Overview

Introduction

Tractable cases

DPLL algorithms

CDCL solvers

Probabilistic algorithms

Applications

Proof Complexity
 Resolution
 Resolution lower bounds
 Separation of tree- and dag-like Resolution
 Width-restricted clause learning
Proof systems

A proof system for set A is a binary relation R with
- $R(x, y)$ can be decided in time $poly(|x|, |y|)$.
- there is p s.t. $R(p, a)$ iff $a \in A$

p with $R(p, a)$ is called a proof of a.

Question: What is the size of a minimal proof of $a \in A$, as a function of $|a|$?

Motivation: Complexity Theory, Logic, Algorithms
Proof systems for UNSAT

Proof system R is polynomially bounded, if for some d, for every $a \in A$ there is p with $R(p, a)$ and $|p| \leq O(|a|^d)$

A has a polynomially bounded proof system iff A is in NP.

Let UNSAT be the set of unsatisfiable formulas.

Fact: UNSAT has a polynomially bounded proof system iff $NP = co-NP$.
Simulation

Let R and R' be proof systems for A

R' simulates R ($R \leq R'$),
- if for every $a \in A$ and p with $R(p, a)$,
 there is p' with $R'(p', a)$ with $|p'| \leq O(|p|^d)$.

R and R' are equivalent ($R \equiv R'$),
- if $R \leq R'$ and $R' \leq R$.
Proof systems and SAT algorithms

Let A be a complete SAT algorithm.

Proof system R_A with:

proof that F is UNSAT \triangleq transcript of run of A on F

P_A is equivalent to some natural proof system, for many algorithms A.
Resolution

The resolution rule:

from \(C \lor a \) and \(D \lor \overline{a} \) derive \(C \lor D \).

A Resolution derivation of clause \(C \) from formula \(F \) is a dag labelled with clauses s.t.

- every node has in-degree 0 or 2
- there is exactly one sink labelled \(C \)
- If \(v \) has 2 predecessors \(u \) and \(u' \), then \(C_v \) is derived by resolution from \(C_u \) and \(C_{u'} \).
- if \(v \) is a source, then \(C_v \in F \)

A Resolution refutation of \(F \) is a derivation of the empty clause \(\square \) from \(F \).
Tree-like and Regular Resolution

A resolution refutation is tree-like, if the underlying dag is a tree.

Resolution refutation is regular, if no variable is eliminated twice on a path.

Theorem

\[F \text{ has a tree-like, regular Resolution refutation iff } F \text{ is unsatisfiable.} \]

Theorem

\[\text{If } F \text{ has a tree-like Resolution refutation of size } s, \text{ then } F \text{ has a tree-like regular Resolution refutation of size at most } s. \]
SAT algorithms and Resolution

Theorem

If DPLL runs in time t on unsatisfiable formula F, then F has a tree-like regular Resolution refutation of size at most t.

A version of the converse also holds.

Theorem

If CDCL runs in time t on unsatisfiable formula F, then F has a (dag-like) Resolution refutation of size at most t.
A restriction is a partial assignment.

Theorem

Let P be a Resolution refutation of a formula F, and ρ a restriction.

Then there is a Resolution refutation P' of F_ρ of size at most $|P'| \leq |P|$.

We denote the refutation P' from the theorem by $P\lceil_\rho$.

- P tree-like $\leadsto P\lceil_\rho$ tree-like
- P regular $\leadsto P\lceil_\rho$ regular
The Pigeonhole Principle

The Pigeonhole Principle formula PHP^m_n:

$P_i := x_{i,1} \lor \ldots \lor x_{i,n}$ \quad i \leq m

$H_{i,j;k} := x_{i,k} \lor x_{j,k}$ \quad i < j \leq m, \quad k \leq n

We denote the set of pigeon axioms P_i in PHP^m_n by PA^m_n.

Fact: PHP^m_n is unsatisfiable iff $m > n$.
Matching restrictions

A matching ρ from $[m]$ into $[n]$ is a set of pairs
\[\{(i_1, j_1), \ldots, (i_k, j_k)\} \subset [m] \times [n] \]
such that all i_ν and all j_ν are pairwise distinct.

A matching ρ induces a restriction as follows:
\[
\rho(x_{i,j}) = \begin{cases}
1 & \text{if } (i,j) \in \rho \\
0 & \text{if there is } (i,j') \in \rho \text{ with } j \neq j' \\
 & \text{or } (i',j) \in \rho \text{ with } i \neq i'
\end{cases}
\]
unkinded otherwise.

Property: $PHP^n_{m} \left|_{\rho} \equiv PHP^{m-|\rho|}_{n-|\rho|}$
A matching ρ also defines a total assignment α_ρ:

$$\alpha_\rho(x_{i,j}) = \begin{cases}
1 & (i,j) \in \rho \\
0 & \text{otherwise.}
\end{cases}$$

α_ρ satisfies all hole clauses $H_{i,j,k}$ and exactly $|\rho|$ of the pigeon clauses P_i.

A critical assignment is a total assignment $\alpha = \alpha_\rho$, where ρ is a maximal matching of size $|\rho| = n$.
The **monotone calculus** is a proof system to refute pigeonhole axioms.

Lines in a proof are positive clauses.

Let \(P_{I,J} = \bigvee_{i \in I} \bigvee_{j \in J} x_{i,j} \), and \(P_{I,j} = P_{I,\{j\}} \)

The only inference rule:

\[
\frac{C \lor P_{l_0,j} \quad D \lor P_{l_1,j}}{C \lor D}
\]

where \(l_0 \) and \(l_1 \) are disjoint subsets of \([m]\).

The monotone calculus is correct w.r.t. critical assignments.
The Monotone Calculus and Resolution

Proposition

If PA^m_n has a monotone calculus refutation of size s, then there is a Resolution refutation of PHP^m_n of size at most $m^2 \cdot s$.

Theorem

If PHP^m_n has a Resolution refutation of size s, then there is a monotone calculus refutation of PA^m_n of size at most s.
Theorem

If P is a monotone calculus refutation of PA_{n-1}^n, then P is of size $|P| \geq 2^{n/20}$.

Strategy of proof:

1. Convert a short refutation P to a refutation P' of $PA_{n'-1}^{n'}$ for $n' < n$, such that P' contains only narrow clauses.

2. Show that any refutation of PA_{n-1}^n contains a wide clause.
Goal 1: Removing wide clauses

Lemma

If P is a monotone refutation of PA^{n}_{n-1} of size $|P| < 2^{n/20}$, then there is a matching restriction ρ with

1. $|\rho| \leq 0.329n$
2. $P \upharpoonright _{\rho}$ contains no large clause C of width $w(C) \geq n^2/10$.

Greedy algorithm to find ρ:

$p := \emptyset$

while there is a large clause in $P \upharpoonright _{\rho}$

pick (i,j) s.t. $x_{i,j}$ occurs in most large clauses

$\rho := \rho \cup \{(i,j)\}$
Goal 2: Width lower bound

Lemma

If P is a monotone calculus refutation of PA_{n-1}^n, then there is a clause C in P with $w(C) \geq 2n^2/9$.

Proof strategy:

- Define a measure $\mu(C) \leq n$ on clauses in P.
- Show that there is C with $n/3 \leq \mu(C) \leq 2n/3$.
- Show that $w(C) \geq \mu(C)(n - \mu(C))$.
The measure μ

$F \models_{cr} C$ if $\alpha \models C$ for every critical $\alpha \models F$.

$\mu(C) := \min\{ |F|; F \subseteq PA_{n-1}^{n} \text{ and } F \models_{cr} C \}$

$\mu(\Box) = n$ and $\mu(P_i) = 1$.

If D follows from C and C' by resolution, then $\mu(D) \leq \mu(C) + \mu(C')$.

\Rightarrow there is C in P with $n/3 \leq \mu(C) \leq 2n/3$.

Lemma

$w(C) \geq \mu(C)(n - \mu(C))$.
Theorem

The clauses PA_{n+1}^n have a monotone calculus refutation of size $O(n2^n)$.

Proof: By induction on k, derive all clauses $P_{I,\{k,\ldots,n\}}$ for every set $I \subseteq [n+1]$ of size $|I| = k$.

Corollary

The clauses PHP_{n+1}^n have Resolution refutations of size $O(n^32^n)$.
Separation of tree- and dag-like Resolution

Theorem

If P is a tree-like Resolution refutation of PHP_n^{n+1}, then the size of P is at least $2^{\Omega(n \log n)}$.

Proof strategy: Construct a tree T_P with

- every vertex in T_P is a vertex in P, children of v in T are descendants of v in P
- the depth of T_P is $n/2$
- every vertex in T_P has either 1 or $n/4$ children
- on every path in T_P at least $n/4$ vertices have $n/4$ children
- therefore $|P| \geq |T_P| \geq (n/4)^{(n/4)}$
For each node v labelled C_v define restriction ρ_v with $C_v \rho_v = 0$:

- for the root r set $\rho_r = \emptyset$
- $C_v = D \lor D'$ inferred from $C_{v0} = D \lor x_v$ and $C_{v1} = D' \lor \bar{x}_v$
 set $\rho_{v0} = \rho_v \cup [x_v := 0]$ and $\rho_{v1} = \rho_v \cup [x_v := 1]$

Let ρ be a restriction. Variable $x_{i,j}$ is

- consistent with ρ, if there is no i', j' such that $\rho(x_{i',j}) = 1$ or $\rho(x_{i,j'}) = 1$,
- active for ρ, if consistent with ρ and $\rho(x_{i,j})$ is undefined,
- bad for ρ, if consistent with ρ, and $\rho(x_{i,j}) = 0$.

$B(\rho)$ is the number of variables that are bad for ρ.

ρ is dangerous, if there is i s.t. $x_{i,j}$ is bad for ρ for $n/2$ many j.
Defining the tree T_P

The root of T_P is the root of P.

To define the children of a node v, we inductively define sets C_i and nodes v_i:

- $C_0 = \emptyset$ and $v_0 = v$
- if $|C_i| < n/4$ and ρ_{v_i} is not dangerous:
 - $C_{i+1} = C_i \cup \{v_i1\}$ if x_{v_i} is active for ρ_{v_i},
 - $C_{i+1} = C_i$ otherwise,
 - $v_{i+1} = v_i0$.
- if $|C_i| = n/4$ and ρ_{v_i} is not dangerous:
 children of v are all vertices in C_i.
- if ρ_{v_i} is dangerous, then $v_{i-1}1$ is the only child of v
Properties of the tree T_P

Lemma

The definition of T_P can be continued until depth $n/2$.

Lemma

Let v' be a child of v in T_P.

- If v' is the only child of v, then $B(\rho_{v'}) \leq B(\rho_v) - n/4$.
- If v' is not the only child of v, then $B(\rho_{v'}) \leq B(\rho_v) + n/4 - 1$.

Lemma

On every path in T_P, at most $n/4$ vertices have only one child in T_P.
The Ordering Principle

... says: An ordering of \([n]\) has a maximum

The formula \(Ord_n\):

- **variables** \(x_{i,j}\) for \(i, j \leq n\) and \(i \neq j\)
- **totality clauses** \(x_{i,j} \lor x_{j,i}\) for all \(i, j\)
- **asymmetry clauses** \(\bar{x}_{i,j} \lor \bar{x}_{j,i}\) for all \(i, j\)
- **transitivity clauses** \(\bar{x}_{i,j} \lor \bar{x}_{j,k} \lor \bar{x}_{k,i}\) for all \(i, j, k\)
- **maximum clauses** \(M_i^{(n)}\) \(\lor_{j \leq n, j \neq i} x_{i,j}\) for all \(i\)
Theorem

There are regular resolution proofs of Ord_n of size $O(n^3)$.

Proof: By induction on k from n downward, derive Ord_k.

It suffices to derive the clauses $M_i^{(k)} = \bigvee_{j \leq k, j \neq i} x_i \land j$
Ordering restrictions

Ordering restriction: \(\sigma = \sigma_{S, \prec} \) defined by \(S \subseteq [n] \) and an ordering \(\prec \) on \(S \).

\[
\sigma(x_{i,j}) = \begin{cases}
1 & \text{if } i, j \in S \text{ and } i \prec j \\
0 & \text{if } i, j \in S \text{ and } j \prec i \\
x_{i,j} & \text{otherwise},
\end{cases}
\]

For \(\sigma = \sigma_{S, \prec} \), we denote \(S \) by \(S(\sigma) \) and \(\prec \) by \(\prec_\sigma \).
Lower bound for the Ordering Principle

Theorem

Every tree-like resolution refutation P *of* Ord_n *has size* $|P| \geq 2^{\Omega(n)}$.

Proof strategy: Construct a sub-tree T_P of P with

- for every vertex v in T_P define ordering restriction σ_v with $C_v \sigma_v = 0$
- every vertex in T_P has either 1 or 2 children
- every path in T_P has at least $n/4$ vertices with 2 children
- therefore $|P| \geq |T_P| \geq 2^{(n/4)}$
Construction of T_P

The root of T_P is the root of P.

Let v be a vertex in T_P, with $|S(\sigma_v)| < n/2$ and variable $x_v = x_{i,j}$.

- if $\{i, j\} \subseteq S(\sigma_v)$, so $\sigma_v(x_{i,j})$ is defined
 let v' be the child of v in P with $C_{v', \sigma_v} = 0$
 add v' as the only child of v in T_P, and let $\sigma_{v'} = \sigma_v$

- otherwise $\sigma_v(x_{i,j})$ is undefined
 add both children of v in P to T_P
 let $S' = S \cup \{i, j\}$
 extend \prec to \prec_0 with $j \prec_0 i$, set $\sigma_{v0} = \sigma_{S', \prec_0}$
 extend \prec to \prec_1 with $i \prec_1 j$, set $\sigma_{v1} = \sigma_{S', \prec_1}$

Continue extending the tree until $S(\sigma_v) \geq n/2$ in every leaf v.
Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

- $C_{\text{root}} = \square$

- if v has 2 children u and u', then
 C_v is obtained by resolution from C_u and $C_{u'}$

- if v has 1 child u, then
 $C_v \supseteq C_u$

- if v is a leaf, then
 $C_v \in F$ or $C_v = C_u$ for some $u \prec v$ (lemma)

\prec is the post-order on trees.
Clause learning and *RTL*

Theorem

If unsatisfiable formula F is refuted by CDCL without restarts in s steps, then F has an RTL-refutation R of size $s \cdot n^{O(1)}$. Moreover, the lemmas used in R are among the clauses learned by the algorithm.

In fact, there is a subsystem $WRTI \prec RTL$ for which a sort of converse also holds.

Fact: regular Resolution \preceq regular RTL \preceq Resolution
A refutation R in RTL is in $RTL(k)$, if every lemma C used in R is of width $w(C) \leq k$.

Theorem

For $k \leq n/2$, every $RTL(k)$-refutation of PHP_n^{n+1} is of size $2^{\Omega(n \log n)}$.

Shows: Learning short clauses does not help to refute PHP.

Lower bounds for $RTL(k)$
Lower bound for the Pigeonhole Principle

Lemma

For R an $RTL(k)$-refutation of F, there is R' that contains no lemma $D \supset C$ for $C \in F$, and $|R'| \leq 2|R|$.

Lower bound is shown for $FPHP_{n+1}^n$ with functional clauses:

- $F_{i;j,k} \quad \bar{x}_{i,j} \lor x_{i,k}$ for $j < k$

Main Lemma

Let C be a clause of width $w(C) \leq k \leq n/2$, such that

- C not subsumed by hole clause $\bar{x}_{i,j} \lor \bar{x}_{i',j}$
- C not subsumed by functional clause $\bar{x}_{i,j} \lor x_{i,j'}$

Then there is a matching restriction ρ with $C|_{\rho} = 0$ and $|\rho| \leq k$.
Lower bound for the Pigeonhole Principle

Proof of the lower bound:

- Let R be a $RTL(k)$-refutation of $FPHP_{n+1}^n$.
- W.l.o.g. no lemma is subsumed by hole or functional clause.
- Let C be the first clause in R used as a lemma, so $w(C) \leq k$.
- Subtree R_C below C is tree-like resolution derivation of C.
- By the Main Lemma, there is matching restriction ρ with $C|\rho = 0$ and $|\rho| \leq k$.
- Thus $R_C|\rho$ is a tree-like refutation of $FPHP_{n+1}^n|\rho = FPHP_{n-k}^{n-1}$.
- Therefore $|R| \geq |R_C| \geq |R_C|\rho \geq (n/8)^{n/8} \geq 2^{\Omega(n \log n)}$.

Lower bound for the Ordering Principle

Theorem

For $k < n/4$, every $\text{RTL}(k)$-refutation of Ord_n is of size $2^{\Omega(n)}$.

Proof strategy: imitate proof for PHP.

Problem 1: proof shows it takes long to derive C sufficiently short not true here!

Problem 2: need notion of restriction preserving Ord_n formulas ordering restrictions don’t work!
New and improved ordering restrictions

Ordering restriction: defined by $S \subseteq [n]$ and an ordering \prec on S.

$$
\sigma(x_{i,j}) = \begin{cases}
1 & \text{if } i, j \in S \text{ and } i \prec j \\
0 & \text{if } i, j \in S \text{ and } j \prec i \\
x_{s,j} & \text{if } i \in S \text{ and } j \notin S \\
x_{i,s} & \text{if } i \notin S \text{ and } j \in S \\
x_{i,j} & \text{otherwise},
\end{cases}
$$

where $s \in S$ is fixed.

Property: $\Ord_n|_\sigma \equiv \Ord_{n-|S|+1}$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \quad \text{for } \overline{x}_{i,j} \in C$$

and

$$(j, i) \quad \text{for } x_{i,j} \in C$$

Definition: C is cyclic, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
The main lemmas

Lemma

If there is an RTL(k)-refutation of Ord_n of size s, then there is another one using no cyclic lemmas of size $O(sk)$.

Proof: Replace each cyclic lemma by its derivation of size $O(k)$.

Lemma

If C is acyclic with $w(C) \leq k$, then there is an ordering restriction σ with $|\sigma| \leq 2k$ such that $C|_{\sigma}=0$.

Proof: For C acyclic $G(C)$ is a dag

\[\rightsquigarrow\] obtain σ as a topological ordering of $G(C)$.
Proof of the lower bound:

- Let R be a $RTL(k)$-refutation of Ord_n.
- W.l.o.g. no lemma is cyclic.
- Let C be the first clause in R used as a lemma, so C is acyclic and $w(C) \leq k$.
- Subtree R_C below C is tree-like resolution derivation of C.
- By the Main Lemma, there is an ordering restriction σ with $C[\sigma] = 0$ and $|\sigma| \leq 2k$.
- Thus $R_C[\sigma]$ is a tree-like refutation of $Ord_n[\sigma] = Ord_n - 2k + 1$.
- Therefore $|R| \geq |R_C| \geq |R_C[\rho]| \geq 2^{n/8} \geq 2^{\Omega(n)}$.

Lower bound for the Ordering Principle