
Exercise 10-2 The RSA hardness assumption states that \(P(\text{RSA-inv}_A(n) = 1) \leq \text{negl}(n) \) for any probabilistic polynomial time adversary \(A \).

Show that the RSA hardness assumption implies that factoring is hard in the following sense: No probabilistic polynomial time adversary \(B \) can succeed in the following factoring experiment with non-negligible probability.

1. Randomly generate two primes \(p \) and \(q \) and let \(N := p \cdot q \).
2. Adversary \(B \) is given \(N \) and returns two numbers \(p' \) and \(q' \).
3. The adversary succeeds in the experiment if \(p' \cdot q' = N \).

Exercise 10-3 For any given pseudorandom function \(F \), one can attempt to define a hash function \((\text{Gen}, H) \) by letting \(\text{Gen}(n) \) be a random string \(s \) of length \(n \) and defining \(H_s(x) := F_s(x) \). Would this definition always produce a collision-resistant hash function?