
Overview

Introduction

Tractable cases

DPLL algorithms

CDCL solvers
Implementing DPLL
Efficient Unit Propagation
Conflict Driven Clause Learning
Branching heuristics
Forgetting and Restarts
Pre- and Inprocessing

Probabilistic algorithms

Lookahead-based solvers

Certification

Applications

63 / 192

The general DPLL algorithm

DPLL(F , α)

simplify(F,α)

if F = 0 then return UNSAT

if F = 1 then return α

pick x ∈ V (F) and ε ∈ {0, 1}

β := DPLL(F [x := ε], α ∪ [x := ε])

if β 6= UNSAT

then return β
else return DPLL(F [x := ε̄], α ∪ [x := ε̄])

64 / 192

Main program

read formula

unit propagation

repeat

choose literal b

set value b

unit propagation

if conflict detected

backtrack

if all clauses satisfied

output assignment

65 / 192

Global variables

I n number of variables

I m number of clauses

I V list of n variables

I F list of m clauses

I q unit queue

I α assignment stack

I d branching depth

66 / 192

Storing clauses and literals

The data structure for variable x contains

I value ∈ {0, 1, free}

I list pos occ of clauses where x occurs

I list neg occ of clauses where x̄ occurs

I branching level dp

I clause reason

The data structure for clause C contains

I Flag sat by literal s

I List lit of literals in C

I Number act of active literals in C

67 / 192

Assigning a value to a variable

To set x to 1:

I update value = 1

I for every clause C in pos occ

mark C as sat by x , if not sat

I for every unsatisfied clause C in neg occ

decrement act

if act = 1 then
find unique free literal a in C
enqueue a in unit queue q

if act = 0 then
report conflict

68 / 192

Unit propagation

To find unit clauses:

I maintain number of unset literals in clauses.

I decremented when literal set to 0

To propagate units:

I keep literals to be set in a queue q

I while q not empty

b := last literal in q

set value b

69 / 192

Backtracking

Undo the last assignment.

I Assignments performed stored on a stack α

Undo all assignments forced by unit propagation until last branching:

I Assignments on stack marked as forced or branching

I while b = pop(α) is forced
unset value b

if α empty
output “Unsatisfiable.”

b = pop(α)
unset value b

set value −b as forced

empty q

74 / 192

Unassigning a variable

To undo setting of x to 1:

I update value = free

I for every clause C in pos occ

if C satisfied by x

mark C as not sat

I for every unsatisfied clause C in neg occ

increment act

78 / 192

Branching heuristics

hk(a) := #{C ; w(C) = k and a ∈ C }

h(a) :=
∑

k hk(a)

DLIS: Pick literal a with h(a) maximal.

DLCS: Pick variable x with h(x) + h(x̄) maximal,

set [x := 1] if h(x) ≥ h(x̄), and [x := 0] otherwise.

80 / 192

Branching heuristics

The MOM heuristic:

Let ` ≥ 2 be the current minimal clause width.

Pick a variable x with
(
h`(x) + h`(x̄))2

α + h`(x)h`(x̄) maximal

Bohm’s heuristic:

Let H(x) := (H2(x), . . . ,Hn(x)),

where Hk(x) := αmax(hk(x), hk(x̄) + βmin(hk(x), hk(x̄).

Pick x with H(x) lexicographically maximal.

The Jeroslaw-Wang heuristic:

Let J(a) :=
∑n

k=1 hk(a)2
−k =

∑
a∈C 2−w(C)

Pick literal a with J(a) maximal

81 / 192

Head-Tail lists

Head literal: first unassigned literal in a clause.

Tail literal: last unassigned literal in a clause.

For clauses, keep two pointers

I head to the head literal

I tail to the tail literal

For variables, keep lists:

I pos head occ clauses where x occurs as head literal

I pos tail occ clauses where x occurs as tail literal

Invariant: if head in C points to x ,

I all literals before x in C are set

I C occurs in pos head occ in x .

82 / 192

Head-Tail lists

To x set to 1:

I for every clause C in neg head occ

find next unassigned literal b

if literal set to 1 encountered
abort

if no unassigned literal found
report conflict

if b is tail literal
enqueue b in unit queue

add C to head list of b, mark b as head

Similarily for neg tail occ, and for setting x to 0.

If setting x to 1 is undone:

I if x̄ occurs in C before head, update lists.

83 / 192

Watched Literals

In every clause C , mark two arbitrary literals as watched,

e.g. by two pointers watched1 and watched2

Instead of head and tail lists:

I list of clause pos watched occ where x occurs as watched literal.

Invariant: While C is not satisfied,

I both watched literals in C are unset.

I if x is watched in C , then C occurs in pos watched occ in x

84 / 192

Watched Literals

To x set to 1:

I for every clause C where x̄ occurs as watched literal

find some other unassigned literal b

if literal set to 1 encountered
abort

if no unassigned literal found
report conflict

if only b found is watched
enqueue b in unit queue q

add C to watch list of b, mark b as watched

When setting x to 1 is undone, watched literals can be kept.

85 / 192

Branching depth

Branching depth of an assignment [a := 1]:

I number of branching asignments on stack below [a := 1]

Implemented by a global counter bd

I incremented at each branching assignment

I decremented on backtracking

86 / 192

Implication graph

Directed acyclic graph representing implications between assignments.

For every assignment [x := ε] of branching depth d

I create vertex v(x) labelled (x , ε, d)

Branching assignment: source vertex

Assignment [x := ε] forced by unit propagation:

I Clause xε ∨ yδ11 ∨ . . . ∨ yδkk in F

I variables yi assigned values (1 − δi) at depth di ≤ d

I vertices v(yi) labelled (yi , 1 − δi , di) already present

I insert edges from v(yi) to v(x)

87 / 192

Conflict in the implication graph

At a conflict create conflict vertex v(�) labelled (�, d)
I clause yδ11 ∨ . . . ∨ yδkk empty

I variables yi assigned values (1 − δi) at depth di ≤ d

I vertices v(yi) labelled (yi , 1 − δi , di) already present

I insert edges from v(yi) to v(�).

From now on:

I consider only the part of the implication graph
from which v(�) is reachable.

88 / 192

Implementing the implication graph

Assignment vertices:

I with variables set store branching depth

Edges:

I with variables set store reason for the setting:
the clause triggering the unit propagation.

I NULL for branching assignments

Conflict vertex and edges to it:

I at a conflict, store the clause that became empty.

89 / 192

Cuts and conflict clauses

A cut in the implication graph:

I partition into two disjoint sets B and C

I the branching side B is downward closed and
contains all branching literals.

I the conflict side is upward closed and contains the conflict node.

A cut defines a conflict clause yδ11 ∨ . . . ∨ yδkk

where v(yi) = (yi , 1 − δi , di) are the vertices in B with an edge into C .

90 / 192

The resolution rule

The resolution rule:

from C ∨ a and D ∨ ā derive C ∨ D.

Theorem

If C is derived from F by resolution,

then F is satisfiable iff F ∧ C is satisfiable.

Fact: conflict clauses are derived by resolution.

Corollary

Adding conflict clauses does not change satisfiablity.

91 / 192

Asserting clauses and backtracking

A conflict clause C is asserting, if it contains

exactly one literal of maximal branching depth.

The assertion level of C is the second largest branching depth

of literals in C .

Backtracking procedure:

I at a conflict, find a cut in the implication graph
giving an asserting conflict clause C

I add C to the formula (learn C), let d be its assertion level

I undo all assignments of branching level > d
set branching depth to d

I now C is a unit clause a

I enqueue a, goto unit propagation

92 / 192

Differences to DPLL

I Assertion level can be smaller than the maximal level −1

 non-chronological backtracking

I The literal that is flipped can be an implied literal

 not modelled by DPLL recursion

I Added conflict clause avoids finding the same conflict again.

TODO: methods to find asserting conflict clauses

 learning scheme

93 / 192

The RelSAT and decision schemes

The RelSAT scheme:

Let d be the current branching depth.

I C : all vertices of depth d , except the branching vertex.

I B: the branching vertex of depth d , all vertices of depth < d .

The decision scheme:

I B: all branching vertices (from which v(�) can be reached).

I C : all other vertices, i.e., implied vertices and v(�).

94 / 192

Unique implication points

A unique implication point (UIP) is a vertex v
of maximal branching depth with

I every path from the last branching vertex
to the conflict vertex goes through v .

The branching vertex is a UIP, so there exists at least one.

The cut corresponding to a UIP v

I C : all vertices on paths between v and v(�)

defines an asserting conflict clause.

95 / 192

The 1UIP scheme

The 1UIP scheme:

always learn the asserting conflict clause

obtained from the cut at the first UIP (from v(�)).

Computing the 1UIP conflict clause:

let C be the conflict clause

while C is not asserting

let D be the reason clause of the next assignment on the stack

let C be the resolvent of C with D

96 / 192

The VSIDS heuristic

The variable state independent decaying sum (VSIDS) heuristic:

I Every literal a has a priority s(a), initially h(a),
and a counter r(a), initially 0.

I Heuristic picks a literal of highest priority,
with ties broken randomly.

I Literals stored in a priority queue for fast finding of maximum.

I When clause C is learned, counters r(a) of literals a in C
incremented.

I Periodically (every 255 branchings) all priorities updated:
s(a) := s(a)/2 ∗ r(a)
r(a) := 0

Thus: VSIDS picks literals that ocurred in many recent conflict clauses.

97 / 192

The BerkMin heuristic

The following heuristic is implemented in BerkMin:

I Clauses are ordered in the order of being added.

I Literals have a priority n(a).

I Heuristic picks a literal of highest priority
from the unassigned literals in the most recent clause.

I In conflict analysis, n(a) is incremented for all literals
in clauses in the derivation of the conflict clause.

I Periodically, all priorities updated: n(a) := n(a)/4.

98 / 192

The VMTF heuristic

The variable move to front (VMTF) heuristic:

I Literals have a counter n(a), initialized as h(a)

I Literals are stored in an ordered list L,
initially sorted by decreasing n(a).

I Heuristic picks earliest unassigned literal from L.

I When clause C is learned,

n(a) is incremented for all a in C

the min(C , |8|) literals in C with n() largest
are moved to the front of L

99 / 192

Simple clause deletion strategies

Learned clauses need to be deleted (forgotten), otherwise:

I solver runs out of memory

I unit propagation costs too much time

k-bounded learning

I Clauses C of width w(C) ≤ k are kept indefinitely.

I Larger clauses C are deleted as soon as 2 literals in C are unassigned.

m-size relevance based learning

I Clauses C are deleted as soon as more than m literals in C are
unassigned.

Both strategies can be combined.

100 / 192

BerkMin’s clause deletion strategies

The following strategy is implemented in BerkMin:

I Clauses are ordered in the order of being added.

I Clauses have an activity counter n(C).

I n(C) is increased when C contributes to a conflict.

I A clause is old if it is among the first 1/16 of the learned clauses,
otherwise young.

I A young clause C is deleted if w(C) > 42 and n(C) ≤ 7.

I An old clause is deleted if w(C) > 8 and n(C) ≤ t.

I The threshold value t is initially 60, then gradually increased.

101 / 192

Restarts

Periodically, CDCL solvers do a restart after a conflict:

I empty the assignment stack

I undo all assignments

I keep learned clauses and scores for branching heuristics

Many solvers restart after a fixed number of conflicts.

Problem: completeness!

Completeness can be preserved by:

I increasing intervals between restarts.

I or guaranteeing to keep some learned clauses between any two
restarts.

102 / 192

Restart policies

Fixed interval policy:

I restart after a fixed number c of conflicts

I siege: c = 16.000, Chaff 2004 c = 700, BerkMin c = 550

Geometric policy:

I restart after c conflicts, then multiply by a factor c := c · f
I MiniSat: t = 100, f = 1, 5

Luby policy:

I Define the Luby sequence t1, t2, . . . by
ti = 2k−1 if i = 2k − 1, ti = ti−2k−1+1 if 2k−1 ≤ i < 2k − 1

I The first values are 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .

I Fix c = 32. The ith restart is performed c · ti conflicts
after the previous restart.

103 / 192

Phase Saving

Counterintuitive heuristics:

I for each variable, remember the value it was assigned
at the time of restart.

I when a variable is selected as branching variable,
assign the stored value again.

104 / 192

Preprocessing

Expensive reductions are still worthwile in a preprocessing phase:

I Pure literal elimination

I Deleting subsumed clauses

Modern solvers use more reduction in preprocessing.

Equivalence substitution:

If F contains clauses (a ∨ b̄) and (ā ∨ b)

I replace b by a everywhere

I delete these clauses

105 / 192

Efficient Subsumption Testing

Let h be a hash function from literals to {0, . . . , 63}.

With every clause C , store a fingerprint

sig(C) :=
∨

a∈C 2h(a).

Subsumption test:

subsumes(C1,C2)
if sig(C1) ∧ ¬sig(C2) 6= 0 then

return false
else

return C1 ⊆ C2

106 / 192

Variable Elimination Resolution (VER)

Resolution operator:

Let C = C ′ ∨ x and D = D ′ ∨ x̄ , then Resx(C ,D) := C ′ ∨ D ′.

Elimination of variable x :

Decompose F = F− ∪ Fx ∪ Fx̄ , where Fa := {C ∈ F ; a ∈ C }.

Let Fx ⊗ Fx̄ := {Resx(C ,D) ;C ∈ Fx and D ∈ Fx̄ }

VER(x) replaces Fx ∪ Fx̄ with Fx ⊗ Fx̄ , with tautologies omitted.

Basic building block of classical Davis-Putnam-algorithm.

107 / 192

NiVER: Non-increasing VER

Variable x is only eliminated if formula not enlarged.

NiVER(x)

S := ∅
for C ∈ Fx and D ∈ Fx̄ do

R := Resx(C ,D)
if R not tautology

S := S ∪ {R}

if size(S) ≤ size(Fx ∪ Fx̄)
F := F− ∪ S
change := true

- Measure size(F) can be

I number of clauses

I number of literal occurrences

108 / 192

NiVER: Non-increasing VER

NiVER is applied for all variables,

and iterated until no more variables can be eliminated.

while(change) do
change := false
for x ∈ V (F)

NiVER(x)

109 / 192

Self-Subsuming Resolution

Theorem

Let C = C ′ ∨ a be a clause in F = F ′ ∧ C.

If there is a clause D ∈ F ′ with D \ ā ⊆ C ′,

then F is satisfiable iff F ′ ∧ C ′ is.

Proof: Resa(C ,D) = C ′ subsumes C = C ′ ∨ a.

Terminology: C is strengthened by self-subsumption using D.

110 / 192

Conflict Clause Minimization

Self-subsuming Resolution is also used for minimizing conflict clauses,
e.g. in MiniSAT.

minimizeCC(C)
for a ∈ C do

if reason(ā) \ ā ⊆ C
mark a

remove marked literals from C

111 / 192

Variable Elimination by Substitution

Idea: make use of definition of variables in Tseitin transformation.

E.g. transforming x = a ∧ b gives clauses

x ∨ ā ∨ b̄, x̄ ∨ a, x̄ ∨ b

Elimination of x then generates many redundant clauses.

The same holds for many other clauses originating from transforming
logic gates.

112 / 192

Variable Elimination by Substitution

G := clauses from the definition of x

R := other clauses containing x

Now (Gx ∪ Rx)⊗ (Gx̄ ∪ Rx̄) can be decomposed into

I S ′ := Gx ⊗ Rx̄ ∪ Rx ⊗ Gx̄

I G ′ := Gx ⊗ Gx̄

I R ′ := Rx ⊗ Rx̄

Now we have:

I G ′ contains only tautologies

I all clauses in R ′ are derived from clauses in S ′

Thus: only need to consider S ′ in elimination of x .

113 / 192

SatELite Preprocessor

SatELite iterates the following sequence of operations,
until no more changes happen:

In every round, do:

repeat

strengthen clauses by self-subsumption

unit propagation

until no more clauses are strengthened

remove subsumed clauses

for all variables x do

NiVER(x)

NiVER(x) here uses the optimization for variables having definitions.

114 / 192

SatELite Preprocessor

Further optimizations to speed up SatELite:

I Clauses are only tested for subsumption
if they were added in the previous round.

I Clauses are only tested for self-subsumption
if they were added or strengthened recently.

I NiVER is only applied to variables occurring in clauses
that were added, strengthened or removed recently.

I Recently: in the previous round, or earlier in the current round.

I NiVER is not applied to variables x with min(h(x), h(x̄)) > 10.
Heuristically shown to be not worthwile.

115 / 192

Failed Literal Probing

Test for settings that immediately imply conflicts:

FLP(a)

set [a← 1]

unitProp()

if conflict found

add unit clause ā

FLP is iterated for all literals, until no more change.

116 / 192

Blocked Clause Elimination

Definition: Literal a ∈ C blocks C ,
if Resa(C ,D) is a tautology for all clauses D 3 ā.

Clause C is blocked in F , if some literal a ∈ C blocks it.

Theorem

If C is blocked in F , then F is satisfiable iff F \ C is satisfiable.

Theorem

If C and C ′ are both blocked in F , then C ′ is blocked in F \ C.

 BCE is confluent.

117 / 192

What about pure literals?

Fact: NiVER performs pure literal elimination.

If a is pure in F , then Fa ⊗ Fā = ∅,
so |Fa ⊗ Fā| = 0 ≤ |Fa ∪ Fā|.

Fact: BCE performs pure literal elimination.

If a is pure and a ∈ C , then a blocks C .

118 / 192

Inprocessing

Some preprocessing techniques are uesful, but still too expensive.

I Preempt preprocessing after some time

I Resume preprocessing between restarts

I Limit preprocessing time vs. search time (∼ 20% : 80%)

Additional benefit:

I allows to use learned clauses for preprocessing.

119 / 192

	Introduction
	Propositional Logic
	Normal Forms
	Complexity

	Tractable cases
	Horn-SAT
	2-SAT
	SAT(2)

	DPLL algorithms
	Monien-Speckenmeyer algorithm
	Kullmann's method
	Algorithm of Zhang

	CDCL solvers
	Implementing DPLL
	Efficient Unit Propagation
	Conflict Driven Clause Learning
	Branching heuristics
	Forgetting and Restarts
	Pre- and Inprocessing

	Probabilistic algorithms
	Hamming ball algorithm
	Random walk
	Algorithm of Paturi-Pudlák-Saks-Zane

	Lookahead-based solvers
	Lookahead solvers
	Cube-and-Conquer

	Certification
	Applications
	Bounded Model Checking

