Overview

CDCL solvers
Implementing DPLL
Efficient Unit Propagation
Conflict Driven Clause Learning
Branching heuristics
Forgetting and Restarts
Pre- and Inprocessing

63 /192

The general DPLL algorithm

DPLL(F, x)
simplify(F, o)
if F =0 then return UNSAT
if F =1 then return «
pick x € V(F) and € €{0,1}
B := DPLL(F[x := €], U [x :=€])
if {3 # UNSAT

then return f
else return DPLL(F[x:=€],ax U [x:=€])

64 /192

Main program

read formula
unit propagation
repeat

choose literal b

set value b

unit propagation

if conflict detected
backtrack

if all clauses satisfied

output assignment

65 /192

Global variables

> n number of variables
> m number of clauses
> V list of n variables
> F list of m clauses

> g unit queue

> o assignment stack

> d branching depth

66 /192

Storing clauses and literals

The data structure for variable x contains
» value € {0,1, free}
> list pos_occ of clauses where x occurs
> list neg_occ of clauses where X occurs
» branching level dp

> clause reason

The data structure for clause C contains
» Flag sat by literal s
» List 1it of literals in C
» Number act of active literals in C

67 /192

Assigning a value to a variable

To set x to 1:

» update value =1

» for every clause C in pos_occ
mark C as sat by x, if not sat

» for every unsatisfied clause C in neg_occ
decrement act
if act =1 then
find unique free literal ain C
enqueue a in unit queue q
if act =0 then
report conflict

68

192

Unit propagation

To find unit clauses:

» maintain number of unset literals in clauses.

» decremented when literal set to 0

To propagate units:
> keep literals to be set in a queue g

» while g not empty
b := last literal in g
set value b

69 /192

Backtracking

Undo the last assignment.

» Assignments performed stored on a stack o

Undo all assignments forced by unit propagation until last branching:
> Assignments on stack marked as forced or branching

» while b = pop(a) is forced
unset value b

if oc empty
output “Unsatisfiable.”
b = pop(x)

unset value b
set value —b as forced

empty q

74 /192

Unassigning a variable

To undo setting of x to 1:

» update value = free

> for every clause C in pos_occ
if C satisfied by x
mark C as not sat

» for every unsatisfied clause C in neg_occ
increment act

78 /192

Branching heuristics

he(a):= #{C;w(C)=kandac C}

h(a) .= 3, he(a)

DLIS: Pick literal a with h(a) maximal.

DLCS: Pick variable x with h(x) 4+ h(x) maximal,
set [x := 1] if h(x) > h(x), and [x := 0] otherwise.

80 /192

Branching heuristics

The MOM heuristic:
Let £ > 2 be the current minimal clause width.

Pick a variable x with (h({()+ he(x))2% + h¢(x)he(X) maximal

Bohm's heuristic:

Let H(x) := (Ha(x), ..., Ha(x)),
where H(x) —ocmax(hk()y hie(X) 4+ B min(hg(x), he(X).

Pick x with H(x) lexicographically maximal.

The Jeroslaw-Wang heuristic:

Let J(a):=3 j_he(a)2™k = 3 27O

Pick literal a with J(a) maximal

81/192

Head-Tail lists

Head literal: first unassigned literal in a clause.

Tail literal: last unassigned literal in a clause.

For clauses, keep two pointers
» head to the head literal

» tail to the tail literal

For variables, keep lists:
> pos_head occ clauses where x occurs as head literal

» pos_tail_occ clauses where x occurs as tail literal

Invariant: if head in C points to x,
» all literals before x in C are set

» C occurs in pos_head_occ in x.

Head-Tail lists

To x set to 1:
» for every clause C in neg head occ

find next unassigned literal b

if literal set to 1 encountered
abort

if no unassigned literal found
report conflict

if b is tail literal
enqueue b in unit queue

add C to head list of b, mark b as head

Similarily for neg_tail_occ, and for setting x to 0.

If setting x to 1 is undone:

» if X occurs in C before head, update lists.

83 /192

Watched Literals

In every clause C, mark two arbitrary literals as watched,
e.g. by two pointers watchedl and watched2

Instead of head and tail lists:

> list of clause pos_watched_occ where x occurs as watched literal.

Invariant: ~ While C is not satisfied,
» both watched literals in C are unset.

» if x is watched in C, then C occurs in pos_watched_occ in x

84 /192

Watched Literals

To x set to 1:

» for every clause C where X occurs as watched literal
find some other unassigned literal b
if literal set to 1 encountered
abort
if no unassigned literal found
report conflict
if only b found is watched
enqueue b in unit queue g
add C to watch list of b, mark b as watched

When setting x to 1 is undone, watched literals can be kept.

85/192

Branching depth

Branching depth of an assignment [a:= 1]:

» number of branching asignments on stack below [a := 1]

Implemented by a global counter bd
» incremented at each branching assignment

» decremented on backtracking

86

192

Implication graph

Directed acyclic graph representing implications between assignments.

For every assignment [x := €] of branching depth d

> create vertex v(x) labelled (x, €, d)

Branching assignment: source vertex

Assignment [x := €] forced by unit propagation:
» Clause xevyflv...\/yfk in F
» variables y; assigned values (1 — §;) at depth d; < d
» vertices v(y;) labelled (y;,1 — 4;,d;) already present

> insert edges from v(y;) to v(x)

87 /192

Conflict in the implication graph

At a conflict create conflict vertex v([) labelled (O, d)
> clause yfl v...vy,fk empty
» variables y; assigned values (1 — §;) at depth d; < d
» vertices v(y;) labelled (y;,1 — 4;,d;) already present

> insert edges from v(y;) to v(O).

From now on:
» consider only the part of the implication graph
from which v([) is reachable.

88

192

Implementing the implication graph

Assignment vertices:

» with variables set store branching depth

Edges:

» with variables set store reason for the setting:
the clause triggering the unit propagation.

» NULL for branching assignments

Conflict vertex and edges to it:

> at a conflict, store the clause that became empty.

89 /192

Cuts and conflict clauses

A cut in the implication graph:
» partition into two disjoint sets B and C

» the branching side B is downward closed and
contains all branching literals.

> the conflict side is upward closed and contains the conflict node.

A cut defines a conflict clause yfl V... \/y,fk

where v(y;) = (y;, 1 — 8}, d;) are the vertices in B with an edge into C.

90

192

The resolution rule

The resolution rule:

from C v aand D v a derive C v D.

Theorem

If C is derived from F by resolution,
then F is satisfiable iff F A C is satisfiable.

Fact: conflict clauses are derived by resolution.

Corollary

Adding conflict clauses does not change satisfiablity.

91 /192

Asserting clauses and backtracking

A conflict clause C is asserting, if it contains
exactly one literal of maximal branching depth.

The assertion level of C is the second largest branching depth

of literals in C.

Backtracking procedure:

» at a conflict, find a cut in the implication graph
giving an asserting conflict clause C

» add C to the formula (learn C), let d be its assertion level

» undo all assignments of branching level > d
set branching depth to d

» now C is a unit clause a

> enqueue a, goto unit propagation

92 /192

Differences to DPLL

» Assertion level can be smaller than the maximal level —1

~» non-chronological backtracking

» The literal that is flipped can be an implied literal

~» not modelled by DPLL recursion

» Added conflict clause avoids finding the same conflict again.

TODO: methods to find asserting conflict clauses

~» learning scheme

93 /192

The RelSAT and decision schemes

The RelSAT scheme:
Let d be the current branching depth.

» C: all vertices of depth d, except the branching vertex.

» B: the branching vertex of depth d, all vertices of depth < d.

The decision scheme:

» B: all branching vertices (from which v(O) can be reached).

» C: all other vertices, i.e., implied vertices and v((J).

94 /192

Unique implication points

A unique implication point (UIP) is a vertex v
of maximal branching depth with

> every path from the last branching vertex
to the conflict vertex goes through v.

The branching vertex is a UIP, so there exists at least one.

The cut corresponding to a UIP v
» C: all vertices on paths between v and v(O)

defines an asserting conflict clause.

95 /192

The 1UIP scheme

The 1UIP scheme:

always learn the asserting conflict clause
obtained from the cut at the first UIP (from v(O)).

Computing the 1UIP conflict clause:

let C be the conflict clause

while C is not asserting
let D be the reason clause of the next assignment on the stack
let C be the resolvent of C with D

96 /192

The VSIDS heuristic

The variable state independent decaying sum (VSIDS) heuristic:
» Every literal a has a priority s(a), initially h(a),
and a counter r(a), initially 0.

> Heuristic picks a literal of highest priority,
with ties broken randomly.

» Literals stored in a priority queue for fast finding of maximum.

» When clause C is learned, counters r(a) of literals a in C
incremented.

» Periodically (every 255 branchings) all priorities updated:
s(a):=s(a)/2x*r(a)
r(a):=0

Thus: VSIDS picks literals that ocurred in many recent conflict clauses.

97 /192

The BerkMin heuristic

The following heuristic is implemented in BerkMin:

>

>

>

Clauses are ordered in the order of being added.
Literals have a priority n(a).

Heuristic picks a literal of highest priority

from the unassigned literals in the most recent clause.

In conflict analysis, n(a) is incremented for all literals
in clauses in the derivation of the conflict clause.

Periodically, all priorities updated: n(a) := n(a)/4.

98

192

The VMTF heuristic

The variable move to front (VMTF) heuristic:

Literals have a counter n(a), initialized as h(a)

v

Literals are stored in an ordered list L,
initially sorted by decreasing n(a).

v

Heuristic picks earliest unassigned literal from L.

v

When clause C is learned,

v

n(a) is incremented for all ain C

the min(C,|8|) literals in C with n() largest
are moved to the front of L

99 /192

Simple clause deletion strategies

Learned clauses need to be deleted (forgotten), otherwise:
> solver runs out of memory

> unit propagation costs too much time

k-bounded learning
» Clauses C of width w(C) < k are kept indefinitely.

» Larger clauses C are deleted as soon as 2 literals in C are unassigned.

m-size relevance based learning

» Clauses C are deleted as soon as more than m literals in C are
unassigned.

Both strategies can be combined.

100

192

BerkMin's clause deletion strategies

The following strategy is implemented in BerkMin:

>

>

>

Clauses are ordered in the order of being added.
Clauses have an activity counter n(C).
n(C) is increased when C contributes to a conflict.

A clause is old if it is among the first 1/16 of the learned clauses,
otherwise young.

A young clause C is deleted if w(C) > 42 and n(C) < 7.
An old clause is deleted if w(C) > 8 and n(C) < t.

The threshold value t is initially 60, then gradually increased.

101 /192

Restarts

Periodically, CDCL solvers do a restart after a conflict:
> empty the assignment stack
» undo all assignments

> keep learned clauses and scores for branching heuristics

Many solvers restart after a fixed number of conflicts.

Problem: completeness!

Completeness can be preserved by:

» increasing intervals between restarts.

» or guaranteeing to keep some learned clauses between any two
restarts.

102 /192

Restart policies

Fixed interval policy:
> restart after a fixed number ¢ of conflicts
> siege: ¢ = 16.000, Chaff 2004 ¢ = 700, BerkMin ¢ = 550

Geometric policy:
> restart after ¢ conflicts, then multiply by a factor c:=c - f
» MiniSat: t =100, f = 1,5

Luby policy:

» Define the Luby sequence t, to, ... by
ti = k=1 if j =2k — 1, ti =t _oxk—141 if 2k—1 <i< 2k —1

> The first values are 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, ...

» Fix ¢ = 32. The ith restart is performed c - t; conflicts
after the previous restart.

103 /192

Phase Saving

Counterintuitive heuristics:

» for each variable, remember the value it was assigned
at the time of restart.

» when a variable is selected as branching variable,
assign the stored value again.

104 /192

Preprocessing

Expensive reductions are still worthwile in a preprocessing phase:

» Pure literal elimination

> Deleting subsumed clauses

Modern solvers use more reduction in preprocessing.

Equivalence substitution:
If F contains clauses (a\ b) and (3 Vv b)

> replace b by a everywhere

» delete these clauses

105 /192

Efficient Subsumption Testing

Let h be a hash function from literals to {0, ..

With every clause C, store a fingerprint
sig(C) ==\, 2.

Subsumption test:

subsumes(Cy, G,)
if sig(Cy) A—sig(Cy) # 0 then
return false
else
return CG; C G

.,63}.

106

192

Variable Elimination Resolution (VER)

Resolution operator:
Let C=C'vxand D=D’vx, then Res, (C,D):=C’'v D’

Elimination of variable x:
Decompose F = F~ U F, U Fx, where F,:={C € F; ac C}.
Let F, ® Fx :={Res (C,D);C € F, and D € F;}

VER(x) replaces F, U F; with F, ® Fx, with tautologies omitted.

Basic building block of classical Davis-Putnam-algorithm.

107 /192

NiVER: Non-increasing VER

Variable x is only eliminated if formula not enlarged.

NiVER(x)

S:=0

for Ce Fyand D € F; do
R := Res,(C, D)
if R not tautology

S:=SU{R}

if size(S) < size(F, U Fg)
F=F"US
change := true

- Measure size(F) can be
» number of clauses

» number of literal occurrences

108 /192

NiVER: Non-increasing VER

NiVER is applied for all variables,

and iterated until no more variables can be eliminated.

while(change) do
change := false

for x € V(F)

NiVER(x)

109 /192

Self-Subsuming Resolution

Theorem

Let C=C’vabeaclausein F=F'AC.
If there is a clause D € F' with D\ a C C’,
then F is satisfiable iff F' A C’ is.

Proof: Res,(C,D) = C’ subsumes C = C’ v a.

Terminology: C is strengthened by self-subsumption using D.

110 /192

Conflict Clause Minimization

Self-subsuming Resolution is also used for minimizing conflict clauses,
e.g. in MiniSAT.

minimizeCC(C)
forae C do
if reason(3)\aC C
mark a
remove marked literals from C

111 /192

Variable Elimination by Substitution

Idea: make use of definition of variables in Tseitin transformation.

E.g. transforming x = a A b gives clauses

xvavbh xva xvb
Elimination of x then generates many redundant clauses.

The same holds for many other clauses originating from transforming
logic gates.

112 /192

Variable Elimination by Substitution

G := clauses from the definition of x
R := other clauses containing x

Now (G, U R,) ® (G U R;) can be decomposed into
> S'i= G, ® Ry U R, ® Gy
> G =G, ® Gy
» R =R, ® Ry

Now we have:
» G’ contains only tautologies

» all clauses in R’ are derived from clauses in S’

Thus: only need to consider S’ in elimination of x.

113 /192

SatELite Preprocessor

SatELite iterates the following sequence of operations,
until no more changes happen:

In every round, do:

repeat
strengthen clauses by self-subsumption
unit propagation

until no more clauses are strengthened

remove subsumed clauses

for all variables x do
NiVER(x)

NiVER(x) here uses the optimization for variables having definitions.

114 /192

SatELite Preprocessor

Further optimizations to speed up SatELite:
» Clauses are only tested for subsumption
if they were added in the previous round.

» Clauses are only tested for self-subsumption
if they were added or strengthened recently.

» NIVER is only applied to variables occurring in clauses
that were added, strengthened or removed recently.

» Recently: in the previous round, or earlier in the current round.

» NIVER is not applied to variables x with min(h(x), h(x)) > 10.
Heuristically shown to be not worthwile.

115 /192

Failed Literal Probing

Test for settings that immediately imply conflicts:

FLP(a)

set [a « 1]
unitProp()

if conflict found

add unit clause a

FLP is iterated for all literals, until no more change.

116 /192

Blocked Clause Elimination

Definition: Literal a € C blocks C,
if Res,(C, D) is a tautology for all clauses D > a.

Clause C is blocked in F, if some literal a € C blocks it.

Theorem
If C is blocked in F, then F is satisfiable iff F \ C is satisfiable.

Theorem
If C and C' are both blocked in F, then C' is blocked in F \ C.

~ BCE is confluent.

117 /192

What about pure literals?

Fact: NiVER performs pure literal elimination.

If ais pure in F, then F, ® F5 =10,
SO|F3®F§|:0§|F3UF§|-

Fact: BCE performs pure literal elimination.

If ais pure and a € C, then a blocks C.

118 /192

Inprocessing

Some preprocessing techniques are uesful, but still too expensive.

> Preempt preprocessing after some time
» Resume preprocessing between restarts

» Limit preprocessing time vs. search time (~ 20% : 80%)

Additional benefit:

> allows to use learned clauses for preprocessing.

119 /192

	Introduction
	Propositional Logic
	Normal Forms
	Complexity

	Tractable cases
	Horn-SAT
	2-SAT
	SAT(2)

	DPLL algorithms
	Monien-Speckenmeyer algorithm
	Kullmann's method
	Algorithm of Zhang

	CDCL solvers
	Implementing DPLL
	Efficient Unit Propagation
	Conflict Driven Clause Learning
	Branching heuristics
	Forgetting and Restarts
	Pre- and Inprocessing

	Probabilistic algorithms
	Hamming ball algorithm
	Random walk
	Algorithm of Paturi-Pudlák-Saks-Zane

	Lookahead-based solvers
	Lookahead solvers
	Cube-and-Conquer

	Certification
	Applications
	Bounded Model Checking

