Type Destructors

Martin Hofmann and Benjamin C. Pierce

Department of Computer Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Published online

We study a variant of System F_ω that integrates and generalizes several existing proposals for calculi with “structural typing rules.” To the usual type constructors (\to, \times, All, Some, Rec) we add a number of type destructors, each internalizing a useful fact about the subtyping relation. For example, in F_ω with products every closed subtype of a product $S \times T$ must itself be a product $S' \times T'$ with $S' < S$ and $T' < T$. We internalise this observation by introducing type destructors $\cdot.1$ and $\cdot.2$ and postulating an equivalence $T=_{\cdot} T.1 \times T.2$ whenever $T < U \times V$ (including, for example, when T is a variable). In other words, every subtype of a product type literally is a product type, modulo \cdot-conversion. Adding type destructors provides a clean solution to the problem of polymorphic update without introducing new term formers, new forms of polymorphism, or quantification over type operators. We illustrate this by giving elementary presentations of two well-known encodings of objects, one based on recursive record types and the other based on existential packages. The formulation of type destructors poses some tricky meta-theoretic problems. We discuss two different variants: an “ideal” system where both constructors and destructors appear in general forms, and a more modest system, F_{TD}, which imposes some restrictions in order to achieve a tractable metatheory. The properties of the latter system are developed in detail.

1. INTRODUCTION

The search for type-theoretic foundations for object-oriented languages has driven the development of numerous typed lambda-calculi combining polymorphism and subtyping. The prototype of these systems is F_ω [12, 14, 16]. However, in the recent literature, many have observed that F_ω in its pure form is an inadequate framework for object-oriented programming. The problem is that the only way in which subtyping in F_ω can be used in typing terms is via the subsumption rule, which “wastes” some of the information contained in the subtyping relation. In particular, there is no way in F_ω to define polymorphic update functions—functions with types like $\text{All}(X < T).X\to X$ that do not behave like the polymorphic identity (or its approximations)—which play an important role in encodings of objects.

To address this shortcoming, several extensions and refinements of F_ω have been proposed, including extensions to higher-order polymorphism [8, 11, 15, 20, 23, 24] and a number of special-purpose second-order systems, among them systems with record update [9, 13, 17, 19, 25], “structural unfolding” for recursive types [2], and “polymorphic repacking” for existential types [22]. What the latter group of extensions have in common is that their soundness is intuitively argued for by using an internalisation of the generation lemma for subtyping: every concrete (closed) subtype of a concrete type T must have the same outermost type former as T.

A simple example in which this principle is applied (popularized by Cardelli [10], who attributes it to Abadi) is the following. If $X < T_1 \times T_2$, then, when X is eventually instantiated with a closed type, this type will be a product whose factors are subtypes of T_1 and T_2, respectively. So it should be sound to assume a function

$$\text{mix} \in \text{All}(X < \text{Top} \times \text{Top}) \to X \to X$$

such that

$$\text{mix} \ [S_1 \times S_2] \ e \ e' = (e,.1,e'.2).$$

That is, mix takes the first component of its first argument and the second component of its second argument to form a new element of type X. Clearly, this assumes that under the constraint $X < \text{Top} \times \text{Top}$
the variable \(x \) gets instantiated by a product and not by a base type or function type. Although the type system of \(F \) ensures that this is indeed the case, \(F \) provides no way to make use of this fact to define a function with \(\text{mix} \)'s behavior.

A more interesting example is a refinement of the standard unfolding rule for recursive types. It was used by Abadi et al. [2, 3] to perform method calls in their encoding of objects:

\[
\text{unfold} \in \text{All}(X : \text{Rec}(Z)T) \ X \to [X/Z]T.
\]

Here the idea is that (assuming monotone subtyping for recursive types) the variable \(x \) will eventually be instantiated by some recursive type \(\text{Rec}(Y)S \), where \(Y < : Z \vdash S < : T \). Hence (by subsumption) the ordinary unfolding of \(x \in X \) also has the type \([x/Z]\)T.

As a final example we mention Pierce’s repacking operator for existential types [22]. In order to formulate the existential object encoding [24] in a second-order setting, one can introduce a function

\[
\text{repack} \in \text{All}(X : \text{Some}(Z)T) \ (\text{All}(Z) \ \text{All}(S < : T) \ S \to S) \to X \to X
\]

with the following intended meaning:

\[
\text{repack}[\text{Some}(Z)S] f e =
\]

\[
\text{open } e \text{ as } [Z,m] \text{ in }
\]

\[
\text{pack } f[Z][S]m \text{ as } \text{Some}(Z)S.
\]

Intuitively, \(\text{repack} \) opens its second argument, applies its first argument to it, and repackages the result.

The soundness of this operation hinges on the fact that every subtype of an existential type is again an existential.

In each of these examples one can argue operationally that the addition of the new operators is sound, in the sense that all programs of ground type (possibly containing the new operators) can be reduced to a canonical form [10]. In the present paper we present a more radical approach. We propose a new calculus (called \(F \)) in which it is literally the case that every subtype (even a variable) of a product, existential, or recursive type can be regarded as a type with the same shape. As an immediate application, the updating constructs sketched above become definable.

This is done by introducing one or more new type formers, called \(\text{type destructors} \), for each type constructor that we want to equip with update operations (at present these are cartesian products, existential types, and recursive types). For example, to handle cartesian products we introduce new type formers \(.1 \) and \(.2 \) (i.e., if \(\tau \) is a type, so are \(\tau.1 \) and \(\tau.2 \)), which extract the first and the second component of a cartesian product type. Of course, since not every type is a cartesian product, not every type of the form \(\tau.1 \) is well-formed; for example, \(\text{Int}\.1 \) is not. In order to rule out these unwanted instances, we are lead to stipulate that \(\tau.1 \) is well-formed only if \(\tau < : S_1 \times S_2 \) for some types \(S_1 \) and \(S_2 \).

The type destructors for cartesian products obey a covariant subtyping rule: \(S < : \tau \) implies \(S.1 < : \tau.1 \). In addition, we have \(\beta \)- and \(\eta \)-like type equalities:

\[
(T_1 \times T_2).i = T_i \quad \text{Beta-Prod}
\]

\[
T = T.1 \times T.2 \quad \text{Eta-Prod}
\]

Let us see how we can define Abadi’s \(\text{mix} \) function using these rules. If \(x < : \text{Top} \times \text{Top} \) then \(X.1 \) and \(X.2 \) are well-kinded and we have \(X = X.1 \times X.2 \), so

\[
\text{fun}(X : \text{Top} \times \text{Top}) \text{ fun}(e : X) \text{ fun}(e' : X)
\]

\[
(e.1, e'.2)
\]

\[
\in \text{All}(X : \text{Top} \times \text{Top}) X \to X \to X
\]
becomes a valid typing. Notice that without type destructors the above function has the minimal type

$$\forall (X <: \text{Top} \times \text{Top}) \ X \to X \to (\text{Top} \times \text{Top}),$$

which wastes information.

To be able to write interesting (and sound) update functions, we need a type constructor that is invariant in the subtype relation. To this end, we introduce an updatable variant of the cartesian product, written \(!T_1 \times T_2\), which is invariant in its first position and covariant in its second. Here we only need the type destructor \(\Delta_2\), and the corresponding \(\eta\)-like rule (whenever \(T <: !S_1 \times S_2\)) is:

\[
T = !S_1 \times T.2 \quad \text{ETA-PROD-UPD}
\]

The type destructor together with the equation ETA-PROD-UPD allows us to define the following polymorphic update function for updatable products:

\[
\begin{align*}
\text{fun}(A <: \text{Top}) & \quad \text{fun}(X <: !A \times \text{Top}) \\
\text{fun}(e:X) & \quad \text{fun}(a:A) \quad (a, e.2) \\
\in & \quad \forall (A <: \text{Top}) \forall (X <: !A \times \text{Top}) \ X \to A \to X.
\end{align*}
\]

Again, without type destructors the minimal type of this function would be

$$\forall (A <: \text{Top}) \forall (X <: !A \times \text{Top}) \ X \to A \to (A \times \text{Top}),$$

which represents a loss of information. This example shows how updatable products provide a way of replacing a component of a compound object by a new value. In Section 4.1 we show how this can be used to encode records with updatable fields and single field update.

1.1. An Ideal System of Type Destructors

Starting from these considerations, we have experimented with a system for type destructors which extends \(F\) with a kinding judgment \(\Gamma \vdash \tau \in \ast\) to mean that \(\tau\) is a well-formed type in context \(\Gamma\).

Kinding rules for type destructors have subtyping premises; apart from the rules for product types introduced informally above, we have rules for type destructors corresponding to bounded existentials:

\[
\Gamma \vdash \mathbb{S} <: \text{Some}(X <: T_1)T_2
\]

\[
\Gamma \vdash \text{EBound}(\mathbb{S}) \in \ast
\]

\[
\Gamma \vdash \mathbb{S} <: \text{Some}(X <: T_1)T_2 \quad \quad \Gamma \vdash U \in \ast
\]

\[
\Gamma \vdash \text{EBody}(U, \mathbb{S}) \in \ast
\]

In addition, we have \(\beta\)- and \(\eta\)-like equalities for products (as above) and existentials

\[
\text{EBound(\text{Some}(X <: T_1)T_2)} = T_1
\]

\[
\text{EBody}(U, \text{Some}(X <: T_1)T_2) = [U/X]T_2
\]

and (provided the right-hand side is well formed)

\[
S = \text{Some}(X <: \text{EBound}(\mathbb{S})) \quad \text{EBody}(\mathbb{X}, \mathbb{S}).
\]

Similar rules can be given for recursive types.

This system looks quite natural and handles all of the above examples. Alas, although the system appears to be sound, its formal metatheory has proved totally unmanageable! The most prominent defect we have found is that \(\beta\)-reduction on well-formed types need not terminate. To see this, suppose that \(A = \text{Some}(X <: \text{Top})\text{Top}\) and \(B = \text{EBody}(Z, Z)\). The above rules yield \(Z <: A \vdash B \in \ast\). Now let \(C = \text{Some}(Z <: A)B\). The type expression \(\text{EBody}(C, C)\) is well-formed, but admits an infinite sequence of \(\beta\)-reductions.
Intuitively, the reason for this behavior is that in the presence of fully-fledged type destructors a quantifying construct such as the existential behaves like a variant of untyped functional abstraction (with the destructor E_{Body} playing the role of application). Although this idea does not seem to generalise to an encoding of the untyped lambda calculus, it does allow an encoding of the nonterminating term $\Omega = (\lambda x.xx)(\lambda x.xx)$. This problem makes it very difficult if not impossible to design a complete syntax-directed presentation of subtyping in the style of F_{\leq}.

1.2. The System F_{TD}^{\leq}

One could now accept this lack and look for sound but incomplete semi-algorithms for subtyping and type checking giving empirical evidence that these algorithms terminate on many interesting inputs. Preliminary experiments with an implementation suggest that this might be the case. In this paper, however, we take a different approach, describing a restricted system, F_{TD}^{\leq}, which does have desirable metatheoretic properties such as decidability of all judgements and type soundness. The most prominent difference between F_{TD}^{\leq} and the ideal system is the restriction to unbounded existential types. This means that we cannot further “destroy” an existentially bounded variable in the body of an existential type, as we did in the nonterminating counterexample above; in this way, we ensure that every type can be reduced to a normal form. Other more technical differences are that we have separated well-formedness from subtyping using a more refined kinding system and that we consider a β-redex like $(T_1 \times T_2) . 1$ as definitionally equal to T_1. Finally, we forbid eta-conversion of types in certain positions, notably bounds of universal quantifiers. This simplifies the metatheory and does not seem to restrict the applicability of the system in an essential way.

The system F_{TD}^{\leq} contains a destructor for recursive types, and thus allows us to define all of the update operations mentioned above. (We show how to treat the example of structural unfolding for recursive types in Section 3.)

1.3. Translation into F_{\leq}^{ω}

The fragment of F_{TD}^{\leq} without recursive types admits a translation into the higher-order system F_{\leq}^{ω} [8, 11, 15, 20, 23, 24], which is the identity on untyped terms. The details of this translation are a bit heavy notationally, but the basic idea is easy to explain and might improve the reader’s intuition for type destructors. Roughly, we translate a variable binding $Z < : T$ into a sequence of type variable and type operator variable bindings, followed by a let-binding defining Z in terms of these newly bound variables. For example, a binding $Z < : \text{Some}(X) \rightarrow X \rightarrow (X \rightarrow \text{Int})$

becomes

$$Z_{E_{\text{Body}}(2).2.1} < : \text{Fun}(X)X$$
$$Z_{E_{\text{Body}}(2).2.2} < : \text{Fun}(X)X \rightarrow \text{Int}$$
$$Z = \text{Some}(X) \rightarrow X \times Z_{E_{\text{Body}}(2).2.1}(X) \times Z_{E_{\text{Body}}(2).2.2}(X) .$$

Then, for example, the F_{TD}^{\leq}-type $E_{\text{Body}}(U,Z).2.1$ can be defined as $Z_{E_{\text{Body}}(2).2.1}(U)$. Note the similarity between the result of the translation and the original “simple existential encoding” of objects in F_{\leq}^{ω} [20, 24].

We can thus view (the non-recursive fragment of) F_{TD}^{\leq} as a high-level syntax for such explicit type and operator quantifications. Our experience with a prototype implementation suggests that the use of F_{TD}^{\leq} instead of these explicit quantifications leads to substantially simpler and more readable code.

Extending this translation to recursive types with monotone subtyping would require an extension of F_{\leq}^{ω} with monotone operator subtyping (cf. [8, 26]). The ideal system with full bounded existentials does not seem to admit a translation of this kind.
Outline

Section 2 begins the formal treatment of F_{TD}^e with a definition of its syntax. Section 3 defines the kinding, eta-conversion, subtyping, and typing relations. In Section 4 we reformulate two familiar encodings of objects—the standard recursive-records model and the simple existential model—in F_{TD}^e. Section 5 develops the metatheory of the system in detail. Section 6 sketches a possible denotational semantics for the system. Section 7 offers concluding remarks and some ideas for future work.

2. SYNTAX

For technical convenience, we split the syntactic class of types into two parts: neutral types, consisting of a type variable possibly embedded in a sequence of destructors, and active types, which have a concrete type constructor at the head:

$$
\begin{align*}
T &::= N & \text{neutral type} \\
A &::= \text{active type} \\
N &::= X & \text{type variable} \\
N.1 &::= \text{first projection} \\
N.2 &::= \text{second projection} \\
\text{EBody}(T,N) &::= \text{body of an existential type} \\
\text{RBody}(T,N) &::= \text{body of a recursive type} \\
A &::= \text{Top} & \text{maximal type} \\
\text{Int} &::= \text{constant type of integers} \\
T_1 \to T_2 &::= \text{function type} \\
T_1 \times T_2 &::= \text{product type} \\
!T_1 \times T_2 &::= \text{updatable product type} \\
\text{All}(X<:T_1)T_2 &::= \text{universal type} \\
\text{Some}(X)T &::= \text{existential type} \\
\text{Rec}(X)T &::= \text{recursive type}
\end{align*}
$$

The destructors .1 and .2 correspond to the product type constructor \times (and, in the case of .2, also to the updatable product constructor $!\times\times$). The destructor EBody corresponds to the constructor Some; intuitively, EBody(T,N) can be read as “The type formed by instantiating the body of the existential type N with the value T for the bound variable.” (For example, consider the type expression EBody(Int,X): if X is later instantiated with Some$(Y)Y \times Y$, then EBody(Int,X) will become equivalent to Int \times Int; the definitions of substitution below and the eta-conversion relation in Section 3.2 will make this point clearer.) Similarly, the destructor RBody corresponds to the constructor Rec.

Notice that we do not provide destructors for all of the constructors. Introducing destructors for contravariant constructors such as \to and All would give rise to destructors with contravariant subtyping behavior, which raise difficult metatheoretic problems (requiring backtracking during subtype-checking, etc.). For example, if we were to introduce destructors Dom and Cod such that $\text{Dom}(T) \to \text{Cod}(T)$ whenever $T <: S_1 \to S_2$, then Dom would be contravariant. Now suppose that we want to check $X.1 <: \text{Dom}(Y)$ under the assumptions $X <: S_1 \times S_2$ and $Y <: T_1 \to T_2$. Our current goal would then follow from either $S_1 <: \text{Dom}(Y)$ or $X.1 <: T_1$. We cannot know at this point which alternative to choose, so backtracking will be required. We could not think of any useful applications for such contravariant destructors, so we decided to omit them.

Also, notice that—as explained in the Introduction—existential types are unbounded in the present system. This is a real restriction: many object encodings can be carried out using only unbounded existentials, but some of the most interesting encodings (e.g., Abadi et al.’s [3]) do require bounded existential types. Therefore, future research should concentrate on removing this restriction (cf. Section 7).
We will only use the destructor for non-updatable products: for updatable products it is not needed (if we know that $T < \U \times V$, then we know that the first component of T is exactly U), and allowing it clutters the formal development.

A typing context Γ is a list of bindings of the form $x: \tau, x: *$ such that, whenever $\Gamma = \Gamma', x: \tau, \Gamma''$ or $\Gamma = \Gamma', x: \tau, \Gamma''$, all free variables of τ are bound in Γ':

\[
\Gamma ::= \star \quad \text{empty context} \\
\Gamma, x : \tau \quad \text{variable binding} \\
\Gamma, x : * \quad \text{parameter binding} \\
\Gamma, x : \triangleleft \tau \quad \text{bounded type variable binding}
\]

If $x : \tau$ occurs in Γ then $\Gamma(x) \equiv \tau$; if $x : *$ occurs in Γ then $\Gamma(x) \equiv \star$.

A type variable whose binding has the form $x : \triangleleft$ is called a parameter.

Definition 1 (Substitution). Since we restrict the application of destructors to neutral types, excluding expressions like $(T_1 \times T_2).1$, we need to simplify type expressions when we perform a substitution. To do this we define the substitution $[V/x](\tau)$ of type V for x in τ by

\[
[V/x](\star.1) = \\
\begin{cases}
\langle [V/x]\tau \rangle.1 & \text{if } [V/x]\tau \text{ neutral} \\
S_i & \text{if } [V/x]\tau = S_1 \times S_2 \\
\text{undefined} & \text{otherwise}
\end{cases}
\]

\[
[V/x](\text{EBody}(T,N)) = \\
\begin{cases}
\text{EBody}([V/x]T,[V/x]N) & \text{if } [V/x]\tau \text{ neutral} \\
\langle [V/x]T\tau/Y \rangle S & \text{if } [V/x]\tau = \text{Some}(Y)S \\
\text{undefined} & \text{otherwise}.
\end{cases}
\]

\[
[V/x](\text{RBody}(T,N)) = \\
\begin{cases}
\text{RBody}([V/x]T,[V/x]N) & \text{if } [V/x]\tau \text{ neutral} \\
\langle [V/x]T\tau/Y \rangle S & \text{if } [V/x]\tau = \text{Rec}(Y)S \\
\text{undefined} & \text{otherwise}.
\end{cases}
\]

For the other type formers, substitution is defined as usual.

As a notational convenience, the destructors are extended to active types by substitution; e.g.,

\[
\text{RBody}(S,\text{Rec}(X)T) = [\text{Rec}(X)T/Y]\text{RBody}(S,Y) = [S/x]T.
\]

Obviously, these expressions may be undefined.

We will show later (in Section 5) that well-kindred instances of substitution are always defined. Notice that well-kindredness is crucial to well-definedness of substitution, since in the raw syntax, the nonterminating counterexample can still be formed. In particular, there is no way of distinguishing parameters from other types on the level of the syntax; so, for instance, we can substitute any type for a parameter. This means that we will have to establish well-definedness of substitution simultaneously with the other meta-theoretic properties of kinding and subtyping (leading to a slightly involved logical structure of the argument).

We believe that it would be possible to remove the distinction between active and neutral types by extending the grammar of types with compound expressions like $\text{RBody}(S,\text{Rec}(X)T)$. However, these compound types would also have to be accounted for in the subtyping and kinding rules as well as in proofs, which would complicate other aspects of the development.
The term formers of F^{TD} are precisely the familiar ones for the type constructors listed above. Note that there are no extra syntactic forms corresponding to the type destructors:

\[
e ::= i \quad \text{integer constant}
\]

\[
x \quad \text{variable}
\]

\[
\text{fun}(x:T)e \quad \text{function}
\]

\[
e_1 \ e_2 \quad \text{application}
\]

\[
e_1 , e_2 \quad \text{pair}
\]

\[
\!e_1 , e_2 \quad \text{updatable pair}
\]

\[
e.1 \quad \text{first projection}
\]

\[
e.2 \quad \text{second projection}
\]

\[
\text{fun}(X <: T_1)e \quad \text{polymorphic abstraction}
\]

\[
e[T] \quad \text{polymorphic application}
\]

\[
\text{fold} [R] \quad \text{fold a recursive type}
\]

\[
\text{unfold} [R] \quad \text{unfold a recursive type}
\]

\[
\text{pack} [S,e] \text{ as } T \quad \text{existential package}
\]

\[
\text{open } e \text{ as } [X,x] \text{ in } e \quad \text{use of a package}
\]

Beta reduction on raw terms is defined as usual as the least reflexive transitive relation \rightarrow compatible with the term forming operations and closed under the following basic reduction steps:

\[
\begin{align*}
(f\text{un}(x : T)e) \ e' & \rightarrow [e'/x]e \\
(f\text{un}(X <: T_1)e)[S] & \rightarrow [S/X]e \\
(\pi_1 e_1 , e_2).i & \rightarrow e_i \\
\text{unfold}[R] (\text{fold}[S] e) & \rightarrow e \\
\text{open} \ (\text{pack}[S,e] \text{ as } T) \text{ as } [X,x] \text{ in } e' & \rightarrow [S/X][e/x]e'
\end{align*}
\]

We sometimes write \diamond to stand for any of the binary type constructors $\!\ldots\! \times \times \text{and } \rightarrow$.

3. TYPING RULES

3.1. Kinding

In order to control the applicability of type destructors we introduce a kinding relation which associates each well-formed type with a type of a special form (called a kind) that describes further applicability of destructors. The set of kinds is defined by the following grammar:

\[
K ::= \text{Top} \\
X \\
K_1 \times K_2 \\
\!T_1 \times K_2 \\
\text{Some}(X)K \\
\text{Rec}(X)K
\]

To state the kinding relation, we need a variant of the substitution operation that treats variables differently depending on where they occur. Suppose that κ and ι are kinds, S is a type, and X is a parameter. Then the substitution of S and κ for X in ι is defined as follows (the interesting clause is the one for
updatable products):

\[
\begin{align*}
[S, K/x]\text{Top} & = \text{Top} \\
[S, K/x]x & = \kappa \\
[S, K/x]L_1 \times L_2 & = [S, K/x]L_1 \times [S, K/x]L_2 \\
[S, K/x]!T_1 \times L_2 & = [S/x]!T_1 \times [S, K/x]L_2 \\
[S, K/x]\text{Some}(Y)L_2 & = \text{Some}(Y)[S, K/x]L_2 \quad \text{if } X \neq Y \\
[S, K/x]\text{Rec}(Y)L_2 & = \text{Rec}(Y)[S, K/x]L_2 \quad \text{if } X \neq Y
\end{align*}
\]

Intuitively, \([S, K/x]L\) is obtained from \(L\) by replacing every occurrence of \(x\) in \(L\) within a left-hand side of an updatable product by \(S\), and every other occurrence by \(K\). The kinding relation \(\Gamma \vdash \tau \ll \kappa\) now associates each well-formed type expression \(\tau\) with an active type \(\kappa\) from which the applicability of destructors can be read off. We say that that \(\tau\) is well-kinded under \(\Gamma\) and write \(\Gamma \vdash \tau \ll \kappa\) for some \(\kappa\):

\[
\begin{align*}
\Gamma \vdash \text{Top} \ll \text{Top} & \quad \text{(K-Top)} \\
\Gamma \vdash \text{Int} \ll \text{Top} & \quad \text{(K-Base)} \\
\Gamma \vdash \tau_1 \in \ast & \quad \Gamma \vdash \tau_2 \in \ast \\
\Gamma \vdash \tau_1 \rightarrow \tau_2 \ll \text{Top} \quad & \quad \text{(K-Arr)} \\
\Gamma \vdash \tau_1 \ll \kappa_1 & \quad \Gamma \vdash \tau_2 \ll \kappa_2 \\
\Gamma \vdash \tau_1 \times \tau_2 \ll \kappa_1 \times \kappa_2 \quad & \quad \text{(K-Prod)} \\
\Gamma \vdash \downarrow T_1 \times \downarrow T_2 \ll \downarrow T_1 \times \downarrow T_2 \quad & \quad \text{(K-Upd)} \\
\Gamma, x \vdash \tau_2 \ll \kappa_2 & \quad \text{(K-Some)} \\
\Gamma \vdash \text{All}(x < \tau_1)\tau_2 \ll \text{Top} \quad & \quad \text{(K-All)} \\
\Gamma, x : \ast \vdash \tau \ll \kappa & \quad \text{(K-Rec)} \\
\Gamma \vdash \text{Rec}(X)\tau \ll \text{Rec}(X)\kappa \quad & \quad \text{(K-Rec)}
\end{align*}
\]

\[
\begin{align*}
\Gamma(x) = \ast & \quad \text{(K-Param)} \\
\Gamma \vdash x \ll x \quad & \quad \text{(K-Var)} \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \Gamma(x) \ll \kappa & \quad \text{(K-Fst)} \\
\Gamma \vdash x \ll \kappa \quad & \quad \text{(K-Fst)} \\
\Gamma \vdash n \ll \kappa_1 \times \kappa_2 & \quad \text{(K-_snd)} \\
\Gamma \vdash n.1 \ll \kappa_1 \quad & \quad \text{(K-Snd)} \\
\Gamma \vdash n \ll \kappa_1 \times \kappa_2 & \quad \text{(K-Snd)} \\
\Gamma \vdash n.2 \ll \kappa_2 \quad & \quad \text{(K-Snd)}
\end{align*}
\]
The most interesting rules are K-Upd, K-EBODY, and K-RBODY. K-EBODY, for example, can be read as follows: “If N is bounded by an existential type of the form $\text{Some}(X)K_2$ and T is well-kinded, then the destructor application $EBody(T,N)$ is well-kinded and has the form K_2, with K_1 (or T in left-hand sides of updatable products) substituted for the bound variable X.”

The type constructors All and \to have no destructors, so their kind is just Top.

Note that kinding is a (partial) function: If $\Gamma \vdash S \ll \kappa$ and $\Gamma \vdash S \ll L$, then $\kappa = L$.

3.2. Eta-Conversion

The eta-conversion relation between types, written $\Gamma \vdash S =_\eta \tau$, is the least equivalence relation closed under the rules

$$
\frac{
\Gamma \vdash N \ll K_1 \times K_2
}{\Gamma \vdash N =_\eta N.1 \times N.2} \quad \text{(Eta-Prod)}
$$

$$
\frac{
\Gamma \vdash N \ll !_T \times K
}{\Gamma \vdash N =_\eta !_T \times N.2} \quad \text{(Eta-Upd)}
$$

$$
\frac{
\Gamma \vdash N \ll \text{Some}(X)K
}{\Gamma \vdash N =_\eta \text{Some}(X)EBody(X,N)} \quad \text{(Eta-Some)}
$$

$$
\frac{
\Gamma \vdash N \ll \text{Rec}(X)K
}{\Gamma \vdash N =_\eta \text{Rec}(X)RBody(X,N)} \quad \text{(Eta-Rec)}
$$

plus congruence rules for all the type formers except the bounds of universal quantifiers and the first (substitutive) arguments of $EBody$ and $RBody$. The prohibition of eta-conversion in these positions is a somewhat ad-hoc restriction, needed in our proof of completeness of the syntax-directed presentation of eta-conversion and subtyping. Without that restriction the congruence rule for the universal quantifier would require a context substitution similar to the quantifier rule in full F_i. Our congruence rule, on the other hand, corresponds to the better-behaved “kernel” rule in Cardelli and Wegner’s original system [14, 21]. We do not believe that an F_i-like congruence rule for universal quantifier would make eta-conversion undecidable (as is the case in F_i), but given that the metatheory of the system as it stands is already fairly involved, we prefered to leave this extension to future work.

Lemma 1 (Eta-Congruence Preserves Kinding). If $\Gamma \vdash S =_\eta \tau$ and $\Gamma \vdash S \ll \kappa$, then $\Gamma \vdash \tau \ll L$ and $\Gamma \vdash \kappa =_\eta L$.

(One might expect that, with the restricted definition of eta-conversion that we are using at the moment, this property could be made even stronger: $\kappa = L$. But this is still not the case, for example, when $S = !_{(X.1 \times X.2) \times \text{Top}}$ and $\tau = !_X \times \text{Top}$.)

Proof. By induction on a derivation of $\Gamma \vdash S =_\eta \tau$, with a case analysis on the final rule used. For example, suppose the final rule is Eta-Some—i.e., we have

$$
S = N
$$

$$
T = \text{Some}(X)EBody(X,N)
$$

$$
K = \text{Some}(X)K'
.$$
By the kinding rules (using the assumption $\Gamma \vdash n \ll x$), we have

$$
\Gamma, \ x: \ast \vdash x \ll x \quad \Gamma, \ x: \ast \vdash n \ll \text{Some}(x)k' \\
\Gamma, \ x: \ast \vdash \text{EBody}(x, n) \ll [x, x/x]k' \\
\Gamma \vdash \tau \ll \text{Some}(x)[x, x/x]k'
$$

Finally, note that $[x, x/x]k'$ is always defined and equals k'. ■

3.3. Subtyping

The subtyping rules for the active type formers are the same as in (the Kernel Fun variant of) $F\omega$; that is to say, ordinary products are covariant in both arguments, function spaces are contravariant in the first position and covariant in the second, universal quantifiers and updatable products are invariant in the first position and covariant in the second, unbounded existentials are covariant, and recursive types obey the monotone subtyping rule mentioned in the Introduction:

$$
\Gamma \vdash s \in \bullet \\
\Gamma \vdash s < s \quad \text{(S-REFL)}
$$

$$
\Gamma \vdash s < u \quad \Gamma \vdash u < \tau \\
\Gamma \vdash s < \tau \quad \text{(S-TRANS)}
$$

$$
\Gamma \vdash s \in \bullet \\
\Gamma \vdash s < \text{Top} \quad \text{(S-TOP)}
$$

$$
\Gamma \vdash \Gamma(x) \in \bullet \\
\Gamma \vdash x \ll \Gamma(x) \quad \text{(S-VAR)}
$$

$$
\Gamma \vdash \tau_1 < s_1 \quad \Gamma \vdash s_2 < \tau_2 \\
\Gamma \vdash s_1 \rightarrow s_2 < \tau_1 \rightarrow \tau_2 \quad \text{(S-ARROW)}
$$

$$
\Gamma, x < u_1 \vdash s_2 < \tau_2 \\
\Gamma \vdash \text{All}(x < u_1) s_2 < \text{All}(x < u_1) \tau_2 \quad \text{(S-ALL)}
$$

$$
\Gamma, x: \ast \vdash s \in \tau \\
\Gamma \vdash \text{Some}(x)s < \text{Some}(x)\tau \quad \text{(S-SOME)}
$$

$$
\Gamma, y: \ast, x < y \vdash s < \tau \\
\Gamma \vdash \text{Rec}(x)s < \text{Rec}(y)\tau \quad \text{(S-REC)}
$$

$$
\Gamma \vdash s_1 < \tau_1 \quad \Gamma \vdash s_2 < \tau_2 \\
\Gamma \vdash s_1 \times s_2 < \tau_1 \times \tau_2 \quad \text{(S-PROD)}
$$

$$
\Gamma \vdash \tau_2 < \tau_3 \quad \Gamma \vdash \tau_1 < \ast \\
\Gamma \vdash !\tau_1 \times \tau_2 < !\tau_1 \times \tau_3 \quad \text{(S-UPD)}
$$

The subtyping rules for the type destructors are reminiscent of the generation lemma for their active counterparts: .1 and .2 are covariant, while EBody and RBody are invariant in their first (substitutive) arguments and covariant in their second arguments. Finally, subtyping extends eta-equality:

$$
\Gamma \vdash s < \tau \quad \Gamma \vdash s.1 < \ast \quad \Gamma \vdash \tau.1 < \ast \\
\Gamma \vdash s.1 < \tau.1 \quad \text{(S-PROJ)}
$$
The subtyping rule \(S \text{-RBody} \) is the “greatest common denominator” of the inversions of \(S \text{-Rec} \) and \(S \text{-Refl} \) which both can generate subtypings between recursive types.

Notice that the destructors occurring in these rules may be defined ones (i.e., they may be applied to active types), so, for example, the following is a valid derivation:

\[
\frac{\Gamma \vdash S \ll Sq \langle X \rangle T \quad \Gamma \vdash T \ll Sq \langle X \rangle U}{\Gamma \vdash \text{EBody}(U,S) \ll \text{EBody}(U,T)} \quad (S \text{-EBody})
\]

\[
\frac{\Gamma \vdash S \ll \text{Rec}(X) S \quad \Gamma \vdash T \ll \text{Rec}(X) T \quad \Gamma \vdash U \in \bullet \quad \Gamma \vdash S \ll T}{\Gamma \vdash \text{RBody}(U,S) \ll \text{RBody}(U,T)} \quad (S \text{-RBody})
\]

\[
\frac{\Gamma \vdash S \ll S \quad \Gamma \vdash S \in \bullet}{\Gamma \vdash S \ll T} \quad (S \text{-Conv})
\]

The following property of kinding and subtyping fulfills the promise made in the Introduction that every subtype of a product is a product, etc.

Theorem 2 (Kinding Is Complete).

1. If \(\Gamma \vdash S \ll T_1 \times T_2 \), then \(\Gamma \vdash S \ll K_1 \times K_2 \) for some \(K_1 \) and \(K_2 \).
2. If \(\Gamma \vdash S \ll !T_1 \times T_2 \), then \(\Gamma \vdash S \ll !T'_1 \times K_2 \) for some \(T'_1 \) and \(K_1 \) with \(\Gamma \vdash T_1 =_0 T'_1 \).
3. If \(\Gamma \vdash S \ll \text{Some}(X) T \), then \(\Gamma \vdash S \ll \text{Some}(X) K \) for some \(K \).
4. If \(\Gamma \vdash S \ll \text{Rec}(X) T \), then \(\Gamma \vdash S \ll \text{Rec}(X) K \) for some \(K \).

We defer the proof until Section 5.3.

Notice that the converse of this property trivially holds by eta-conversion. If, for example, \(\Gamma \vdash S \ll K_1 \times K_2 \), then either \(S \) is neutral and we have \(S = S_1 \times S_2 \) by \(\text{Eta-Prod} \), or else \(S \) is active and thus syntactically of the form \(S_1 \times S_2 \) for some types \(S_1 \) and \(S_2 \), since, by the form of the kinding rules, there is no other way to derive \(S \ll K_1 \times K_2 \).

3.4. Typing

At the level of typing, \(F_{\leq}^{TP} \) is standard. For example, we have the usual rule for forming existential packages (since our existentials are unbounded, we extend the context with the parameter binding \(x : * \)):

\[
\frac{\Gamma \vdash e \in \text{Some}(X) T \quad \Gamma, X:*, Y:T \vdash b \in B \quad x \notin FV(B)}{\Gamma \vdash \text{open} e \text{ as } [X,y] \text{ in } b \in B} \quad (T \text{-Open})
\]

The corresponding rule for \(\text{pack} \) is

\[
\frac{\Gamma \vdash E \equiv_\eta \text{Some}(X) T \quad \Gamma \vdash e \in [S/X] T}{\Gamma \vdash \text{pack } [S,e] \text{ as } E \in E} \quad (T \text{-Pack})
\]

The \text{fold} and \text{unfold} constructors are treated as follows:

\[
\frac{\Gamma \vdash R \equiv_\eta \text{Rec}(X) T}{\Gamma \vdash \text{unfold } [R] \in R \rightarrow [R/X] T} \quad (T \text{-Unfold})
\]
The typing relation also includes the usual rule of subsumption:

\[
\Gamma \vdash \text{e} \in S \\
\Gamma \vdash S \ll R \\
\Gamma \vdash \text{e} \in T
\]

(T-SUBSUMPTION)

As an example of the use of these rules, note that Abadi and Cardelli's "structural rule" for unfold expressions [2]

\[
\Gamma \vdash \text{e} \in R : \ll \text{Rec}(X)T \\
\Gamma \vdash \text{unfold} \ [R] \ \text{e} \in [R/x]T
\]

is derivable in \(F^{TD} \). If \(R : \ll \text{Rec}(X)T \) then \(R \ll \text{Rec}(X)K \) by Theorem 2, so \(R =_{\eta} \text{Rec}(X) \ RBody(X,R) \). Hence, if \(e \in R \), then \(e \in \text{Rec}(X) \ RBody(X,R) \) by S-CONV and T-SUBSUMPTION, so

\[
\text{unfold} [R] \ e \in \text{RBody}(R, R) \\
\ll \text{RBody}(R, \text{Rec}(X)T) \\
\text{i.e.} \ [R/x]T.
\]

4. EXAMPLES

We now show how to extend the simple examples discussed so far to full-scale object encodings. We treat both of the well-known "simple encodings" of objects (cf. [6])—one using recursive types to hide the types of instance variables and one using existential types. All the examples have been mechanically checked by our prototype implementation.

In both encodings, the key use of type destructors lies in the typing of message-sending functions. In our running example of integer storage cells, for instance, the \texttt{sendbump} operation, which invokes the \texttt{bump} method of a cell to yield a cell with modified state, is assigned type \(\forall X < : \text{Cell} \ X \ RBody(X)R \) rather than the less informative \(\text{Cell} \ RBody(X)R \). Moreover, this refined typing can be derived automatically by the typechecker: the \texttt{sendbump} term in each encoding is compact and natural, unencumbered by special syntactic constructs or typing annotations.

4.1. Record Syntax

To make the examples easier to read, we extend the system \(F^{TD} \) with conventional record notation. We introduce the following new syntactic forms:

\[
A ::= \ldots \\
\text{e} ::= \ldots \\
\{[!]_{1} : T_{1}; \ldots \} \ \text{record type} \\
\{[!]_{1} \# e_{1}; \ldots \} \ \text{record value} \\
\text{e} \ . \ 1 \quad \text{project ordinary field} \\
\text{e} \ . . \ 1 \quad \text{project updatable field} \\
\text{e}_{1} \ \text{with} \ 1 \# e_{2} \quad \text{update updatable field}
\]

Each field in a record is either updatable or non-updatable. For non-updatable fields, we provide the usual projection operator \(\text{e} \ . \ 1 \). For updatable fields, we provide both projection (written \(\text{e} \ . . \ 1 \), since its encoding below differs from that of ordinary projection) and update: if \(r \) is a record with an updatable field \(1 \) and \(v \) is a value of the appropriate type, then \(r \ \text{with} \ 1 \# v \) denotes a new record that coincides with \(r \) except at \(1 \), where its value is \(v \).

These syntactic forms can all be encoded in our calculus, using a slight extension of a now-standard technique due to Cardelli [9]. The idea is quite simple, so we explain it informally rather than writing out a translation in full.
First, we choose some enumeration of all the labels that can appear in records. Now, an ordinary record type (with only non-updatable fields) is encoded in terms of the ordinary product type and Top in the usual way: by sorting its fields into the order determined by the chosen enumeration, inserting instances of Top for labels that do not appear in the given record type, placing a Top at the end, and finally dropping the labels. For example, if we take labels in alphabetical order (a, b, c, etc.), then the record type $\{b: \text{String}\}$ is encoded as $(\text{Top} \times \text{String} \times \text{Top})$, while $\{d: \text{Int}, b: \text{String}\}$ is encoded as $(\text{Top} \times \text{String} \times \text{Top} \times \text{Int} \times \text{Top})$. The encodings of record values and projection follow the same lines: $\{b: \text{"red"}\}$ is encoded as $(\text{top}, (\text{"red"}, \text{top}))$, where top is an arbitrary value; $r.b$ is encoded as $r.2.1$.

An updatable field of type T is encoded by placing the pair $(!T \times \text{Top})$ in the appropriate position, rather than just T. For example, the updatable record $\{b: \text{String}\}$ is encoded as $(\text{Top} \times \{!\text{String} \times \text{Top}\} \times \text{Top})$. Field values and projection are encoded in the obvious way: the record creation expression $\{b: \text{"red"}\}$ becomes $(\text{top}, ((\text{"red"}, \text{top}), \text{top}))$, and $r.b$ becomes $r.2.1.1$. Finally, with-expressions are encoded by building a new record from the pieces of the original: for example, the update expression r with $b: = \text{"green"}$ becomes $(r.1, ((\text{"green"}, r.2.1.2), r.2.2))$. It is easy to verify that these encodings satisfy the expected typing and subtyping rules.

Notice that the translation of r with $b: = \text{"green"}$ depends only on the position of the label b in the (once-and-for-all fixed) ordering; it does not involve any typing or kinding information we might have inferred for r. In particular, the with construct is defined on the raw syntax.

In a future version of FTD, we would like to include a subtyping rule of the form $!T_1 \times T_2 \leq T_1 \times T_2$. This would give us a neater encoding of records, using updatable products directly for updatable fields. For example, $\{d: \text{Int}, !b: \text{String}\}$ would become $(\text{Top} \times !\text{String} \times \text{Top} \times \text{Int} \times \text{Top})$. This encoding is not adequate in the present system because it disallows adding updatable fields while subtyping. For example, $\{!a: \text{Int}, d: \text{Int}, !b: \text{String}\}$ would not be a subtype of $\{d: \text{Int}, !b: \text{String}\}$.

4.2. Recursive Objects

We now present a simple “objects as recursive records” encoding. The idea of the encoding is standard (cf. [6] for details and references). What is interesting is the way the destructor for recursive types is used to achieve “polymorphic unfolding” in a style reminiscent of [2, 3] rather than using higher-order quantification [20, 24] or matching [1, 7] to give sufficiently refined types to the message-sending operators. The whole encoding can thus be carried out in a second-order setting.

Our running example will be the usual “functional reference cell,” a simple object with three methods: get, set, and bump. The type of cell objects under this encoding is a recursively defined record type with three fields giving the result types of the three methods. For brevity, we’ll use Cell in this section as an abbreviation for this type:

$$\text{Cell} = \text{Rec}(X) \{\text{get: Int; set: Int} \rightarrow X; \text{bump: X}\}$$

An object with this type can be created as follows:

```scala
val o = let create = fix [Int \rightarrow Cell]
  (fun(c: Int \rightarrow Cell)
   fun(s: Int)
     fold [Cell]
     {get=s;
      set=fun(i: Int) c(i);
      bump=c(succ s))}
in
  create(0)
:: Cell
```
That is, we build a cell object by defining a recursive function `create` that, given an integer (representing the state of the cell) returns a record of method results, where the `set` and `bump` results are calculated by calling `create` with an appropriately updated value for the state. This function is applied to the initial state 0 to create the cell object o. The recursive definition of `create` uses the value-level polymorphic fixed-point operator fix, which can be defined in terms of recursive types [5].

The interesting part of the example is the typing of functions that manipulate objects by sending them messages (i.e., by unfolding the outer recursive type once and projecting one of the fields). For example, the following function sends the `get` message to an arbitrary object whose type refines `Cell`:

```scala
val sendget =
  fun(Y <: Cell) fun(or:Y)
  (unfold [Y] or).get
  :: All(Y <: Cell) Y -> Int
```

The `sendget` function can be typed without using the special features of F_{\leq}^{TD}. But the analogous `sendbump` function

```scala
val sendbump =
  fun(Y <: Cell) fun(or:Y)
  (unfold [Y] or).bump
  :: All(Y <: Cell) Y -> Y
```

uses type destructors in an essential way. Its type can be calculated as shown in Fig. 1.

4.3. Existential Objects

The “simple existential” encoding of objects [20, 24, etc.] can also be formulated in F_{\leq}^{TD}. Again, the presence of type destructors allows functions manipulating objects (`sendbump`, etc.) to be written in a direct and intuitive way.

For this encoding, we keep the same interface for the cell methods, but change the type of objects so that the “state component” of an object is made visible but its type is hidden with an existential quantifier:

```scala
Cell = Some(X) !X × X -> {get : Int; set : Int -> X; bump : X}
```

That is, a cell object is a pair of a state of type X and a collection of methods mapping X to the appropriate result types, with the type of the state existentially quantified. Note that the state component is updatable.

Functions that manipulate objects by sending them messages are slightly more complicated here than in the recursive records model (where an object simply was a record of the results of its methods). For example, to send the `get` message to a cell object

FIG. 1. Typing of recursive `sendbump`.
val sendget =
 fun(Y <: Cell) fun(oe : Y)
 open oe as [Z, body] in
 (body.2 body.1).get
 :: All(Y <: Cell) Y ! Int
we must first open it, binding a type variable Y to its hidden state type and a variable body to its state and methods. The methods (body.2) are then applied to the state (body.1), yielding a record of results, from which the get component is selected. As before, the typing of sendget is just as in F'_x.

To send the bump message, we begin as for get, applying the methods to the state and projecting out the bump component; but this yields just a fresh state (of type Y), not a whole object. To obtain an object, we must repackage this state with the original methods and hide the type of the state by wrapping the whole in a new existential package:

val sendbump =
 fun(Y <: Cell) fun(oe : Y)
 open oe as [Z, body] in
 pack [Z, !(body.2 body.1).bump, body.2]
 as Y
 :: All(Y <: Cell) Y ! Y
To check that sendbump has the claimed type, calculate as follows. First, as in the previous section:

$$
Y <: Cell \quad \text{given}
$$

$$
Y \ll \text{Some}(X) K \quad \text{by Theorem 2}
$$

$$
Y =_\eta \text{Some}(Z) \ EBody(Z, Y) \quad \text{by } \text{Esome}.
$$

So (by T-Open), in the body of the open expression, the bindings of Z and body are

$$
Z : *
$$

$$
\text{body} \in EBody(Z, Y).
$$

Now,

$$
EBody(Z, Y)
$$

$$
\ll EBody(Z, \text{Some}(X)!X \times \ldots)
$$

by S-EBody

$$
= !Z \times \ldots
$$

by defn of substitution

$$
EBody(Z, Y) \ll !Z' \times K_2 \quad \text{(with } Z' =_\eta Z)
$$

by Theorem 2

$$
EBody(Z, Y) =_\eta !Z' \times EBody(Z, Y).2
$$

by Eta-Upd

$$
= !Z \times EBody(Z, Y).2
$$

since $=_\eta$ is a congruence,

so

$$
\text{body}.2 \in EBody(Z, Y).2
$$

by projection. Moreover,

$$
EBody(Z, Y).2
$$

$$
\ll EBody(Z, \text{Cell}).2
$$

by S-EBody and S-Prod

$$
= (!Z \times \text{Z} \rightarrow \text{get: Int; set: Int} \rightarrow \text{Z; bump: Z}).2
$$

by defn of substitution

$$
= \text{Z} \rightarrow \text{get: Int; set: Int} \rightarrow \text{Z; bump: Z}
$$

by defn of substitution,
so

\((body.2 \ body.1).bump \in \mathbb{Z}\)

by projection. Thus,

\(!\text{(body.2 body.1).bump}, \text{body.2} \in \mathbb{Z} \times \text{EBody(Z,Y).2}
\equiv \eta \text{EBody(Z,Y)},\)

and hence

\(\text{pack [Z, !\text{(body.2 body.1).bump}, \text{body.2}] as Y}\)

has type \(Y\) by \(\text{T-Pack}\), from which the claimed typing of \(\text{sendbump}\) follows by abstraction.

As before, creating a cell object with appropriate behavior is straightforward. We simply pair the initial state together with a method function and wrap the two as an existential package:

```haskell
val o =
  pack [Int,
        !0,
        fun(s:Int)
        {get = s;
         set = fun(i:Int) i;
         bump = succ s}
    ] as Cell
:: Cell
```

Of course, not only objects but also classes can be encoded in this framework. The power of type destructors is not needed for this encoding, but (as has been remarked elsewhere [19, 25, etc.]) the presence of updatable record types does eliminate quite a bit of distracting boilerplate (the \(\text{get}\) and \(\text{put}\) functions of [24]).

5. METATHEORY

We now develop basic metatheoretic properties of \(F^TD\).

Our main result is decidability of subtyping (Theorem 35). This requires a reformulation of subtyping by a syntax-directed definition (algorithmic subtyping, in Section 5.3) which in particular does not contain the general transitivity rule \(S\)-TRANS. In its place, we use a promotion rule which allows one to replace a variable, or more generally a neutral type by its upper bound. Since subtyping depends on eta-conversion and kinding, algorithmic presentations need to be given for these judgments as well.

5.1. Kinding

Kinding is defined by a syntax-directed procedure and so is decidable (cf. Proposition 30). For what follows, we need some additional facts about how kinding behaves with respect to substitution for parameters.

Lemma 3 (Kinding and Parameter Substitution). Suppose that \(\Gamma, \ x : \star, \ \Delta \vdash T \ll B\) and \(\Gamma \vdash s \ll a\) and that \([s/x]T\Delta\) is defined. Then \([s/x]T\) and \([s, a/x]B\) are defined and \(\Gamma, [s/x]T\Delta \vdash [s/x]T' \ll [s, a/x]B\).

Proof. That \([s/x]T\) and \([s, a/x]B\) are defined is obvious: since \(x\) is a parameter, it cannot appear inside a destructing context such as \(x.1\) or \(\text{EBody}(T, X)\), so the substitution is entirely structural. Similarly, if \(\Delta\) is well-kinded, then \([s/x]T\Delta\) will be defined. The second part goes by induction on a derivation of \(\Gamma, x : \star, \ \Delta \vdash T \ll B\).
\textbf{Case.} \(T = \text{Some}(Y)T_1 \)

Then \(a = \text{Some}(Y)B_1 \) with \(Y: X \vdash T_1 \ll B_1 \). The induction hypothesis gives \([S/X]T_1 \ll [S,A/X]B_1 \), and thus \([S/X]T \ll \text{Some}(Y)[S,A/X]B_1 = [S,A/X]B \).

\textbf{Case.} \(T = \text{EBody}(T_1, N) \)

Then \(a = [T_1, B_1/Y]B_2 \) with \(T_1 \ll B_1 \) and \(a \ll \text{Some}(Y)B_2 \). The induction hypothesis gives \([S/X]T_1 \ll [S,A/X]B_1 \) and \([S/X]a \ll \text{Some}(Y)[S,A/X]B_2 \). Thus,

\textbf{Other Cases.} Similar.

Recall that destructors with active types like \(\text{RBody}(S, \text{Rec}(X)T) \) were defined as abbreviations for a parameter substitution (in this case \([S/X]T\)). The substitution lemma thus provides derived kinding rules for these abbreviations.

\textbf{Corollary 4.} The kinding rules K-FST through K-RBody with active types in place of neutral ones are derivable. For example, if \(\Gamma \vdash a \ll \text{Rec}(X)K \) and \(\Gamma \vdash T \ll L \), then \(\Gamma \vdash \text{RBody}(T, A) \ll [T, L/X]K \).

\textbf{Proof.} Immediate from the substitution lemma and generation of \(\ll \). For example, suppose \(\Gamma \vdash a \ll \text{Rec}(X)K \). Then, by generation of kinding, we must have \(a = \text{Rec}(X)T \) and \(\Gamma, x: X \vdash T \ll K \). If, in addition, \(\Gamma \vdash U \ll L \), then \(\text{RBody}(U, A) \) is definitionally equal to \([U/X]T\). From Lemma 3 we get \(\Gamma \vdash [U/X]T \ll [U, L/X]K \), hence \(\Gamma \vdash \text{RBody}(U, A) \ll [U, L/X]K \), from which the desired conclusion follows.

\textbf{Lemma 5 (Kinding Is Idempotent).} If \(S \ll K \) then \(\Gamma \vdash K \ll K \).

For the proof, we need the following sub-lemma:

\textbf{Lemma 6.} If \(x: X \vdash L \ll L \) and \(T \ll M \), then \([T, M/X]L \ll [T, M/X]L \).

\textbf{Proof of 7.} By induction on \(L \). If \(L = !S \times L_2 \) then \(S \ll L_1 \) and \(L_2 \ll L_2 \). Lemma 3 guarantees that \([T/X]S \in \star \) (that is, \([T/X]S \) is well kinded), and the result follows by the induction hypothesis and K-Upd. If \(L = \text{Some}(Y)L_1 \) then \(Y: X \vdash L_1 \ll L_1 \), and thus \(Y: X \vdash [T, M/X]L_1 \ll [T, M/X]L_1 \), and the result follows by K-Some. Similarly for the other type formers.

\textbf{Proof of 8.} By induction on the derivation of \(S \ll K \). All cases except K-EBody and K-RBody are straightforward. Suppose, therefore, that \(S = \text{RBody}(T, N) \) and \(T \ll K_1 \) and \(N \ll \text{Rec}(X)K_2 \). The induction hypothesis gives \(K_1 \ll K_1 \) and \(x: X \vdash K_2 \ll K_2 \). Lemma 6 gives \([T, K_1/X]K_2 \ll [T, K_1/X]K_2 \), which is the required conclusion. The argument for K-EBody is similar.

5.2. Algorithmic Eta-Conversion

In order to decide eta-conversion we introduce the following syntax-directed rules:

\[
\begin{align*}
\Gamma \vdash s & \in \star \\
\Gamma \vdash s & \equiv \eta s \\
\Gamma \vdash s_1 & \equiv \eta t_1 & \Gamma \vdash s_2 & \equiv \eta t_2 \\
\Gamma \vdash s_1 & \equiv \eta t_1 & \Gamma \vdash s_2 & \equiv \eta t_2 \\
\Gamma, x \ll s_1 & \vdash s_2 = \eta t_2 \\
\Gamma \vdash \text{All}(x < s_1)S_2 & = \eta \text{All}(x < s_1)T_2 \\
\Gamma \vdash \text{Some}(x)S_2 & = \eta \text{Some}(x)T_2
\end{align*}
\]

(\text{Eta-A-Ref})

(\text{Eta-A-Ary})

(\text{Eta-A-All})

(\text{Eta-A-Some})
\[\Gamma, x: * \vdash s =_\eta t \]
\[\Gamma \vdash \text{Rec}(x)s =_\eta \text{Rec}(x)t \]
(\text{Eta-A-Rec})

\[\Gamma \vdash N \ll K_1 \times K_2 \]
\[\Gamma \vdash N.1 =_\eta T_1 \quad \Gamma \vdash N.2 =_\eta T_2 \]
\[\Gamma \vdash N =_\eta T_1 \times T_2 \]
(\text{Eta-AL-Prod})

\[\Gamma \vdash N \ll K_1 \times K_2 \]
\[\Gamma \vdash N.1 =_\eta T_1 \quad \Gamma \vdash N.2 =_\eta T_2 \]
\[\Gamma \vdash T_1 \times T_2 =_\eta N \]
(\text{Eta-AR-Prod})

\[\Gamma \vdash N \ll !S_1 \times K_2 \]
\[\Gamma \vdash s_1 =_\eta T_1 \quad \Gamma \vdash N.2 =_\eta T_2 \]
\[\Gamma \vdash N =_\eta !T_1 \times T_2 \]
(\text{Eta-AL-Upd})

\[\Gamma \vdash N \ll !S_1 \times K_2 \]
\[\Gamma \vdash s_1 =_\eta T_1 \quad \Gamma \vdash N.2 =_\eta T_2 \]
\[\Gamma \vdash !T_1 \times T_2 =_\eta N \]
(\text{Eta-AR-Upd})

\[\Gamma \vdash N \ll \text{Some}(X)K \]
\[\Gamma, x: * \vdash \text{EBody}(x, N) =_\eta t \]
\[\Gamma \vdash N =_\eta \text{Some}(X)t \]
(\text{Eta-AL-Some})

\[\Gamma \vdash N \ll \text{Some}(X)K \]
\[\Gamma, x: * \vdash \text{EBody}(x, N) =_\eta t \]
\[\Gamma \vdash \text{Some}(X)t =_\eta N \]
(\text{Eta-AR-Some})

\[\Gamma \vdash N \ll \text{Rec}(X)K \]
\[\Gamma, x: * \vdash \text{RBody}(x, N) =_\eta t \]
\[\Gamma \vdash N =_\eta \text{Rec}(X)t \]
(\text{Eta-AR-Rec})

\[\Gamma \vdash N \ll \text{Rec}(X)K \]
\[\Gamma, x: * \vdash \text{RBody}(x, N) =_\eta t \]
\[\Gamma \vdash \text{Rec}(X)t =_\eta N \]
(\text{Eta-AR-Rec})

The Eta-AL-... and Eta-AR-... rules will be referred to collectively as LR-rules.

Each of these rules is easily derived from the declarative eta-conversion rules given in Section 3.2. Moreover, most of the definition in Section 3.2 is mirrored directly here: Eta-A-Refl is an explicit symmetry rule, while Eta-A-Any through Eta-A-Rec give explicit congruence rules for all the type constructors. (If we had defined the original eta-conversion relation to be a full congruence—allowing eta-conversion inside bounds of quantifiers and substitutive arguments of EBody and RBody—we would need to introduce congruence rules for destructors here as well.) The remaining algorithmic rules correspond to special uses of the original declarative rules, where an instance of transitivity has been “pushed into” each premise. Our main job in this section will be to show that the algorithmic presentation itself defines a transitive relation.

When we need to distinguish the algorithmic from the ordinary eta-conversion relation, we will write \(\Gamma \vdash a s =_\eta t \) for algorithmic derivations.

Definition 9. We write \(D :: \Gamma \vdash s =_\eta t \) to mean that \(D \) is a derivation of the algorithmic eta-conversion judgment \(\Gamma \vdash s =_\eta t \). The size of such a derivation is the number of Eta- rules it contains. (Kinding premises do not count toward size.)
Proposition 10 (Eta and Parameter Substitution). If \(\mathcal{D} \vdash \Gamma, x: \star, \Delta \vdash^{=} s =_{\eta} \tau \) and \(\Gamma \vdash v \in \star \) and \([v/x]\Delta \) is defined, then \(\Gamma, [v/x]\Delta \vdash^{=} [v/x]s =_{\eta} [v/x]\tau \) by a derivation not larger than \(\mathcal{D} \).

Proposition 11 (Eta-Conversion for Destructors). Let \(z(\tau) \) be \(y, i, \), \(\text{EBody}(P, Y) \), or \(\text{RBody}(P, Y) \). If \(\mathcal{D} \vdash \Gamma \vdash^{=} s =_{\eta} \tau \) and \(z(s) \) and \(z(\tau) \) are well kinded, then \(\mathcal{D}' \vdash \Gamma \vdash^{=} z(s) =_{\eta} z(\tau), \) for some \(\mathcal{D}' \) with \(|\mathcal{D}'| \leq |\mathcal{D}| \).

Proof. If \(\mathcal{D} \) is an instance of Eta-A-Refl, then the result is an instance of reflexivity. If \(\mathcal{D} \) ends in one of Eta-A-Any \(\ldots \) Eta-A-Rec, then the result can be obtained from an immediate premise of \(\mathcal{D} \) using Proposition 10.

Lemma 12. \(=_{\eta} \) is symmetric. Moreover, if \(\mathcal{D} \vdash \Gamma \vdash^{=} s =_{\eta} \tau \), then there exists a derivation \(\mathcal{D}' \vdash \Gamma \vdash \tau =_{\eta} s \) of the same size as \(\mathcal{D} \).

Proof. Easy induction on \(\mathcal{D} \).

Proposition 13. \(=_{\eta} \) is transitive.

Proof. By simultaneous induction on derivations. Suppose, for example, that we have proved \(n =_{\eta} \text{Some}(X) \tau \) from \(n \ll \text{Some}(X) \tau \) and \(\text{EBody}(X, N) =_{\eta} \text{Some}(X) \tau \) using Eta-A-Some, and that we have \(\text{Some}(X) \tau =_{\eta} \text{Some}(X) \Phi \) from \(x: \cdot \vdash^{=} \tau \Phi =_{\eta} \eta \Phi \) by Eta-A-Some. The induction hypothesis yields \(\text{EBody}(X, N) =_{\eta} \text{EBody}(X, N) \), hence \(n =_{\eta} \text{Some}(X) \eta \) by Eta-A-Some. If \(\text{Some}(X) \tau =_{\eta} \eta \) has been derived by Eta-A-Some, then the induction hypothesis yields \(\text{EBody}(X, N) =_{\eta} \eta \), \(\text{EBody}(X, \eta) \), hence \(n = \eta \), since no algorithmic eta-rule except reflexivity applies to neutral types.

Theorem 14. \(\Gamma \vdash s =_{\eta} \tau \) under the declarative rules iff \(\Gamma \vdash^{=} s =_{\eta} \tau \) under the algorithmic rules.

5.3. Algorithmic Subtyping

In this section, we define an algorithmic subtyping judgment \(\Gamma \vdash s <_{\eta} \tau \), which gives rise to a syntax-directed decision procedure for subtyping. For the whole of Section 5.3, the symbol \(\vdash \) and the words “derive,” “derivable,” etc. refer to algorithmic derivations (for both subtyping and eta-conversion).

Like the algorithmic eta-conversion relation defined in the previous section, algorithmic subtyping does not explicitly contain a transitivity rule; instead we have a promotion rule which, roughly speaking, allows us to replace the head variable of a neutral type by its upper bound.

Definition 3. Let \(n \) be a well-kindled neutral type in context \(\Gamma \). The promotion \(\Gamma(n) \) of \(n \) is given by

\[
\begin{align*}
\Gamma(n) &= \tau & \text{if } x < \tau \in \Gamma \\
\Gamma(n) &= \star & \text{if } x: \star \in \Gamma \\
\Gamma(n; 1) &= \Gamma(n).1 \\
\Gamma(n; 2) &= \Gamma(n).2 \\
\Gamma(\text{EBody}(\tau, N)) &= \text{EBody}(\tau, \Gamma(n)) \\
\Gamma(\text{RBody}(\tau, N)) &= \text{RBody}(\tau, \Gamma(n))
\end{align*}
\]

For example, if \(\Gamma = x < \text{Some}(X) \times \text{Top} \) and \(n = \text{EBody}(\text{Int}, X).1 \), then \(\Gamma(n) = \text{Int} \). By Lemma 3, the promotion of \(n \) is always defined, since all the substitutions involved are parameter substitutions. Later (in Lemma 20), it will be shown that promotion is always well kinded.

The promotion rule now takes the form

\[
\begin{align*}
\Gamma(n) &\neq \star & \Gamma \vdash \Gamma(n) <_{\eta} \tau \\
\Gamma \vdash n <_{\eta} k & \quad \text{t neutral or } k = \text{Top} \\
\Gamma \vdash n <_{\eta} \tau
\end{align*}
\]

where the final premise ensures that SA-PROMOTE can be applied only if no other rule applies. The other algorithmic rules are as follows:
We shall refer to rules SA-Prod...SA-Rec as congruence rules and to the rules SAL-Prod...SAR-Rec as LR-rules. The rules named SAL...are also called L-rules; the rules named SAR...are also called R-rules.

LEMMA 15 (Weakening). Let J be any of the algorithmic judgments introduced so far, τ a type whose free variables are bound in Γ, and x a type variable not bound in Γ. If Γ ⊢ J, then also Γ, x : τ ⊢ J.

Proof. Obvious induction. ■

Notice that Γ ⊢ s : τ does not entail that all bindings in Γ are well kinded (but it does check that s and τ themselves are well kinded).

LEMMA 16. If Γ ⊢ s : τ, then Γ ⊢ s ≪ k and Γ ⊢ τ ≪ l, for some k and l.

Proof. Straightforward induction. ■

DEFINITION 17. The size of a subtyping derivation is the number of subtyping rules different from SA-Promote plus the number of Eta-...rules occurring in it. Derivations of kinding premises do not affect the size.

LEMMA 18 (Eta and Subtyping). If Δ :: Γ ⊢ s =_γ τ, then Δ' :: Γ ⊢ s : τ for some Δ' not larger than Δ.

Proof. Easy induction on the (algorithmic) derivation Δ. ■

LEMMA 19 (Subtyping and Parameter Substitution). If Δ :: Γ, x : τ, Δ ⊢ s : τ and Γ ⊢ v : γ and [v/x]Δ is defined, then [v/x]s and [v/x]τ are both defined and Γ, [v/x]Δ ⊢ [v/x]s : [v/x]τ by a derivation not larger than Δ.

Proof. The proof is by induction on subtyping derivations. The congruence rules are straightforward. For the LR-rules we notice that the involved neutral types cannot be the variable x because these rules assume nontrivial kinding premises. Therefore, since x is a parameter, performing the substitution will not change the shape of these types and so the same rule can be used for the substituted types. Finally, for the promotion rule we show by induction on neutral types that if x ∈ a then Γ((v/x)U) = [v/x]Γ(u). If, for example, y = EBody(u, v) then either Γ(y') is neutral, in which case the induction hypothesis yields Γ((v/x)y') = [v/x]Γ(y'), so Γ((v/x)y) = EBody((v/x)u, [v/x]y') = EBody((v/x)u, [v/x]Γ(y')) = [v/x]Γ(y). The result itself now follows by a straightforward induction on derivations. ■

LEMMA 20 (Well-Kindedness of Promotion). If Γ ⊢ u ≪ k, then Γ ⊢ u ≪ [u, l/x]k.

Proof. By induction on u.

If u = x, then Γ(x) ≪ k by K-Var.

If u = w .1, then Γ(u) = Γ(w) .1 and w ≪ k1 × k2. If Γ(w) is active, then it must have the form τ1 × τ2 and Γ(u) = τ1. The induction hypothesis gives Γ(w) ⊂ k1 × k2, hence τ1 ⊂ k1 by the definition of ⊂, and hence the result. If Γ(u) is neutral, then Γ(u) .1 ⊂ k1 by K-Fst.

If u = EBody(u, v), then Γ(u) = EBody(u, Γ(u')) and v ≪ Some(x)k' and u ≪ k and k = [u, l/x]k'. The induction hypothesis gives Γ(u') ≪ Some(x)k'. If Γ(u') is active, then Γ(u') = Some(x)τ' and x : τ' ⊂ k' by generation of ⊂. By Lemma 3, we get Γ(u) = EBody(u, Γ(u')) = [u/x]τ' ⊂ [u, l/x]k' = k. On the other hand, if Γ(u') is neutral, we can conclude immediately by rule K-EBody.

The other cases are similar. ■
LEMMA 21 (Congruence for Destructors). Let $Z(\tau)$ be a set of types, $\text{RBody}(U,\tau)$, or $\text{EBody}(U,\tau)$. If $D : \Gamma \vdash S \triangleleft T$ and $T \neq \text{top}$ and $\Gamma \vdash Z(\tau) \in \star$ or $\Gamma \vdash Z(\tau) \in \star$, then $D' : \Gamma \vdash Z(S) \triangleleft Z(T)$ for some derivation D' not larger than D.

Proof. By induction on D. If the last rule is a congruence rule or an LR rule, then one of the immediate subderivations ends in the desired conclusion. If it is reflexivity then the conclusion is also an instance of reflexivity. The SA-Top rule has been explicitly excluded. If the last rule is one of the rules for active types then either the desired conclusion is among the premises or it can be obtained from them by invoking Lemma 19. If, for example, $S = \text{Some}(X)S_1$ and $T = \text{Some}(X)T_1$, then we must have $X : \vdash S_1 \triangleleft T_1$, and hence $\text{EBody}(U,S) = [\mu/X]S_1 \triangleleft [\mu/X]T_1 = \text{EBody}(U,T)$ by Lemma 19.

If the last rule is SA-PROMOTE, then thanks to Lemma 15 we can apply the induction hypothesis to the subderivation and conclude using SA-PROMOTE. Suppose, for example, that $Z(\tau) = \text{RBody}(U,\tau)$ and that $S = \text{nil}$ and $\Gamma(\tau) < \tau$. The induction hypothesis gives $\text{RBody}(U,\Gamma(\tau)) < \text{RBody}(U,\tau)$. Since $\Gamma(\text{RBody}(U,\tau)) = \text{RBody}(U,\Gamma(\tau))$, we get the desired result using SA-PROMOTE.

LEMMA 22 (Chain Expansion). If $D : \Gamma, X : U \vdash S \triangleleft T$, then also $\Gamma, Y : U, X : Y \vdash S \triangleleft T$ by a derivation not larger than D.

Proof. By induction on D. The only interesting case is promotion of a neutral type with head variable X. Suppose that $S' = [U/X]S$, i.e., $S' = (\Gamma, X : U, \Delta)(\tau)$ and that $S' < \tau$ has been proved. The induction hypothesis gives $S' \triangleleft \tau$ in context $\Gamma, Y : U, X : Y, \Delta$ (by a derivation the same size or smaller), and thus $[Y/X]S' \triangleleft \tau$ by SA-PROMOTE, and finally $S \triangleleft T$ by another instance of SA-PROMOTE. Conclude by recalling that instances of SA-PROMOTE do not count toward the size of a subtyping derivation.

LEMMA 23 (Chain Contraction). If

$$\Gamma, Y : U, X : Y, \Delta \vdash S \triangleleft \tau,$$

then also

$$D : \Gamma, X : U, [X/Y] \Delta \vdash [X/Y]S \triangleleft [X/Y]T$$

by a derivation not larger than D.

Proof. By induction on D. The only interesting case is promotion of a neutral type with head variable X. Suppose that $S' = [X/Y]S$, i.e., $S' = (\Gamma, \Delta)(\tau)$ and that $\Gamma \vdash S' \triangleleft \tau$ has been proved. The induction hypothesis gives $[X/Y]S' = [X/Y]T$, but $[X/Y]S' = [X/Y]S$, and the conclusion follows. In other words, if D contains a promotion of X to Y, then this step is simply discarded in the resulting derivation.

THEOREM 24 (Admissibility of Transitivity). If $\Gamma \vdash S \triangleleft U$ and $\Gamma \vdash U \triangleleft \tau$, then $\Gamma \vdash S \triangleleft \tau$.

Proof. By induction on the sum of the sizes of the two derivations. Let us write D_1 and D_2 for the derivations, LL for the last rule used in D_1, and RR for the last rule used in D_2. We proceed by case distinction on the form of these rules. The important point to note is that the right hand side of the conclusion of LL must be identical to the left hand side of the conclusion of RR. This rules out a number of theoretically possible cases. (The list of cases is not exclusive; whenever two match, use the earlier argument.)

Case. RR = SA-TOP.

The result forms an instance of SA-TOP.

Case. LL = SA-TOP.

Then RR must be SA-TOP too, and the result follows using S-TOP.

Case. LL or RR is SA-REFL.

The other derivation yields the result.

Case. Both LL and RR are instances of the same congruence rule: SA-PROD, SA-UPD, SA-ARROW, SA-SOME, SA-ALL, or SA-REC.
The result follows by applying the induction hypothesis to the immediate subderivations and concluding using another instance of this rule. The only slight complication arises in the case of S-Rec; we show this case explicitly.

Suppose that \(S = \text{Rec}(x)S_1 \) and \(U = \text{Rec}(x)U_1 \) and \(T = \text{Rec}(x)T_1 \), and that we have subderivations \(D_4 :: Y \cdot \ast \vdash X < Y \vdash S_1(X) < U_1(Y) \) and \(D_3 :: Y \cdot \ast \vdash X < Y \vdash S_1(X) < T_1(Y) \). Applying Lemma 22 to \(D_4 \) yields \(z \in \ast, y < z, X < Y \vdash S_1(X) < U_1(Y) \), by a derivation not larger than \(D_4 \). Applying renaming of variables and weakening to \(D_3 \) yields a derivation (not larger than \(D_3 \)) of \(z \in \ast, y < z, X < Y \vdash S_1(X) < T_1(Y) \). The induction hypothesis now yields \(z \in \ast, y < z, X < Y \vdash S_1(X) < T_1(Y) \), from which we obtain \(z \in \ast, X < z \vdash S_1(X) < T_1(Y) \), by identifying \(y \) with \(x \) (Lemma 23). The conclusion follows by S-Rec.

Case. LL or RR is SA-Rec’.

Then we apply Lemma 18 to the premise of the instance of SA-Rec’ and use the induction hypothesis. For example, if LL is SA-Rec’ and RR is SAR-Rec, then \(S = \text{Rec}(x)S_1 \) and \(U = \text{Rec}(x)U_1 \) and \(T = \text{Rec}(x)T_1 \) is neutral. We have subderivations of \(x \cdot \ast \vdash S_1 = U_1 \) and \(y \cdot \ast \vdash X < Y \vdash RBody(Y,T) \) by induction hypothesis and \(S < N \) by SAR-Rec.

Case. LL is SA-Promote.

If \(S \ll \top \) then it is easy to see by inspection of the algorithmic rules that also \(T \ll \top \). Thus, the result follows by applying the induction hypothesis to the immediate subderivation of \(D_1 \) together with \(D_2 \), and using SA-Promote again at the end. The same strategy works if \(T \) is neutral (e.g., because RR is SA-Promote).

Now, our convention that instances of SA-Promote do not count towards size means that we do not achieve a size reduction in this case. Eventually, however, rule LL will be different from SA-Promote, at which point the size will get reduced. (This can be formalised by adding the number of instances of SA-Promote as a low priority factor.)

The remaining possibility is that \(U \) is neutral and \(T \) is not, i.e., RR is an L-rule. In this case we can apply Lemma 21 to the premise of LL, apply promotion, and then use the induction hypothesis on the result and the premise of RR. Another instance of the L-rule in question then yields the result.

For a concrete example suppose that \(RR \) is SAR-Rec, \(S = \text{Rec}(x)S_1 \) and \(U = \text{Rec}(x)U_1 \) and \(T = \text{Rec}(x)T_1 \) is neutral and of recursive kind. The premise of \(RR \) is \(\Gamma, x \cdot \ast \vdash RBody(X,U) < T_1 \). Lemma 21 yields \(\Gamma, x \cdot \ast \vdash RBody(X,
\Gamma(S)) < RBody(X,U) \); SA-Promote yields \(\Gamma, x \cdot \ast \vdash RBody(X,S) < RBody(X,U) \). The induction hypothesis then gives \(\Gamma, x \cdot \ast \vdash RBody(X,S) < T_1 \), hence the result by SAL-Rec.

Case. RR is SA-Promote.

Then LL must be SA-Refl, SA-Promote, or an R-rule: SAR-Prod, SAR-Upd, SAR-Some, or SAR-Rec. The first two cases have been dealt with already, so suppose that LL is an R-rule, say SAR-Some. In this case we have \(S = \text{Some}(x)S_1 \) and \(U \). Moreover, we have the following subderivation:

\[
D_3 :: x \cdot \ast \vdash S_1 < EBody(X,U).
\]

Now, if \(T \ll \top \) then the desired conclusion can be obtained using SA-Top. Otherwise, we may apply Lemma 21 to \(D_2 \), yielding \(x \cdot \ast \vdash EBody(X,U) < EBody(X,T) \). The induction hypothesis gives us \(x \cdot \ast \vdash S_1 < EBody(X,T) \). We conclude by S-Some or SAL-Some, according to whether \(T \) is active or not.

Case. LL is an R-rule.

Then the only possibility not covered by previous cases is that RR is an L-rule for the same type former as LL. The most difficult case arises when this type former is \(\text{Rec} \), so we use this as an illustrative example.

Suppose we have \(S = \text{Rec}(x)S_1 \), \(U \) neutral, and \(T = \text{Rec}(x)T_1 \). We have subderivations

\[
\begin{align*}
D_4 :: Y \cdot \ast, X < Y \vdash S_1(X) < RBody(Y,U) \\
D_3 :: Y \cdot \ast, X < Y \vdash RBody(X,U) < T_1(Y) \\
D_0 :: U < \text{Rec}(x)P.
\end{align*}
\]

We now proceed as in the S-Rec case, this time using \(RBody(Y,U) \) as cut-formula.
Case. LL is an L-rule.
We have already handled the case where RR is SA-Rec', so RR must be either an R-rule for the same
former or else the corresponding congruence rule. In each case we can apply the induction hypothesis
to the subderivations and proceed as in the previous case.

Our job for the remainder of this section is to prove a substitution lemma for the algorithmic subtyping
relation (Proposition 27). For this purpose, we introduce an auxiliary refinement relation
similar to the subtyping relation, but with a pointwise clause for recursive types to match their kinding
rule.

Definition 25 (Kind Refinement). The relation \(\ll &: \) between kinds is defined as follows:

\[
\begin{align*}
\Gamma \vdash K \ll &: \text{Top} & (\text{Ref-Top}) \\
\Gamma \vdash x \ll &: x & (\text{Ref-Refl}) \\
\Gamma \vdash K_1 \ll &: L_1 & \quad \Gamma \vdash K_2 \ll &: L_2 & (\text{Ref-Prod}) \\
\Gamma \vdash S =_q T & \quad \Gamma \vdash K \ll &: L & (\text{Ref-Upd}) \\
\Gamma, x : \ast \vdash K \ll &: L & (\text{Ref-Some}) \\
\Gamma, x : \ast \vdash K \ll &: L & \quad \Gamma \vdash \text{Rec}(X)K \ll &: \text{Rec}(X)L & (\text{Ref-Rec})
\end{align*}
\]

Lemma 26 (Transitivity of Refinement). Kind refinement is transitive.

Proof. Easy induction on derivations.

Lemma 27 (Reflexivity of Refinement). If \(\Gamma \vdash K \ll &: K \), then \(\Gamma \vdash K \ll &: K \).

Proof. Easy induction on derivations.

Lemma 28 (Monotonicity of Refinement). If \(x : \ast \vdash K_1 \ll &: L_1 \), and if \(\tau \) is any type and \(K_2 \ll &: L_2 \), then

\[
[\tau, K_2/\tau]K_1 \ll &: [\tau, L_2/\tau]L_1.
\]

Proof. By induction on the structure of \(L_1 \). If \(L_1 = \text{Top} \), then the result follows by Ref-Top. If \(L_1 = x \), then \(K_1 \) must be \(x \) too, and the result follows from the assumption. If \(L_1 = \tau S \times L_1' \), then \(K_1 = \tau T_1 \times K_1' \) and \(S_1 =_q T_1 \) and \(K_1' \ll &: L_1' \). Proposition 6 and the induction hypothesis together with Ref-Upd then yield the result. The other cases are similar.

Lemma 29 (Kinding and Subtyping). If \(\Gamma \vdash s \ll &: \tau \) and \(\Gamma \vdash s \ll &: K \) and \(\Gamma \vdash \tau \ll &: L \) then \(\Gamma \vdash K \ll &: L \).
Proof. By induction on a derivation of $\Gamma \vdash s : \tau$.

If the derivation is an instance of SA-Refl, Lemma 27 yields the result.

If the derivation is an instance of SA-Top, use Ref-Top.

In the case of rules SA-Prod to SA-Rec', the result follows by applying the induction hypothesis to the premises. The most difficult of these cases is SA-Rec. Suppose, therefore, that $s = \text{Rec}(x)s_1$ and $T = \text{Rec}(y)T_1$ and $K = \text{Rec}(y)K_1$ and $L = \text{Rec}(y)L_1$ and $x : \vdash s_1 \ll k_1$ and $y :* \vdash T_1 \ll L_1$ and, finally, $y :* \vdash x : \vdash s_1 \ll T_1$. Now Lemma 23 yields a derivation of $y :* \vdash s_1 \ll T_1$. The induction hypothesis gives $y :* \vdash s_1 \ll L_1$, hence $k :* \ll L$ by Ref-Rec.

An illustrative example of an LR-rule is the case where $s : \tau$ has been derived by rule SA-Some. Then s is neutral and $T = \text{Some}(x)T_1$ and $L = \text{Some}(x)L_1$ and $x :* \vdash T_1 \ll L_1$ and $K = \text{Some}(x)K_1$ and $x :* \vdash \text{EBody}(x,s) \ll T_1$. Now rule K-EBody gives $x :* \vdash \text{EBody}(x,s) \ll [x/x]K_1 = K_1$. Therefore $x :* \vdash s_1 \ll L_1$ by the induction hypothesis, and $k :* \ll L$ by Ref-Some. The other LR-rules are similar.

Finally, in the case of SA-Promote, we invoke Lemma 20 and the induction hypothesis. ■

Lemma 30 (Kinding and Substitution, General Case). Suppose that $\Gamma, x : \alpha \vdash s \ll k$, that $\Gamma \vdash v : \beta$, and that $[v/x]s$ is defined. Then $[v/x]s \ll L$ for some $L : \beta$. (Notice that since x is not a parameter it can only occur in the invariant position of a updatable product in k).

Proof. By induction on the derivation of $s \ll k$.

If s is active, then the result follows by applying the induction hypothesis to the premises. Consider, for example, the case $s = \text{Rec}(y)s_1$ and $K = \text{Rec}(y)K_1$ and $y :* \vdash s_1 \ll k_1$. The induction hypothesis gives L_1 such that $y :* \vdash [v/x]s_1 \ll L_1 \ll [v/x]k_1$. Hence $[v/x]s \ll \text{Rec}(y)L_1 \ll [v/x]k$ by K-Rec and Ref-Rec.

If $s = x$, then the result follows from Lemmas 16 and 29. If $s = y \neq x$, then the result follows by applying the induction hypothesis to the bound of y.

Finally, consider the case where $s = \text{EBody}(x,T,n)$, as an example of the LR-rules. Then $T \ll k_1$ and $n \ll \text{Some}(y)K_2$ and $K = [T, k_1/y]K_2$. The induction hypothesis yields $[v/x]t \ll L_1 \ll [v/x]k_1$ and $[v/x]n \ll \text{Some}(y)L_2 \ll \text{Some}(y)[v/x]k_2$ for some L_1 and L_2. Now we have two cases to distinguish. Either $[v/x]n$ is still neutral, in which case $[v/x]s \ll [v/x]t, L_1/y]L_2$, or else $[v/x]n = \text{Some}(y)P$, where $y :* \vdash p \ll L_2$. In this case, $[v/x]s = [v/x]t/y]p \ll [v/x]t, L_1/y]L_2$ by Lemma 3. So in either case $[v/x]s$ has kind $L = [v/x]t, L_1/y]L_2$. But $L \ll [v/x]k$ by Lemma 28, hence the result. ■

Proposition 31 (Eta and Substitution, General Case). If $D ::= \Gamma, x : \alpha, \Delta \vdash s =_\eta \tau$ and $\Gamma \vdash v : \beta$ and $[v/x]s$ is defined, then $\Gamma, [v/x]s \ll \text{Rec}(y)s_1$ for some s_1 and $\text{Rec}(y)[v/x]s_1 =_\eta [v/x]t$.

Proof. Induction on derivations. The congruence rules are straightforward applications of the induction hypothesis. For Eta-A-Refl, we use Lemma 30. For the LR-rules we proceed as usual by case distinction on whether the substituted types are still neutral or not. In the case of Eta-AL(R)-Some and Eta-AL(R)-Rec we use Prop. 10. Let us look at rule Eta-AL-Rec. In this case s is neutral of recursive kind and T is $\text{Rec}(y)T_1$. We also know that $\Gamma, x : \alpha, \Delta, y :* \vdash \text{EBody}(y,s) \ll T_1$. Since $[v/x]s$ is neutral then the desired result follows using Eta-AL-Rec. Otherwise, $[v/x]s = \text{Rec}(y)s_1$ for some type s_1 and $\text{Rec}(y)[v/x]s_1 = s_1$. The result follows with Eta-A-Rec. ■

Lemma 32 (Substitutivity of Promotion). Let $\Sigma = \Gamma, x : \alpha, \Delta$. If $\Sigma \vdash n \ll \ast$ and $\Gamma \vdash v : \beta$ and $[v/x]s$ is defined, then $\Gamma, [v/x]s \ll \text{Rec}(y)[v/x]s_1$.

Proof. First notice that, by the form of the definition of promotion, $\Sigma \vdash n \ll \ast$ implies $\Sigma \vdash \text{Rec}(\Sigma(n)) \ll \ast$; from these two facts, Lemma 30 tells us that $[v/x]s$ and $[v/x]s_1$ are both defined and well-kindled. Now proceed by induction on the form of N. If $n = x$, then $[v/x]s = v$ and $[v/x]s_1 = [v/x]u = u$, since x is not free in u. Hence, the result follows by the assumption on v. If $n = y$, then the result follows using SA-Promote on v and reflexivity (on $[v/x]s(y)$). In all other cases the result follows by applying Lemma 21 to the induction hypothesis.

Proposition 27 (Substitutivity of Subtyping). If $\Gamma, x : \alpha, \Delta \vdash s : \tau$
and $\Gamma \vdash v : u$ and $[v/x]\Delta$ is defined, then

$$\Gamma, [v/x]\Delta \vdash [v/x]s : [v/x]t.$$

Proof. By induction on a derivation of $\Gamma, x : u, \Delta \vdash s : t$.

If the last rule is $SA-REFL$ or $SA-TOP$, then the result follows using the same rule (plus Lemma 30 to establish the required kinding premise).

The congruence rules for active types commute with substitution directly, so the result follows by applying the induction hypothesis to the subderivations and using the same rule on the results. The arguments for $SA-UPD$ and $SA-REC^-$ use Proposition 31. $SA-ALL$ uses Lemma 30 for the kinding premise.

If the last rule is an LR-rule, then we use Lemma 30 on the kinding premises and a case distinction on whether the substituted type is still neutral or not like in the proof of Prop. 31. Suppose, for example, that V is still neutral, then Lemma 30 together with the definition of kind refinement shows that $[v/x]s$ has recursive kind so the result follows by applying $SAL-REC$ to the induction hypothesis. Otherwise, $[v/x]s$ equals $Rec(Z)s_1$ for some type s_1 and $RBody(Z,[v/x]s) = s_1$ by definition of substitution. The result then follows from rule $SA-REC$.

Finally, if $s : t$ has been derived by $SA-PROMOTE$, i.e., s is neutral and $\Gamma(s) : t$, then we obtain $[v/x]s : [v/x]\Gamma(s)$ from Lemma 32. Theorem 24 and the induction hypothesis applied to the immediate subderivation then yield the result.

5.4. Soundness and Completeness of Algorithmic Subtyping

We now write \vdash^σ for algorithmic derivations and \vdash for derivations in the declarative systems.

Theorem 33 (Soundness).

1. If $\Gamma \vdash s : \star$, then $\Gamma \vdash s : \Gamma(s)$.
2. If $\Gamma \vdash s : \tau$, then $\Gamma \vdash s : \tau$.

Proof. Straightforward induction. Use the first case and $S-TRANS$ for soundness of $SA-PROMOTE$.

Theorem 33 (Completeness). If $\Gamma \vdash s : \tau$, then $\Gamma \vdash^\sigma s : \tau$.

Proof. Putting together the lemmas and propositions from above.

Before we consider decidability, let us pause to discharge a pending proof obligation from Section 3.3.

Proof of Theorem 2. Suppose that $\Gamma \vdash s : \!T_1 \times T_2$. By Theorem 33, $\Gamma \vdash^\sigma s : \!T_1 \times T_2$. Clearly, $\!T_1 \times T_2$ must be well kinded, but by generation of kinding the only possible kind is $T_1 \times K_1$. Lemma 29 then entails that s has some kind $K \ll : \!T_1 \times K_1$. Generation of refinement then yields $K = \!T_1' \times K'$ where $T_1' \equiv_0 T_1$, hence the result. The other cases are analogous.

5.5. Decidability

We have already established soundness and completeness results for our algorithmic presentations of kinding, eta-conversion, and subtyping. To show that these relations are decidable, it only remains to show that the algorithms terminate on all inputs. (The algorithmic typing relation defined in Section 5.6 will also have this property, by an easy inspection.)

Proposition 34 (Kind Checking Is Decidable). The algorithm resulting from inverting the kinding rules terminates on all inputs.

Proof. Let Γ be a context and τ a type. We define $w(\Gamma, \tau)$ as the length of τ plus the length of the part of Γ which binds free variables in τ. (More formally, $w(\Gamma, \tau) = |\Delta| + |T|$, where $|_|$ denotes the length of syntactic expressions and where Δ is the shortest prefix of Γ such that $\Delta \vdash \tau \ll K$.) An inspection of the kinding rules then shows that the measure w of the conclusion of a kinding rule is strictly larger than the measure of any of its premises. (The restriction of $w(\Gamma, \tau)$ to the relevant part of Γ is needed for rule $K-VAR$.) Termination follows by induction on w.

**
Proposition 35 (Eta-Equality Is Decidable). The algorithm resulting from inverting the algorithmic eta-rules terminates on all inputs.

Proof. We assign to an instance \(\Gamma \vdash s =_\eta \tau \) the number of active type formers in \(s \) and \(\tau \). This measure is reduced by every backwards application of a rule.

To show that the subtyping algorithm terminates, we need to do a little more work because the promotion rule may increase the number of active type formers and also introduce nontrivial parameter substitutions. A formalism which can demonstrate termination of a system which contains substitution is the typed lambda calculus.

We thus define a translation of \(F_{\Sigma}^{PD} \) types into terms of a simply typed lambda calculus with product types, function types, and \(\top_\Sigma \). Then we reduce termination of the subtyping algorithm to strong normalisation of this lambda calculus, which is well-known. Formally, let \(\lambda_M \) be the fragment of \(F_{\Sigma}^{PD} \) generated by the type formers \(\top_\Sigma, \rightarrow, \) and \(\times \) (no type destructors). It follows by standard methods that this calculus is strongly normalising, i.e., that there does not exist an infinite reduction sequence starting from a well-typed term in \(\lambda_M \). For example, the normalisation proof for Gödel’s system \(T \) given in [18] readily extends to \(\lambda_M \) by interpreting subtyping as inclusion of reducibility sets and interpreting \(\top_\Sigma \) as the set of strongly normalising terms.

If \(e \) is a \(\lambda_M \)-term we write \(\mu(e) \) for the length of the longest reduction sequence starting from \(e \). From strong normalisation it follows that \(\mu(e) \) is well-defined and that whenever \(e \) is a proper reduct of \(e_0 \) then \(\mu(e) < \mu(e_0) \). Our aim is to translate types of \(F_{\Sigma}^{PD} \) to terms of \(\lambda_M \) in such a way that the \(\mu \)-measure does not increase upon backwards application of an algorithmic subtyping rule. Moreover, there will be a strict decrease for all rules but promotion, so that an alleged infinite backwards derivation would eventually consist of promotion instances only, which is impossible (the scoping rules for contexts specify that the bound of a type can contain only variables bound to the left of it in the context).

We begin by defining a translation \((-)^*\) from \(F_{\Sigma}^{PD} \) kinds to \(\lambda_M \)-types:

\[
\begin{align*}
\text{Top}^* &= \text{Top} \\
\text{x}^* &= \text{Top} \\
K_1 \times K_2^* &= K_1^* \times K_2^* \\
\text{!}K_1 \times K_2^* &= K_1^* \times K_2^* \\
\text{Some}(X)K^* &= \text{Top} \rightarrow K^* \\
\text{Rec}(X)K^* &= \text{Top} \rightarrow K^*
\end{align*}
\]

Let \(\Gamma \) be a \(F_{\Sigma}^{PD} \)-context. We translate a type \(\tau \) with \(\Gamma \vdash \tau \leq \kappa \) to a \(\lambda_M \)-term of type \(\kappa^* \) having the parameters in \(\Gamma \) as free variables of type \(\top_\Sigma \) and no other free variables. In what follows, let (each occurrence of) \(I \) stand for an appropriately typed identity function \(\text{run}(x: \text{Top})_x \), let \(\top_\Sigma \) be any well-typed normal form (e.g. \(\text{run}(x: \text{Top})_x \)), and let \(\Gamma(e) \) stand for \(I(I(e)) \), so that \(\mu(I(e)) = \mu(e) + 1 \) and \(\mu(I^2(e)) = \mu(e) + 2 \). The defining clauses for the translation of types into terms are now as follows:

\[
\begin{align*}
(\text{Top})^* &= x \\
(x)^* &= \Gamma(x)^* \\
(t_1 \diamond t_2)^* &= \Gamma((t_1)^*, (t_2)^*) \\
&\quad \text{where } \diamond \in \{\rightarrow, \times, !, \ldots \times\} \\
(\text{All}(X < \tau_1) \tau_2)^* &= \Gamma((\tau_2)^*, \tau_1, \ldots) \\
(\text{Some}(X) \tau)^* &= \Gamma^2(\text{run}(X: \text{Top})_x) \\
(\text{Rec}(X) \tau)^* &= \Gamma^2(\text{run}(X: \text{Top})_x) \\
(\text{n.1})^* &= (\text{n.1})^* \\
(\text{n.2})^* &= (\text{n.2})^* \\
(\text{EBody}(T, \text{n}))^* &= (\text{n})^* \\
(\text{RBody}(T, \text{n}))^* &= (\text{n})^*
\end{align*}
\]

The compositional definition of this translation immediately yields the following substitution property:
LEMMA 36. If $\Gamma, x : \tau, \Delta \vdash e \in \tau$ and $\Gamma \vdash v \in \tau$, then
\[
\mu((u/v)^{\tau} \cdot x, \cdot, \Delta) = ((u/v)^{\tau} \cdot y)_{\gamma}^{\tau},
\]
where γ. We have
\[
\mu((u/v)^{\tau} \cdot x, \cdot, \Delta) = ((u/v)^{\tau} \cdot y)_{\gamma}^{\tau},
\]
LEMMA 37. If $\Gamma \vdash \pi \in \tau$ and π is not a parameter, then π^{τ} reduces to (or equals) $(\Gamma(\pi))^{\tau}$, hence $\mu((\Gamma(\pi))^{\tau}) \leq \mu(\pi^{\tau})$.

Proof. By induction on π. If π is a variable then the result is immediate from the definition. In all other cases, we argue directly from the induction hypothesis and Lemma 36.

Consider, for example, the case $\pi = \text{RBody}(u, \eta_0)$ so that $(u/\pi)^{\tau} = (\eta_0)^{\tau}((u)^{\tau})$. Note, first of all, that η_0 cannot be a parameter, since we know that it has a record kind (otherwise π would not be well kinded). Now, if $\Gamma(\eta_0)$ is neutral, then $(\Gamma(\eta_0))^{\tau} = (\Gamma(\eta_0))^{\tau}((u)^{\tau})$. So, since, by the induction hypothesis, $(\eta_0)^{\tau}$ reduces to (or equals) $(\Gamma(\eta_0))^{\tau}$, we get the desired result by applying the same reduction to the head of the application. If, on the other hand, $\Gamma'(\eta_0)$ is active, then it must have the form $\text{Rec}(X)^{\tau}$, so $\Gamma(\eta_0)$ is $[u/v]^\tau$ and, by Lemma 36, $(\Gamma(\eta_0))^{\tau} = (\eta_0)^{\tau}((u)^{\tau})$. Now $(u)^{\tau}$ can be reduced to this term using the reduction sequence from the induction hypothesis followed by three beta-reductions.

LEMMA 38. Suppose that $\Gamma_0 \vdash \eta_0 < \eta_0 \text{ appears as immediate premise of } \Gamma \vdash s < \tau$ in one of the algorithmic subtyping rules. Then
\[
\mu(\eta_0)^{\tau} \leq \mu(s)^{\tau} + \mu(\tau)^{\tau}.
\]
Moreover, the inequality is strict for all rules except SA-PROMOTE.

Proof. For SA-PROMOTE we use Lemma 37. The congruence rules require straightforward calculations from the definitions and Lemma 36. Let us look at the most complex one: SA-Rec. Suppose $\eta = \text{Rec}(X)^{\tau}$ and $\tau = \text{Rec}(Y)^{\tau}$, and let e_0, e_0' be the translations of η_0, η_0 and e, e' the translations of s, τ. Furthermore, let e_1 be $(\eta_0)^{\tau}, e_1'$, and e_1' be $(\tau_0)^{\tau}$. We have
\[
e_1 = \Gamma^1(\text{fun}(X : \text{Top}) e_1)
\]
\[
e'_1 = \Gamma^1(\text{fun}(Y : \text{Top}) e'_1)
\]
\[
e_0 = [X/Y]e_1
\]
\[
e_0' = e_1'.
\]

The third and fourth equation follow by inspection of the treatment of variables in the translation.

This analysis shows that $\mu(e) = 2 + \mu(e_1)$ and $\mu(e') = 2 + \mu(e_1')$ and $\mu(e_0) = \mu(e_1)$, hence $\mu(e) + \mu(e') = 4 + \mu(e_1) + \mu(e_1') = 4 + \mu(e_0) + \mu(e_0)$, and $\mu(e_0) > \mu(e_0) + \mu(e_0')$.

The most interesting cases are the LR-rules. Again, we show the most difficult one: SAL-Rec. Suppose $\eta = X, \tau = \text{Rec}(Y)^{\tau}$, and let e_0, e_0' be the translations of η_0, η_0 and e, e' be the translations of s, τ. We have
\[
e' = \Gamma^2(\text{fun}(X : \text{Top}) e_0')
\]
\[
e_0 = e Y.
\]
This shows that $\mu(e') = \mu(e_0') + 2$ and $\mu(e_0) \leq \mu(e) + 1$, hence $\mu(e) + \mu(e') = \mu(e) + 2 + \mu(e_0') = \mu(e_0) + \mu(e_0')$. This rule (and similarly the LR-rules for the existential) are the reason for two identities rather than one in the translations the other type formers admitting destructors.

THEOREM 39. Subtyping is decidable.

Proof. In order to decide whether $\Gamma \vdash s < \tau$, apply the algorithmic subtyping rules backwards until either a proof is found or no rule applies anymore. Suppose, for a contradiction, that this process does not terminate. Then, since the μ-measure cannot decrease forever, there must be a certain point after which the only rule used is SA-PROMOTE. However, each instance of SA-PROMOTE replaces a variable by
its upper bound and thus removes it from the left-hand side of the subtyping judgement. Therefore, an infinite sequence of promotions is impossible.

We note, in passing, that this proof gives us a very bad upper bound on the complexity of the subtyping procedure (elementary or worse). Observe, however, that all abstractions occurring in translations of \(F^{tm} \)-types are of type \(\text{Top} \), so that a variable never appears in applied position. We conjecture that normalisation for this fragment of \(\lambda M \) is of more reasonable complexity (exponential or better), but we haven’t looked into details.

5.6. Algorithmic Typing

In order to decide typechecking we introduce a set of syntax-directed typing rules which (when read from bottom to top, as a “logic program”) compute the minimal type of a given term in a given context.

Definition 40. The judgment \(\Gamma \triangleright \tau \triangleright \lambda \text{Top} \), read “the least active supertype of \(\tau \ll \text{Top} \) is \(\lambda \),” is defined by

\[
\frac{\Gamma \triangleright \lambda \ll \text{Top}}{\Gamma \triangleright \lambda \triangleright \lambda}
\]

Proposition 41. If \(\Gamma \triangleright \tau \triangleright \lambda \) then \(\Gamma \triangleright \tau \triangleright \lambda \). If, moreover, \(\Gamma \triangleright \tau \triangleright \lambda \), then \(\Gamma \triangleright \lambda \ll \lambda' \).

Proof. The first part is an easy induction on the definition of \(\Gamma \triangleright \tau \triangleright \lambda \); the second an easy induction on an algorithmic subtyping derivation of \(\Gamma \triangleright \tau \triangleright \lambda \).

Note that the premise of the first rule is \(\Pi \ll \text{Top} \). Therefore, if \(\Gamma \triangleright \Pi \triangleright \lambda \), then \(\lambda \) is \(\text{Int} \) or \(\text{Top} \) or of the form \(\tau_1 \rightarrow \tau_2 \) or \(\text{All}(X \ll \tau_1)\tau_2 \).

The algorithmic typing rules are now as follows.

\[
\begin{align*}
\Gamma \text{ well formed} & \quad \text{(TA-Var)} \\
\frac{\Gamma \triangleright x \in \Gamma(x)}{} \\
\Gamma \text{ well formed} & \quad \text{(TA-Const)} \\
\frac{\Gamma \triangleright i \in \text{Int}}{} \\
\frac{\Gamma, x : \tau_1 \triangleright e \in \tau_2}{\Gamma \triangleright \text{fun}(x : \tau_1)e \in \tau_1 \rightarrow \tau_2} & \quad \text{(TA-Abs)} \\
\frac{\Gamma \triangleright e_1 \in \tau_1 \quad \Gamma \triangleright e_2 \in \tau_2}{\Gamma \triangleright (e_1,e_2) \in \tau} & \quad \text{(TA-Pair)} \\
\frac{\Gamma \triangleright e \in \Pi \quad \Gamma \triangleright \text{All}(X \ll \tau_1)\tau_2}{\Gamma \triangleright \text{fun}(X \ll \tau_1)e \in \text{All}(X \ll \tau_1)\tau_2} & \quad \text{(TA-TAbs)} \\
\frac{\Gamma \triangleright e \in \tau \quad \Gamma \triangleright \text{All}(X \ll \tau_1)\tau_2 \quad \Gamma \triangleright U \ll \tau_1}{\Gamma \triangleright e[U] \in \text{All}(X \ll \tau_1)\tau_2} & \quad \text{(TA-TApp)}
\end{align*}
\]
\[\begin{align*}
\Gamma \vdash e_1 \in T_1 & \quad e_2 \in T_2 \\
\Gamma \vdash (e_1, e_2) \in !T_1 \times T_2 & \quad \text{(TA-PAIR-Upd)} \\
\Gamma \vdash e \in T & \quad T \ll K_1 \times K_2 \\
\Gamma \vdash e.1 \in T.1 & \quad \text{(TA-PROJ)} \\
\Gamma \vdash e \in T & \quad T \ll !T_1 \times K_2 \\
\Gamma \vdash e.2 \in T.2 & \quad \text{(TA-PROJ-Upd-1)} \\
\Gamma \vdash e \in T & \quad T \ll !T_1 \times K_2 \\
\Gamma \vdash e.2 \in T.2 & \quad \text{(TA-PROJ-Upd-2)} \\
\Gamma \vdash \mu x. K & \quad \text{(TA-REC)} \\
\Gamma \vdash \text{pack } [S, e] \text{ as } T & \quad \text{(TA-PACK)} \\
\Gamma \vdash e \in T & \quad \Gamma \vdash e \in \text{Ebody}(S, T) \\
\Gamma \vdash \text{pack } [S, e] \text{ as } T & \quad \text{(TA-PACK)} \\
\Gamma \vdash \text{open } e \text{ as } [X, x] \text{ in } e' & \quad \text{(TA-OPEN)} \\
\Gamma \vdash \text{fold } [R] \in \text{Ebody}(R, R) \rightarrow R & \quad \text{(TA-FOLD)} \\
\Gamma \vdash \text{fold } [R] \in \text{Ebody}(R, R) \rightarrow R & \quad \text{(TA-OPEN)} \\
\Gamma \vdash \text{fold } [R] \in \text{Ebody}(R, R) \rightarrow R & \quad \text{(TA-FOLD)} \\
\Gamma \vdash \text{open } e \text{ as } [X, x] \text{ in } e' & \quad \text{(TA-OPEN)} \\
\Gamma \vdash \text{fold } [R] \in \text{Ebody}(R, R) \rightarrow R & \quad \text{(TA-FOLD)} \\
\Gamma \vdash \text{fold } [R] \in \text{Ebody}(R, R) \rightarrow R & \quad \text{(TA-OPEN)} \\
\Gamma \vdash \text{fold } [R] \in \text{Ebody}(R, R) \rightarrow R & \quad \text{(TA-FOLD)} \\
\Gamma \vdash \text{open } e \text{ as } [X, x] \text{ in } e' & \quad \text{(TA-OPEN)} \\
\Gamma \vdash \text{fold } [R] \in \text{Ebody}(R, R) \rightarrow R & \quad \text{(TA-FOLD)}
\end{align*} \]

\textbf{Theorem 42 (Soundness and Completeness).} \begin{itemize}
\item \textit{If} \(\Gamma \vdash e \in T \) \textit{under the algorithmic definition then} \(\Gamma \vdash e \in T \) \textit{under the declarative presentation of typing. If} \(\Gamma \vdash e \in T \) \textit{under the declarative presentation of typing then there exists} \(S \) \textit{such that} \(\Gamma \vdash e \in S \) \textit{and, if} \(\Gamma \vdash e \in S' \) \textit{declaratively, then} \(\Gamma \vdash S : S' \).
\end{itemize}

\textit{Proof.} The first part proceeds by showing that the algorithmic rules are derivable. The second part uses an induction on algorithmic typing derivations and generation of declarative typing.

\textbf{Theorem 43 (Subject Reduction).} \begin{itemize}
\item \textit{If} \(\Gamma \vdash e \in T \) \textit{and} \(e \rightarrow e' \) \textit{then} \(\Gamma \vdash e' \in T \).
\end{itemize}

\textit{Proof.} By induction on the length of the reduction sequence establishing \(e \rightarrow e' \). At each step, we continue by induction on (declarative) typing derivations.

The argument is now similar to the one for ordinary \(F \) because our term formers and reduction rules are identical to \(F \). We show the argument here for the case of beta reduction of a type application.

Suppose that the last step in the derivation of \(\Gamma \vdash e \in T \) was \(\text{T-TAPP} \), i.e., \(e = \text{fun}(X : T_1 : T_2) \) and \(T = \{T_2/X\}S_2' \) and \(\Gamma \vdash \text{fun}(X : S_1) : e_0 \in A_1L(X : S_1 : S_2) \) and \(\Gamma \vdash T_2 : S_1 \). The penultimate assumption in turn must have been obtained using \(T \)-TANS followed by (w.l.o.g.) exactly one instance of subsumption. So we may further assume that \(\Gamma, X : S_1 \vdash e_0 \in S_2 \) and \(\Gamma \vdash A_1L(X : S_1)S_2 : A_1L(X : S_1)S_2' \). Now, generation of subtyping yields \(\Gamma, X : S_1 \vdash S_2 : S_2' \). The result follows using Proposition 5.3., subtyping rules, and subsumption.

\textbf{Remark 1.} Note that, as in \(F \), obviously wrong expressions like \((x, y) \) or \(\text{fun}(x : T) : x \) cannot be typed. By subject reduction, such expressions cannot arise during evaluation of a well-typed term.
Remark 2. Notice that in spite of type soundness F_{TD} is not a conservative extension of F_{\leq} with respect to observational equivalence. Indeed, in F_{\leq} the function

$$
\text{test} \equiv \begin{array}{l}
\text{fun}(z:\text{All}(X<:\top\times\top)X \to X) \\
(z[\text{Int} \times \text{Int}](0,1)).1 \\
\in (\text{All}(X<:\top\times\top)X \to X) \to \text{Int}
\end{array}
$$

is observationally equivalent to the constant zero function. Formally, this can be seen using a semantic argument involving a PER model.

In F_{TD}, on the other hand, these two functions can be distinguished by applying them to an instance of Abadi’s `mix` function. (Thanks to Peter O’Hearn and Jon Riecke for pointing this out.)

6. SEMANTICS

An important strand of future development for F_{TD} is denotational semantics. We give here a brief sketch of our current ideas.

It appears that we can model the full system F_{TD} using complete uniform pers [2, 4]. For simplicity here, we omit the recursive types and use ordinary pers. Let PER stand for the set of pers (partial equivalence relations) on the natural numbers; see [19] for details on interpretation of ordinary F_{\leq} using pers. The set TY of denotations for types is defined inductively as follows.

1. If $R \in \text{PER}$ then $\text{Per}(R) \in TY$.
2. $\top \in TY$.
3. If $A, B \in TY$ then $A \times B \in TY$.
4. If $A, B \in TY$ then $\top A \times B \in TY$.
5. If $F \in \text{PER} \to TY$ then $\text{Some}(F) \in TY$.

Note that the symbols $\top, \text{Per}, \times, \top, \ldots \times, \text{and Some}$ are free constructors of the inductive definition.

The subtyping relation $\angle: TY \times TY$ is:

1. $A \angle \top$ (always).
2. $\text{Per}(R) \angle \text{Per}(R')$ if $R \subseteq R'$.
3. $A \times B \angle A' \times B'$ if $A \angle A'$ and $B \angle B'$.
4. $\top A \times B \angle \top A' \times B'$ if $A = A'$ and $B = B'$.
5. $\text{Some}(F) \angle \text{Some}(F')$ if $F(R) \angle F'(R)$ for each $R \in \text{PER}$.

A function $\overline{\cdot}: TY \to \text{PER}$ is defined by

$$
\begin{align*}
\overline{\text{Per}(R)} &= R \\
\overline{\top} &= \top \\
\overline{A \times B} &= A \times B \\
\overline{\top A \times B} &= A \times B \\
\overline{\text{Some}(F)} &= \bigsqcup_{R \in \text{PER}} F(R)
\end{align*}
$$

Here \top denotes the maximal per, \times denotes cartesian product of pers, and \sqcup is the symmetric, transitive closure of the set-theoretic union.

Now we can interpret F_{TD} type expressions in an environment which maps variables to elements of TY with the understanding that parameters are always mapped to elements of the form $\text{Per}(R)$. The
defining clauses are as follows:

\[
\begin{align*}
\llbracket X \rrbracket \eta &= \eta(x) \\
\llbracket \text{Top} \rrbracket \eta &= \text{Top} \\
\llbracket \text{Int} \rrbracket \eta &= \text{Per} (\text{Int}) \\
\llbracket T_1 \rightarrow T_2 \rrbracket \eta &= \text{Per} (\llbracket T_1 \rrbracket \eta \Rightarrow \llbracket T_2 \rrbracket \eta) \\
\llbracket T_1 \times T_2 \rrbracket \eta &= \llbracket T_1 \rrbracket \eta \times \llbracket T_2 \rrbracket \eta \\
\llbracket ! T_1 \times T_2 \rrbracket \eta &= \text{!} (\llbracket T_1 \rrbracket \eta \times \llbracket T_2 \rrbracket \eta) \\
\llbracket \forall (X \triangleleft T_1) T_2 \rrbracket \eta &= \text{Per} \left(\bigcap A : \text{F} \cdot T_1 \cdot T_2 \eta (x \mapsto A) \right) \\
\llbracket \text{Some} (X) T \rrbracket \eta &= \text{Some} (\lambda . R . (\llbracket T \rrbracket \eta (x \mapsto \text{Per} (R)))) \\
\llbracket T.1 \rrbracket \eta &= \\ &\begin{cases} \\
& A_1, \text{if } \llbracket T \rrbracket \eta = A_1 \times A_2 \\
& \text{undefined, otherwise} \\
\end{cases} \\
\llbracket T.2 \rrbracket \eta &= \\ &\begin{cases} \\
& A_2, \text{if } \llbracket T \rrbracket \eta = A_1 \times A_2 \\
& \text{or } \llbracket T \rrbracket \eta = ! A_1 \times A_2 \\
& \text{undefined otherwise} \\
\end{cases} \\
\llbracket \text{EBody} (U, T) \rrbracket \eta &= \\ &\begin{cases} \\
& F (\llbracket U \rrbracket \eta), \text{if } \llbracket T \rrbracket \eta = \text{Some} (F) \\
& \text{undefined otherwise} \\
\end{cases}
\end{align*}
\]

Here \(\Rightarrow \) denotes function spaces of pers.

This semantics is defined for well-kinded types; \(\eta \)-equal types receive equal meaning, and types standing in the subtype relation are mapped to semantic types standing in the \(\triangleleft \) relation on \(\text{TY} \).

On the level of terms the semantics is as usual; the soundness theorem says that if \(\Gamma \vdash e \in \tau \) and \(\eta \) is an appropriate environment then \(\llbracket e \rrbracket \eta \in \text{dom} (\llbracket T \rrbracket \eta) \).

Notice that this semantics does not extend to the “ideal system” with bounded existentials from the introduction: If we are allowed to apply a type destructor inside the body of an existential to the bound variable, then the semantic type former \(\text{Some} \) would have to take a function from \(\text{TY} \) to \(\text{TY} \) rather than a function from \(\text{PER} \) to \(\text{TY} \) as argument; then, however, \(\text{TY} \) would no longer be inductively defined. It should be possible, though, to replace the inductively defined set \(\text{TY} \) by an appropriately defined domain of “semantic type expressions.” The details remain to be worked out.

7. CONCLUSIONS AND FURTHER WORK

We have presented a first step towards a general theory of structural subtyping and update by adding type destructors to a version of Kernel Fun with unbounded existentials. The programming examples show that type destructors yield substantially simpler and more readable encodings of object-oriented programming idioms in typed lambda calculus.

Of course, we would like to see the syntactic restrictions on \(F^{TD} \leq \) relaxed, while avoiding the bad behavior of the full “ideal system.” Apart from the pragmatic solution of living with sound but incomplete checkers, one might look into more refined kinding systems that would retain much of the flexibility of \(F^{TD} \) yet rule out nonterminating type expressions. One promising idea in this direction is based on the observation that, in practice, we only seem to need the type \(\text{EBody} (U, N) \) if \(U \) is a variable. For example, to type the repack operator

\[
\text{repack} \in \text{All} (Z \triangleleft \text{Some} (X) T) \\
(\text{All} (X) \text{All} (Y \triangleleft T) Y \rightarrow Y) \rightarrow \\
Z \rightarrow Z,
\]

we only need the equation \(Z =_\eta \text{Some} (X) \text{EBody} (X, Z) \), and destructors other than \(\text{EBody} (X, Z) \) do not appear in the course of checking \(\text{repack} \). The same is true for all the other examples we have checked so far. Therefore, a possible solution might be a system like \(F^{TD} \) but with bounded existentials (hence an \(\text{EBound} \)
destructor as well as \texttt{EBody} and two kinds of bound variables. The variables of the first kind are allowed to be quantified existentially and to appear as first argument in \texttt{EBody} expressions. Only variables of the first kind may be substituted for a variable of the first kind. Variables of the second kind subsume the ones of the first kind and are allowed to be quantified universally, as well as substituted by arbitrary type expressions. We hope that, in this way, one could obtain a proper extension of F_{\leq} which still admits syntax-directed presentations of subtyping and type checking.

Another application of the system with type destructors is as a metalanguage for designing and justifying special-purpose term formers such as the \texttt{repack} and polymorphic unfold operators. Once designed, these special term formers can be added to ordinary F_{\leq}, obtaining the benefits of structural subtyping in particular cases at little cost in terms of meta-theoretic complexity.

ACKNOWLEDGMENTS

Discussions with Luca Cardelli deepened our understanding of the subtleties of type destructors. Comments from the FOOL referees and a very careful reading by the journal referees helped us improve our presentation. Hofmann acknowledges a travel grant of the German Research Association (DFG) sponsoring a visit to Indiana University during which the exploratory parts of this research were conducted. Pierce’s work on this project was supported by National Science Foundation CAREER Grant CCR-9701826, Principled Foundations for Programming with Objects.

REFERENCES

8. Cardelli, L. (1990), Notes about $F\omega$, unpublished manuscript, October.

22. Pierce, B. C. (1996), Even simpler type-theoretic foundations for OOP, manuscript (circulated electronically), March.

