Overview

Introduction

Tractable cases

DPLL algorithms

CDCL solvers

Probabilistic algorithms

Applications

Proof Complexity

Random formulas
 Satisfiability threshold
 Application: the SAT filter
The random k-CNF model

A random k-CNF formula $F_k(n, m)$ is chosen as follow:
- m times independently choose uniformly one of the $2^k \binom{n}{k}$ clauses.

Let r denote the ratio of clauses to variables: $r := m/n$

Empirical observation: For $F = F_3(n, rn)$:
- if $r < 4.26$, then F is likely satisfiable
- if $r > 4.26$, then F is likely unsatisfiable
Conjecture: For every $k \geq 2$ there is a constant r_k such that

$$\lim_{n \to \infty} \Pr[F_k(n, rn) \text{ is satisfiable}] = \begin{cases} 1 & \text{if } r < r_k \\ 0 & \text{if } r > r_k \end{cases}$$

Theorem

For $k = 2$, the conjecture holds with $r_2 = 1$.
A weaker satisfiability threshold

Theorem

For every $k \geq 3$ there is a sequence $r_k(n)$ such that

$$\lim_{n \to \infty} \Pr[F_k(n, m) \text{ is satisfiable}] = \begin{cases}
1 & \text{if } m \leq (r_k(n) - \epsilon)n \\
0 & \text{if } m \geq (r_k(n) + \epsilon)n
\end{cases}$$

Best known upper and lower bounds for r_k:

<table>
<thead>
<tr>
<th>k</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_k \leq$</td>
<td>4.51</td>
<td>10.23</td>
<td>21.33</td>
<td>87.88</td>
<td>708.94</td>
<td>726.817</td>
</tr>
<tr>
<td>$r_k \geq$</td>
<td>3.52</td>
<td>7.91</td>
<td>18.79</td>
<td>84.82</td>
<td>704.94</td>
<td>726.809</td>
</tr>
<tr>
<td>algo</td>
<td>3.52</td>
<td>5.54</td>
<td>9.63</td>
<td>33.23</td>
<td>172.65</td>
<td>95.263</td>
</tr>
</tbody>
</table>
An easy upper bound

Theorem

\[r_3 \leq 5.19 \]

Proof: Let \(F = F_3(n, rn) \), and \(X := \left| \{ \alpha \in \{0, 1\}^n ; \alpha \models F \} \right| \).

We have:

- \(\Pr[X > 0] \leq E[X] = 2^n \Pr[\alpha \models F] \).
- \(\Pr[\alpha \models F] = \Pr[\alpha \models C]^m = (7/8)^m \)
- Thus \(\Pr[X > 0] \leq 2^n (7/8)^m = \left(2(7/8)^r \right)^n \)
- Exponentially small if \(2(7/8)^r < 1 \), i.e., if \(r > -\ln 2 / \ln(7/8) > 5.19 \)
Improvement by properties

Let $P(\alpha)$ be a property of assignments.

Define $X_P := |\{ \alpha \in \{0, 1\}^n ; \alpha \models F \text{ and } P(\alpha) \}|$

Obviously $X_P \leq X$, so if $X > 0$ implies $X_P > 0$, then:
$$\Pr[X > 0] \leq \Pr[X_P > 0] \leq E[X_P]$$

Now if $E[X_P] \ll E[X]$, we can obtain a better upper bound since $E[X_P] \to 0$ for smaller values of r.
The single flip property

Theorem

\[r_3 \leq 4.667 \]

For \(\alpha \models F \) and \(x \in V(F) \) with \(\alpha(x) = 0 \),
let \(\alpha_x = \alpha \) with \([x := 1] \).

\(\alpha \models F \) has the single flip property \(SF \),
if \(\alpha_x \not\models F \) for all \(x \) with \(\alpha(x) = 0 \).

If \(F \) is satisfiable, then there is \(\alpha \models F \) with \(SF(\alpha) \)

Thus: \(\Pr[X > 0] \leq E[X_{SF}] \).
The expected number of single flip assignments

\[E[X_{SF}] = (7/8)^n \sum_\alpha \Pr[SF(\alpha) | \alpha \models F] \]

Given \(\alpha \) and \(x \) with \(\alpha(x) = 0 \), \(\Pr[\alpha_x \not\models C] = \frac{n-1}{2} / 7 \binom{n}{3} = 3/(7n) \)

Thus: \(\Pr[\alpha_x \not\models F] = 1 - \left(1 - 3/(7n)\right)^n \)

Let \(n_0(\alpha) = |\{x; \alpha(x) = 0\}|. \)

\[\Pr[SF(\alpha) | \alpha \models F] = \left(1 - (1 - 3/(7n))^n\right)^{n_0(\alpha)} \]

\[= \left(1 - e^{-3r/7} + o(1)\right)^{n_0(\alpha)} \]

Thus \(E[X_{SF}] \leq (7/8)^n \left(2 - (1 - 3/(7n))^n\right)^n \)

\[\leq (7/8)^n \left(2 - e^{-3r/7} + o(1)\right)^n \]

This term is exponentially small for \((7/8)^r(2 - e^{-3r/7}) < 1\), which holds for \(r \geq 4.667 \).
Algorithmic lower bound

Consider the following heuristic algorithm:

repeat \(N \) times

\[\alpha := [] \]

while \(V(F\alpha) \neq \emptyset \) do

\[\text{pick literal } a = H(F\alpha) \text{ in } F\alpha \]

\[\alpha := \alpha \cup [a := 1] \]

if \(\alpha \models F \)

then return \(\alpha \)

Performance depends on heuristic \(H(F\alpha) \).
Pure literal heuristic

Pure literal heuristic $H(F\alpha)$:
- if $F\alpha$ contains a pure literal a, pick a
- otherwise pick a uniformly random from the literals in $F\alpha$

Theorem

For $r < 1.637$, the pure literal heuristic finds $\alpha \models F_3(n, rn)$ with high probability.

For $r \geq 1.7$, the pure literal heuristic fails on $F_3(n, rn)$ with high probability.
Generalized unit clause heuristic

Generalized unit clause heuristic $H(F\alpha)$:

- pick a uniformly random from the literals occurring in minimal width clauses in $F\alpha$

Theorem

For $r < 3.003$, the generalized unit clause heuristic finds $\alpha \models F_3(n, rn)$ with high probability.

For $r \geq 3.003$, the generalized unit clause heuristic fails on $F_3(n, rn)$ with high probability.
Balanced literal heuristic $H(F_\alpha)$:

- if F_α contains a pure literal a, pick a
- otherwise pick a such that $p(a) - n(a)$ is maximal, where
 - $p(a)$: number of occurrences of a
 - $n(a)$: number of occurrences of \bar{a}

Theorem

For $r < 3.52$, the balanced literal heuristic finds $\alpha \models F_3(n, rn)$ with high probability.

In particular, $r_3 \geq 3.52$.
Membership filters

A membership filter is a data structure that maintains a subset $Y \subset D$ of a large domain D.

It supports the operation $\text{query}(x)$ for $x \in D$ with the property:

- $\text{query}(x) = \text{No} \; \rightarrow \; x \notin Y$
- $\text{query}(x) = \text{Yes} \; \rightarrow \; x \in Y$ with high probability.

Applications: fast preliminary membership test
safety-critical test where false positives do not matter
Hash functions

Hash function $h : D \rightarrow [n]$, where $n \ll |D|$.

Assumption for analysis:

- $h(x)$ in uniformly random,
 i.e., $\Pr[h(x) = i] = 1/n$ for $x \in D$ and $i < n$,
- for $x \neq y \in D$, $h(x)$ and $h(y)$ are independent.

Hash function as membership filter: Fingerprinting

- Store the set $F := \{h(y) ; y \in Y\}$.
- To query x, test whether $h(x) \in F$.
The Bloom filter

Let \(h_1, \ldots, h_k \) be hash functions \(h_i : D \to [n] \).

\(B \) boolean array of size \(n \)

\[
\text{buildBloom}(Y) \\
B := (0, \ldots, 0) \\
\text{for } x \in Y \text{ do} \\
\quad \text{for } i := 1 \text{ to } k \text{ do} \\
\quad \quad j := h_i(x) \\
\quad \quad B[j] := 1
\]

\[
\text{queryBloom}(x) \\
\quad \text{for } i := 1 \text{ to } k \text{ do} \\
\quad \quad j := h_i(x) \\
\quad \quad \text{if } B[j] = 0 \\
\quad \quad \quad \text{then return No} \\
\quad \quad \text{return Yes}
\]
Analysis of the Bloom filter

Let $m := |Y|$.

Probability $\Pr[B[j] = 0] = (1 - 1/n)^{km} \approx e^{-km/n} =: p$

Probability of a false positive:

$$(1 - (1 - 1/n)^{km})^k \approx (1e^{-km/n})^k = (1 - p)^k =: f$$

Let $g := \ln f = k \ln(1 - e^{-km/n})$.

Minimize g to find optimal number k of hash functions.

g is minimal for $k = n/m \cdot \ln 2$, where $f = 1/2^k = (0.6185n/m)$.

E.g. for $n = 8m$, we get $k = 6$ with prob. of false positives of about 2%.
The SAT filter: clauses from elements

Let h_1, \ldots, h_k be hash functions $h_i : D \times \mathbb{N} \rightarrow \{-n, \ldots, n\} \setminus \{0\}$.

Interpret value $i \leq n$ as x_i, and $-i$ as \overline{x}_i

makeClause(x)

$n := 0$
repeat
 $n := n + 1$
 for $i := 1$ to k do
 $a := h_i(x, n)$
 $C := C \lor a$
 until $w(C) = k$ and C non-tautological
return C
The SAT filter: building and querying

\(\alpha \) assignment to variables \(x_1, \ldots, x_n \)

\begin{align*}
\text{buildSAT}(Y) & \\
& F := 1 \\
& \text{for } x \in Y \text{ do} \\
& \quad C := \text{makeClause}(x) \\
& \quad F := F \land C \\
& \alpha := \text{solve}(F)
\end{align*}

\begin{align*}
\text{querySAT}(x) & \\
& C := \text{makeClause}(x) \\
& \text{if } \alpha \models C \\
& \quad \text{then return Yes} \\
& \quad \text{else return No}
\end{align*}
Given \(m \), choose \(n \) and \(k \) so that \(F \) is satisfiable, e.g., so that \(m/n \leq 2^k \ln 2 - k \).

Probability of a false positive: \(p = (1 - 2^{-k}) \)

Efficiency: \[\frac{-\log p}{n/m} = -(2^k \ln 2 - k) \log(1 - (2^{-k})) \]

- Bloom filter: optimal \(k \) with efficiency \(\ln 2 \)
- SAT filter: efficiency tends to 1 as \(k \to \infty \)