Overview

Introduction

Tractable cases

DPLL algorithms

CDCL solvers

Implementing DPLL
Efficient Unit Propagation
Conflict Driven Clause Learning
Branching heuristics
Forgetting and Restarts
Pre- and Inprocessing

Probabilistic algorithms

Lookahead-based solvers

The general DPLL algorithm

```
\begin{split} & \text{DPLL}(F,\alpha) \\ & \text{simplify}(F,\alpha) \\ & \text{if } F = 0 \text{ then return UNSAT} \\ & \text{if } F = 1 \text{ then return } \alpha \\ & \text{pick } x \in V(F) \text{ and } \epsilon \in \{0,1\} \\ & \beta := \text{DPLL}(F[x := \epsilon], \alpha \cup [x := \epsilon]) \\ & \text{if } \beta \neq \text{UNSAT} \\ & \text{then return } \beta \\ & \text{else return DPLL}(F[x := \bar{\epsilon}], \alpha \cup [x := \bar{\epsilon}]) \end{split}
```

Main program

```
read formula
unit propagation
repeat
   choose literal b
   set value b
   unit propagation
   if conflict detected
       backtrack
   if all clauses satisfied
       output assignment
```

Global variables

- n number of variables
- ▶ *m* number of clauses
- ▶ *V* list of *n* variables
- ▶ *F* list of *m* clauses
- ▶ *q* unit queue
- $\triangleright \alpha$ assignment stack
- ▶ d branching depth

Storing clauses and literals

The data structure for variable x contains

- ▶ value $\in \{0, 1, free\}$
- ▶ list pos_occ of clauses where x occurs
- ▶ list $neg_{-}occ$ of clauses where \bar{x} occurs
- branching level dp
- clause reason

The data structure for clause C contains

- ► Flag sat by literal s
- ▶ List lit of literals in C
- Number act of active literals in C

Assigning a value to a variable

To set x to 1:

- ▶ update value = 1
- for every clause C in pos_occ mark C as sat by x, if not sat
- ▶ for every unsatisfied clause C in neg_occ
 decrement act
 if act = 1 then
 find unique free literal a in C
 enqueue a in unit queue q
 if act = 0 then
 report conflict

Unit propagation

To find unit clauses:

- maintain number of unset literals in clauses.
- decremented when literal set to 0

To propagate units:

- keep literals to be set in a queue q
- while q not empty
 b := last literal in q
 set value b

Backtracking

Undo the last assignment.

 \blacktriangleright Assignments performed stored on a stack α

Undo all assignments forced by unit propagation until last branching:

- Assignments on stack marked as forced or branching
- while b = pop(α) is forced unset value b
 if α empty output "Unsatisfiable."
 b = pop(α) unset value b
 set value -b as forced empty q

Unassigning a variable

To undo setting of x to 1:

- ▶ update value = free
- ▶ for every clause C in pos_occ
 if C satisfied by x
 mark C as not sat
- ▶ for every unsatisfied clause C in neg_occ increment act

Branching heuristics

$$h_k(a) := \quad \#\{ C \; ; \; w(C) = k \text{ and } a \in C \}$$

$$h(a) := \sum_{k} h_k(a)$$

DLIS: Pick literal a with h(a) maximal.

DLCS: Pick variable x with $h(x) + h(\bar{x})$ maximal, set [x := 1] if $h(x) \ge h(\bar{x})$, and [x := 0] otherwise.

Branching heuristics

The MOM heuristic:

Let $\ell > 2$ be the current minimal clause width.

Pick a variable x with $(h_{\ell}(x) + h_{\ell}(\bar{x}))2^{\alpha} + h_{\ell}(x)h_{\ell}(\bar{x})$ maximal

Bohm's heuristic:

Let
$$H(x) := (H_2(x), \dots, H_n(x)),$$

where $H_k(x) := \alpha \max(h_k(x), h_k(\bar{x}) + \beta \min(h_k(x), h_k(\bar{x}).$

Pick x with H(x) lexicographically maximal.

The Jeroslaw-Wang heuristic:

Let
$$J(a) := \sum_{k=1}^{n} h_k(a) 2^{-k} = \sum_{a \in C} 2^{-w(C)}$$

Pick literal a with J(a) maximal

Head-Tail lists

Head literal: first unassigned literal in a clause.

Tail literal: last unassigned literal in a clause.

For clauses, keep two pointers

- head to the head literal
- ▶ tail to the tail literal

For variables, keep lists:

- pos_head_occ clauses where x occurs as head literal
- pos_tail_occ clauses where x occurs as tail literal

Invariant: if head in C points to x,

- ▶ all literals before *x* in *C* are set
- C occurs in pos_head_occ in x.

Head-Tail lists

To x set to 1:

▶ for every clause C in neg_head_occ find next unassigned literal b if literal set to 1 encountered abort if no unassigned literal found report conflict if b is tail literal enqueue b in unit queue add C to head list of b, mark b as head

Similarly for neg_tail_occ , and for setting x to 0.

If setting x to 1 is undone:

• if \bar{x} occurs in C before head, update lists.

Watched Literals

In every clause C, mark two arbitrary literals as watched, e.g. by two pointers watched1 and watched2

Instead of head and tail lists:

▶ list of clause pos_watched_occ where x occurs as watched literal.

Invariant: While C is not satisfied,

- both watched literals in C are unset.
- if x is watched in C, then C occurs in pos_watched_occ in x

Watched Literals

To x set to 1:

▶ for every clause C where x̄ occurs as watched literal find some other unassigned literal b if literal set to 1 encountered abort if no unassigned literal found report conflict if only b found is watched enqueue b in unit queue q add C to watch list of b, mark b as watched

When setting x to 1 is undone, watched literals can be kept.

Branching depth

Branching depth of an assignment [a := 1]:

▶ number of branching asignments on stack below [a := 1]

Implemented by a global counter bd

- incremented at each branching assignment
- decremented on backtracking

Implication graph

Directed acyclic graph representing implications between assignments.

For every assignment $[x := \epsilon]$ of branching depth d

• create vertex v(x) labelled (x, ϵ, d)

Branching assignment: source vertex

Assignment $[x := \epsilon]$ forced by unit propagation:

- ▶ Clause $x^{\epsilon} \lor y_1^{\delta_1} \lor \ldots \lor y_k^{\delta_k}$ in F
- ▶ variables y_i assigned values $(1 \delta_i)$ at depth $d_i \leq d$
- ▶ vertices $v(y_i)$ labelled $(y_i, 1 \delta_i, d_i)$ already present
- ▶ insert edges from $v(y_i)$ to v(x)

Conflict in the implication graph

At a conflict create conflict vertex $v(\Box)$ labelled (\Box, d)

- clause $y_1^{\delta_1} \vee \ldots \vee y_k^{\delta_k}$ empty
- lacktriangle variables y_i assigned values $(1-\delta_i)$ at depth $d_i \leq d$
- lacktriangle vertices $v(y_i)$ labelled $(y_i, 1 \delta_i, d_i)$ already present
- ▶ insert edges from $v(y_i)$ to $v(\square)$.

From now on:

▶ consider only the part of the implication graph from which $v(\Box)$ is reachable.

Implementing the implication graph

Assignment vertices:

with variables set store branching depth

Edges:

- with variables set store reason for the setting: the clause triggering the unit propagation.
- NULL for branching assignments

Conflict vertex and edges to it:

at a conflict, store the clause that became empty.

Cuts and conflict clauses

A cut in the implication graph:

- partition into two disjoint sets B and C
- the branching side B is downward closed and contains all branching literals.
- ▶ the conflict side is upward closed and contains the conflict node.

A cut defines a conflict clause $y_1^{\delta_1} \vee \ldots \vee y_k^{\delta_k}$ where $v(y_i) = (y_i, 1 - \delta_i, d_i)$ are the vertices in B with an edge into C.

The resolution rule

The resolution rule:

from $C \vee a$ and $D \vee \bar{a}$ derive $C \vee D$.

Theorem

If C is derived from F by resolution, then F is satisfiable iff $F \wedge C$ is satisfiable.

Fact: conflict clauses are derived by resolution.

Corollary

Adding conflict clauses does not change satisfiablity.

Asserting clauses and backtracking

A conflict clause C is asserting, if it contains exactly one literal of maximal branching depth.

The assertion level of C is the second largest branching depth of literals in C.

Backtracking procedure:

- ▶ at a conflict, find a cut in the implication graph giving an asserting conflict clause C
- ▶ add C to the formula (learn C), let d be its assertion level
- undo all assignments of branching level > d set branching depth to d
- now C is a unit clause a
- enqueue a, goto unit propagation

Differences to DPLL

- ightharpoonup Assertion level can be smaller than the maximal level -1
 - → non-chronological backtracking
- ▶ The literal that is flipped can be an implied literal
 - → not modelled by DPLL recursion
- ▶ Added conflict clause avoids finding the same conflict again.

TODO: methods to find asserting conflict clauses

→ learning scheme

The RelSAT and decision schemes

The RelSAT scheme:

Let d be the current branching depth.

- ► *C*: all vertices of depth *d*, except the branching vertex.
- ▶ B: the branching vertex of depth d, all vertices of depth < d.

The *decision* scheme:

- ▶ B: all branching vertices (from which $v(\Box)$ can be reached).
- ▶ *C*: all other vertices, i.e., implied vertices and $v(\Box)$.

Unique implication points

A unique implication point (UIP) is a vertex v of maximal branching depth with

every path from the last branching vertex to the conflict vertex goes through v.

The branching vertex is a UIP, so there exists at least one.

The cut corresponding to a UIP v

▶ C: all vertices on paths between v and $v(\Box)$ defines an asserting conflict clause.

The 1UIP scheme

```
The 1UIP scheme:
```

always learn the asserting conflict clause obtained from the cut at the first UIP (from $\nu(\Box)$).

Computing the 1UIP conflict clause:

let C be the conflict clause

while C is not asserting

let D be the reason clause of the next assignment on the stack

let C be the resolvent of C with D

The VSIDS heuristic

The variable state independent decaying sum (VSIDS) heuristic:

- ▶ Every literal a has a priority s(a), initially h(a), and a counter r(a), initially 0.
- ► Heuristic picks a literal of highest priority, with ties broken randomly.
- Literals stored in a priority queue for fast finding of maximum.
- When clause C is learned, counters r(a) of literals a in C incremented.
- Periodically (every 255 branchings) all priorities updated: s(a) := s(a)/2 * r(a)r(a) := 0

Thus: VSIDS picks literals that ocurred in many recent conflict clauses.

The BerkMin heuristic

The following heuristic is implemented in BerkMin:

- ▶ Clauses are ordered in the order of being added.
- ▶ Literals have a priority n(a).
- Heuristic picks a literal of highest priority from the unassigned literals in the most recent clause.
- In conflict analysis, n(a) is incremented for all literals in clauses in the derivation of the conflict clause.
- ▶ Periodically, all priorities updated: n(a) := n(a)/4.

The VMTF heuristic

The variable move to front (VMTF) heuristic:

- ▶ Literals have a counter n(a), initialized as h(a)
- ▶ Literals are stored in an ordered list L, initially sorted by decreasing n(a).
- ▶ Heuristic picks earliest unassigned literal from *L*.
- When clause C is learned, n(a) is incremented for all a in C the min(C, |8|) literals in C with n() largest are moved to the front of L

Simple clause deletion strategies

Learned clauses need to be deleted (forgotten), otherwise:

- solver runs out of memory
- unit propagation costs too much time

k-bounded learning

- ▶ Clauses *C* of width $w(C) \le k$ are kept indefinitely.
- ▶ Larger clauses *C* are deleted as soon as 2 literals in *C* are unassigned.

m-size relevance based learning

▶ Clauses *C* are deleted as soon as more than *m* literals in *C* are unassigned.

Both strategies can be combined.

BerkMin's clause deletion strategies

The following strategy is implemented in BerkMin:

- Clauses are ordered in the order of being added.
- ▶ Clauses have an activity counter n(C).
- ightharpoonup n(C) is increased when C contributes to a conflict.
- ▶ A clause is old if it is among the first 1/16 of the learned clauses, otherwise young.
- ▶ A young clause C is deleted if w(C) > 42 and $n(C) \le 7$.
- ▶ An old clause is deleted if w(C) > 8 and $n(C) \le t$.
- ▶ The threshold value *t* is initially 60, then gradually increased.

Restarts

Periodically, CDCL solvers do a restart after a conflict:

- empty the assignment stack
- undo all assignments
- keep learned clauses and scores for branching heuristics

Many solvers restart after a fixed number of conflicts.

Problem: completeness!

Completeness can be preserved by:

- increasing intervals between restarts.
- or guaranteeing to keep some learned clauses between any two restarts.

Restart policies

Fixed interval policy:

- restart after a fixed number c of conflicts
- ▶ siege: c = 16.000, Chaff 2004 c = 700, BerkMin c = 550

Geometric policy:

- restart after c conflicts, then multiply by a factor $c := c \cdot f$
- ▶ MiniSat: t = 100, f = 1,5

Luby policy:

- ▶ Define the Luby sequence $t_1, t_2,...$ by $t_i = 2^{k-1}$ if $i = 2^k 1$, $t_i = t_{i-2^{k-1}+1}$ if $2^{k-1} \le i < 2^k 1$
- ► The first values are 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .
- Fix c = 32. The *i*th restart is performed $c \cdot t_i$ conflicts after the previous restart.

Phase Saving

Counterintuitive heuristics:

- ▶ for each variable, remember the value it was assigned at the time of restart.
- when a variable is selected as branching variable, assign the stored value again.

Preprocessing

Expensive reductions are still worthwile in a preprocessing phase:

- Pure literal elimination
- Deleting subsumed clauses

Modern solvers use more reduction in preprocessing.

Equivalence substitution:

If F contains clauses $(a \lor \bar{b})$ and $(\bar{a} \lor b)$

- replace b by a everywhere
- delete these clauses

Efficient Subsumption Testing

Let h be a hash function from literals to $\{0, \ldots, 63\}$.

With every clause C, store a fingerprint $sig(C) := \bigvee_{a \in C} 2^{h(a)}$.

Subsumption test:

```
 \begin{aligned} & \textit{subsumes}(\textit{C}_1, \textit{C}_2) \\ & \text{if } \textit{sig}(\textit{C}_1) \land \neg \textit{sig}(\textit{C}_2) \neq 0 \text{ then} \\ & \text{return false} \\ & \text{else} \\ & \text{return } \textit{C}_1 \subseteq \textit{C}_2 \end{aligned}
```

Variable Elimination Resolution (VER)

Resolution operator:

Let
$$C = C' \vee x$$
 and $D = D' \vee \bar{x}$, then $Res_x(C, D) := C' \vee D'$.

Elimination of variable x:

Decompose $F = F^- \cup F_x \cup F_{\bar{x}}$, where $F_a := \{C \in F ; a \in C\}$.

Let $F_x \otimes F_{\bar{x}} := \{ Res_x(C, D) \, ; C \in F_x \text{ and } D \in F_{\bar{x}} \}$

VER(x) replaces $F_x \cup F_{\bar{x}}$ with $F_x \otimes F_{\bar{x}}$, with tautologies omitted.

Basic building block of classical Davis-Putnam-algorithm.

NiVER: Non-increasing VER

Variable x is only eliminated if formula not enlarged.

```
\begin{split} \mathsf{NiVER}(x) \\ S &:= \emptyset \\ \mathsf{for} \ C \in F_x \ \mathsf{and} \ D \in F_{\bar{x}} \ \mathsf{do} \\ R &:= Res_x(C,D) \\ \mathsf{if} \ R \ \mathsf{not} \ \mathsf{tautology} \\ S &:= S \cup \{R\} \\ \mathsf{if} \ \mathit{size}(S) \leq \mathit{size}(F_x \cup F_{\bar{x}}) \\ F &:= F^- \cup S \\ \mathsf{change} := \mathsf{true} \end{split}
```

- Measure size(F) can be
 - number of clauses
 - number of literal occurrences

NiVER: Non-increasing VER

NiVER is applied for all variables, and iterated until no more variables can be eliminated.

```
while(change) do change := false for x \in V(F) NiVER(x)
```

Self-Subsuming Resolution

Theorem

Let $C = C' \vee a$ be a clause in $F = F' \wedge C$.

If there is a clause $D \in F'$ with $D \setminus \bar{a} \subseteq C'$, then F is satisfiable iff $F' \wedge C'$ is.

Proof: $Res_a(C, D) = C'$ subsumes $C = C' \lor a$.

Terminology: C is strengthened by self-subsumption using D.

Conflict Clause Minimization

```
Self-subsuming Resolution is also used for minimizing conflict clauses, e.g. in MiniSAT.  \begin{split} \text{minimizeCC(}\mathit{C}\texttt{)} \\ \text{for } a \in \mathit{C} \text{ do} \\ \text{if } \mathrm{reason}(\bar{a}) \setminus \bar{a} \subseteq \mathit{C} \\ \text{mark } \mathit{a} \\ \text{remove marked literals from } \mathit{C} \end{split}
```

Variable Elimination by Substitution

Idea: make use of definition of variables in Tseitin transformation.

E.g. transforming
$$x = a \wedge b$$
 gives clauses $x \vee \bar{a} \vee \bar{b}$, $\bar{x} \vee a$, $\bar{x} \vee b$

Elimination of x then generates many redundant clauses.

The same holds for many other clauses originating from transforming logic gates.

Variable Elimination by Substitution

G := clauses from the definition of x

R := other clauses containing x

Now $(G_x \cup R_x) \otimes (G_{\bar{x}} \cup R_{\bar{x}})$ can be decomposed into

- $\blacktriangleright \ S' := \ G_{\scriptscriptstyle X} \otimes R_{\scriptscriptstyle \bar{\scriptscriptstyle X}} \ \cup \ R_{\scriptscriptstyle X} \otimes G_{\scriptscriptstyle \bar{\scriptscriptstyle X}}$
- $\blacktriangleright \ G' := G_{\scriptscriptstyle X} \otimes G_{\scriptscriptstyle \bar{X}}$
- $\blacktriangleright \ R' := R_x \otimes R_{\bar{x}}$

Now we have:

- ► *G'* contains only tautologies
- ightharpoonup all clauses in R' are derived from clauses in S'

Thus: only need to consider S' in elimination of x.

SatELite Preprocessor

SatELite iterates the following sequence of operations, until no more changes happen:

```
In every round, do:

repeat

strengthen clauses by self-subsumption
unit propagation
until no more clauses are strengthened
remove subsumed clauses
for all variables x do
NiVER(x)
```

NiVER(x) here uses the optimization for variables having definitions.

SatELite Preprocessor

Further optimizations to speed up SatELite:

- Clauses are only tested for subsumption if they were added in the previous round.
- Clauses are only tested for self-subsumption if they were added or strengthened recently.
- NiVER is only applied to variables occurring in clauses that were added, strengthened or removed recently.
- ▶ Recently: in the previous round, or earlier in the current round.
- NiVER is not applied to variables x with $min(h(x), h(\bar{x})) > 10$. Heuristically shown to be not worthwile.

Failed Literal Probing

Test for settings that immediately imply conflicts:

```
\begin{aligned} \mathsf{FLP}(a) \\ \mathsf{set} \ [a \leftarrow 1] \\ \mathsf{unitProp}() \\ \mathsf{if conflict found} \\ \mathsf{add unit clause} \ \bar{a} \end{aligned}
```

FLP is iterated for all literals, until no more change.

Blocked Clause Elimination

Definition: Literal $a \in C$ blocks C, if $Res_a(C, D)$ is a tautology for all clauses $D \ni \bar{a}$.

Clause C is blocked in F, if some literal $a \in C$ blocks it.

Theorem

If C is blocked in F, then F is satisfiable iff $F \setminus C$ is satisfiable.

Theorem

If C and C' are both blocked in F, then C' is blocked in $F \setminus C$.

→ BCE is confluent.

What about pure literals?

Fact: NiVER performs pure literal elimination.

If a is pure in
$$F$$
, then $F_a \otimes F_{\bar{a}} = \emptyset$, so $|F_a \otimes F_{\bar{a}}| = 0 \le |F_a \cup F_{\bar{a}}|$.

Fact: BCE performs pure literal elimination.

If a is pure and $a \in C$, then a blocks C.

Inprocessing

Some preprocessing techniques are uesful, but still too expensive.

- ▶ Preempt preprocessing after some time
- Resume preprocessing between restarts
- ► Limit preprocessing time vs. search time (~ 20% : 80%)

Additional benefit:

allows to use learned clauses for preprocessing.