancy of matrix Q, i.e. maxS⊆X Disc(QS ), page 387
HerPDisc(Q) The hereditary partial discrepancy of matrix Q, i.e. maxS⊆X PDisc(QS ),

page 386
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ln The natural logarithm function, page 353
log Base 2 logarithm function, page 353
LSq(x) The local sensitivity of query q on dataset x, i.e. maxx′∼x |q(x) − q(x′)|,

page 367
‖v‖p The `p norm of vector v, i.e. (

∑
i|vi|

p)1/p, page 383
PDisc(Q) The partial discrepancy of matrix Q, i.e. minz∈{0,+1,−1}n,

‖z‖1>n/10
‖Qz‖∞, page 383

Qconj = Qconj(d)
⋃d

t=0 Q
conj
t (d), page 351

Qconj
t = Qconj

t (d) Set of t-way marginal queries, i.e. counting queries corresponding
to t-way conjunctions on X = {0, 1}d, page 351

Qmeans = Qmeans(d) Set of d attribute means on dataset with d boolean attributes,
i.e. counting queries corresponding to coordinate functions on X = {0, 1}d,
page 351

Qpt = Qpt(X ) Set of counting queries corresponding to point functions on X ,
page 351

Qthr = Qthr(X ) Set of counting queries corresponding to threshold functions on to-
tally ordered X , page 351
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that there exist x1, . . . , xk ∈ X for which {(q(x1), . . . , q(xk)) : q ∈ Q} =

{0, 1}k, page 374
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D(p‖q) The Kullback–Leibler divergence (a.k.a. relative entropy) between discrete
probability measures p and q, i.e.

∑
y p(y) · log(p(y)/q(y)), page 363

d(x, x′) The Hamming distance between datasets x, x′ ∈ X n, page 354
K The convex hull of the answer vectors aw = (q(w))q∈Q ∈ R

Q over w ∈ X ,
page 392

n The number of rows in a dataset, page 349
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q : X → {0, 1} A predicate inducing a counting query q : X n → [0, 1], page 351
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x ∼ x′ Datasets x, x′ ∈ X n differ in one row, page 351
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