Overview

Introduction

Tractable cases

DPLL algorithms
- Monien-Speckenmeyer algorithm
- Kullmann’s method
- Algorithm of Zhang

CDCL solvers

Lookahead-based solvers

Probabilistic algorithms

Certification

Applications
The basic DPLL algorithm

After Davis, Putnam, Logemann and Loveland, 1960

The basic DPLL Algorithm:

DPLL(F, α)

- if $F\alpha = 0$ then return UNSAT
- if $F\alpha = 1$ then return α

pick $x \in V(F\alpha)$

$\beta := $ DPLL($F, \alpha \cup [x := 0]$)

if $\beta \neq$ UNSAT then return β
else return DPLL($F, \alpha \cup [x := 1]$)
A simple analysis

For a k-CNF formula F, iterate the following:

- pick a clause C in F
- branch successively on the k variables in $V(C)$

Of the 2^k assignments to $V(C)$, one sets $\alpha(C) = \alpha(F) = 0$.

Thus: $2^k - 1$ branching tree of height n/k.

Runtime is essentially the tree-size b_k^n for $b_k := \sqrt[k]{2^k - 1} < 2$

<table>
<thead>
<tr>
<th>k</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_k</td>
<td>1.91294</td>
<td>1.96799</td>
<td>1.98735</td>
<td>1.99477</td>
<td>1.99777</td>
<td>1.99903</td>
</tr>
</tbody>
</table>
Unit propagation

A branching strategy (almost) always employed:
 ▶ pick x if x occurs in a unit clause a.

One branch immediately fails
\leadsto just set $[a := 1]$ instead of branching

Mostly realized as simplification step before branching:

$$\text{UnitProp}(F, \alpha)$$

while $F\alpha$ contains unit clause a

$$\alpha := \alpha \cup [a := 1]$$

return α
Pure literals and subsumption

Other simplification steps in original DPLL:

- elimination of pure literals
- deletion of subsumed clauses

\text{PureLit}(F, \alpha)

\text{while } F\alpha \text{ contains pure literal } a
\[\alpha := \alpha \cup [a := 1]\]

Clause \(C \) subsumes \(D \) if \(C \subseteq D \)

\text{Subs}(F)

\text{while } F \text{ contains clauses } C \subseteq D
\[F := F \setminus D\]
The general DPLL algorithm

\[\text{DPLL}(F, \alpha) \]

\[\text{simplify}(F, \alpha) \]

if $F = 0$ then return UNSAT
if $F = 1$ then return α

pick $x \in V(F)$ and $\epsilon \in \{0, 1\}$

$\beta := \text{DPLL}(F[x := \epsilon], \alpha \cup [x := \epsilon])$

if $\beta \neq \text{UNSAT}$
 then return β
else return $\text{DPLL}(F[x := \bar{\epsilon}], \alpha \cup [x := \bar{\epsilon}])$
Monien-Speckenmeyer algorithm - simple version

Branching strategy:
 ▶ pick literal from a shortest clause

Equivalently:

\[
simpleMS(F, \alpha)
\]

\[
\text{if } F\alpha = 0 \text{ then return UNSAT}
\]

\[
\text{if } F\alpha = 1 \text{ then return } \alpha
\]

pick shortest clause \(C = a_1 \lor \ldots \lor a_r \)

\[
\text{for } i := 1 \text{ to } r \text{ do}
\]

\[
\gamma_i := [a_1 := 0, \ldots, a_{i-1} := 0, a_i := 1]
\]

\[
\beta := simpleMS(F, \alpha \cup \gamma_i)
\]

\[
\text{if } \beta \neq \text{ UNSAT } \text{ then return } \beta
\]

return UNSAT
Analysis of simpleMS

At each node: r-fold branching for some $r \leq k$, in ith branch $n - i$ variables.

Recursion for the tree-size:

$$T(n) := T(n - 1) + \ldots + T(n - k)$$

Set $T(n) := b^n$, thus the basis $b_k = b$ satisfies

$$b^k := b^{k-1} + \ldots + b + 1$$

The solutions for small k are:

<table>
<thead>
<tr>
<th>k</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_k</td>
<td>1.83929</td>
<td>1.92757</td>
<td>1.96595</td>
<td>1.98359</td>
<td>1.99197</td>
<td>1.99603</td>
</tr>
</tbody>
</table>
An assignment α is autark for F if $F\alpha \subseteq F$.

Generalizes pure literals:
- Assignment $[a := 1]$ is autark for F iff a is pure in F.

Property

If α is autark for F,
then F is satisfiable iff there is $\beta \supseteq \alpha$ with $\beta \models F$.
Monien-Speckenmeyer algorithm

\[MS(F, \alpha) \]

1. if \(F\alpha = 0 \) then return UNSAT
2. if \(F\alpha = 1 \) then return \(\alpha \)

pick shortest clause \(C = a_1 \lor \ldots \lor a_r \)

for \(i := 1 \) to \(r \) do

3. \(\gamma_i := [a_1 := 0, \ldots, a_{i-1} := 0, a_i := 1] \)
4. if \(\gamma_i \) autark for \(F\alpha \) then return \(MS(F, \alpha \cup \gamma_i) \)

for \(i := 1 \) to \(r \) do

5. \(\beta := MS(F, \alpha \cup \gamma_i) \)
6. if \(\beta \neq UNSAT \) then return \(\beta \)

return UNSAT
Analysis of Monien-Speckenmeyer

\[T(n): \text{ tree-size for formulas in } n \text{ variables} \]

\[T'(n): \text{ tree-size for formulas in } n \text{ variables with a clause } C \text{ of width } w(C) \leq k - 1 \]

\[T(n) = \max(T(n - 1), T'(n - 1) + \ldots + T'(n - k)) \]

\[T'(n) = \max(T(n - 1), T'(n - 1) + \ldots + T'(n - k + 1)) \]

Lemma

\[T(n) \leq T'(n) + T'(n - 1) \text{ for every } n. \]

Setting \(T'(n) = b^n \) yields: \(b^{k-1} = b^{k-2} + \ldots + b + 1 \)

and \(T(n) = O(b^n) \) for \(b = b_k \):

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_k)</td>
<td>1.61804</td>
<td>1.83929</td>
<td>1.92757</td>
<td>1.96595</td>
<td>1.98359</td>
<td>1.99197</td>
</tr>
</tbody>
</table>
Branching tuples

For a vector \((d_1, \ldots, d_m)\) with \(m \geq 1\) and \(d_i > 0\) let \(\tau(d_1, \ldots, d_m)\) be the unique positive solution to:

\[x^{-d_1} + \ldots + x^{-d_m} = 1 \]

For a tree \(T\) with edge valuation \(d\):

- for a vertex \(v\) with children \(w_1, \ldots, w_m\):
 \[d(v) = (d_1, \ldots, d_m) \text{ where } d_i = d(v, w_i). \]

- branching number \(\tau(v) := \tau(d(v))\)

- \(\tau(T) := \max_v(\tau(v))\) over the inner vertices \(v\)

- for a path \(p = v_1, \ldots, v_\ell\) let \(d(p) := \sum_{i=1}^{\ell-1} d(v_i, v_{i+1})\)

- \(d(T) := \max_p d(p)\) over all paths from the root to a leaf
Analysing DPLL with branching tuples

Theorem

The number of leaves in \(T \) is at most \(\tau(T)^{d(T)} \).

To analyse a DPLL algorithm:

- find distance \(d \) function for the recursion tree s.t.
 - \(d(T) \leq n \)
 - \(\tau(T) \) is minimized
To analyse simpleMS for 3-SAT, define:

\[d(v, w) := \text{number of variables set}. \]

\[d(p) \leq n \text{ for every path.} \]

Inner vertex \(v \) has 3 children of distance 3, 2, 1 resp.

Thus: \(\tau(v) = \tau(3, 2, 1) \) is the solution of

\[x^{-3} + x^{-2} + x^{-1} = 1 \]

Multiplying by \(x^3 \) yields \(x^3 = x^2 + x + 1 \) as before

Thus \(\tau(T) = \tau(v) = 1.83929 \ldots \)
There are three types of inner vertices:

- **Type 1: autark assignment:**
 \(\nu \) has one child of distance 1:
 \[\tau(\nu) = \tau(1) = 1 \]

- **Type 2: after non-autark assignment:**
 \(\nu \) has 2 children of distance 2 and 1:
 \[\tau(\nu) = \tau(2, 1) = 1.61804 \ldots \]

- **Type 3: after autark assignment:**
 \(\nu \) has 3 children of distance 3, 2 and 1:
 \[\tau(\nu) = \tau(3, 2, 1) = 1.83929 \ldots \]

\[\Rightarrow \text{no improvement over simpleMS.} \]
Analysing Monien-Speckenmeyer

Vertex \(v \) of type 3 only as child of \(v' \) of type 1.

Idea: merge \(v \) and \(v' \) together to one vertex \(w \)
\(w \) has 3 children of distance 4, 3 and 2:
\[
\tau(w) = \tau(4, 3, 2) = 1.46558\ldots
\]
Thus \(\tau(T) = \tau(2, 1) = 1.61804\ldots \)

Alternative preserving tree structure: redefine distances
- for type 1: \(d(v, v') = 1 - \epsilon \)
- for type 3: \(d(v, w_i) = i + \epsilon \) for \(i = 1, 2, 3 \)

\(d(p) \) remains unchanged for every path \(p \).

Now for \(\epsilon = 0.5 \) we have for \(v \) of type 3:
\[
\tau(v) = \tau(3.5, 2.5, 1.5) = 1.59074\ldots < \tau(2, 1).
\]
Properties of branching numbers

- If $e > d_1$, then $\tau(e, d_2, \ldots, d_m) < \tau(d_1, \ldots d_m)$.

- If $d_1 + d_2 = e_1 + e_2$, and $\min(d_1, d_2) \geq \min(e_1, e_2)$, then
 \[
 \tau(d_1, \ldots, d_m) \leq \tau(e_1, e_2, d_3, \ldots, d_m)
 \]
 where equality only holds if it holds in the premise.

- Let $d = (d_1, \ldots, d_m)$ and $e := (e_1, \ldots, e_n)$
 and define $d^* := (d_1 + e_1, \ldots, d_1 + e_n, d_2, \ldots, d_m)$.
 Then:
 - if $\tau(d) \leq \tau(e)$, then $\tau(d) \leq \tau(d^*) \leq \tau(e)$.
 - if $\tau(d) \geq \tau(e)$, then $\tau(d) \geq \tau(d^*) \geq \tau(e)$.

Both inequalities are strict if those in the premise are.
Idea for algorithm of Zhang

Idea: Guarantee the existence of short clauses!

Thus: no uncontrolled unit propagation or pure literal elimination.

- U: the set of unit clauses,
 $$u := |U|$$

- D: a maximal set of 2-clauses variable-disjoint to U
 and among themselves
 $$d := |D|$$

- T: the remaining 2-clauses
 $$t := \min(|T|, 2)$$
The algorithm uses the following simplification rules:

- if there is x with $x \in U$ and $\bar{x} \in U$ return UNSAT.
- delete subsumed 3-clauses.
- if $u \geq 2$ or $u = 1$ and $d > 0$,
 pick unit clause a and set $[a := 1]$

An assignment α is quasi-autark for F,
if $|\text{dom } \alpha| = 1$ and $|F \alpha \setminus F| = 1$.
Algorithm of Zhang

\(\text{Zh}(F, \alpha) \)

simplify\((F, \alpha)\)
if \(F = 0 \) then return UNSAT
if \(F = 1 \) then return \(\alpha \)
if \(u = 1 \) then return unit\((F, \alpha)\)
\((\gamma_1, \gamma_2) := \text{branch}(F, \alpha)\)
if \(\gamma_i \) autark for \(F \)
then return aut\((F, \gamma_i, \alpha)\)
if \(\gamma_i \) quasi-autark for \(F \)
then return qu-aut\((F, \gamma_i, \alpha)\)
\(\beta := \text{Zh}(FG_1, \alpha \cup \gamma_1) \)
if \(\beta \neq \text{UNSAT} \)
then return \(\beta \)
else return \(\text{Zh}(FG_2, \alpha \cup \gamma_2) \)
Autarkies and the last unit

After simplification we have \(u = 0 \), or \(u = 1 \) and \(d = 0 \).

\[
\text{unit}(F, \alpha) = \begin{cases}
\text{let } a \in U \\
\text{pick a 3-clause } (b \lor c \lor d) \\
\gamma := [a := 1, b := 0, c := 0, d := 1] \\
\text{if } \gamma \text{ autark for } F \\
\quad \text{then return } \text{aut}(F, \gamma, \alpha) \\
\beta := \text{Zh}(F[a := 1] \land (b \lor c), \alpha \cup [a := 1]) \\
\text{if } \beta \neq \text{UNSAT} \\
\quad \text{then return } \beta \\
\quad \text{else return } \text{Zh}(F \gamma, \alpha \cup \gamma)
\end{cases}
\]

\[
\text{aut}(F, \gamma, \alpha) = \begin{cases}
\text{let } \gamma = \gamma' \cup [a \leftarrow 1] \\
\text{return } \text{Zh}(F \gamma' \land a, \alpha \cup \gamma')
\end{cases}
\]
The branching

Case 1: $t \geq 1$, there are 2-clauses with common variables

Case 1.1: there are 2-clauses $(a \lor b)$ and $(\overline{a} \lor c)$

$\gamma_1 := [a := 1, c := 1]$
$\gamma_2 := [a := 0, b := 1]$

Case 1.2: otherwise pick 2-clauses $(a \lor b)$ und $(a \lor c)$

$\gamma_1 := [a := 1]$
$\gamma_2 := [a := 0, b := 1, c := 1]$

Case 2: $t = 0$, all 2-clauses are variable-disjoint, pick one $(a \lor b)$

$\gamma_1 := [a := 1]$
$\gamma_2 := [a := 0, b := 1]$
Some lemmas

\[F\langle a := C \rangle \] denotes \(F \) with \(a \) replaced by \(C \) everywhere.

Lemma

If \(a \) does not occur in \(F \), then \(F \land (a \lor C) \) is satisfiable iff \(F\langle \bar{a} := C \rangle \) is.

Corollary

If \(a \) occurs in \(F \) only in \((a \lor b \lor C)\), then \(F \) is satisfiable iff one of the following is:

\[F[b := 1, a := 0] \quad F\langle \bar{a} := C \rangle[b := 0, a := 1] \]

Lemma

If \(a \) und \(b \) do not occur in \(F \), then \(F \land (a \lor b \lor c) \) is satisfiable iff one of the following is:

\[F[c \leftarrow 1, a \leftarrow 0, b \leftarrow 0] \]
\[F[c \leftarrow 0, a \leftarrow 1, b \leftarrow 0] \]
\[F[c \leftarrow 0, a \leftarrow 0, b \leftarrow 1] \]
Treating quasi-autarkies

qu-aut(F, γ, α)

let $\gamma = [a := 1]$ and $F \gamma \setminus F = \{(b \lor c)\}$

if $[b := 1, a := 1]$ autark for F

then return $\text{aut}(F, [b := 1, a := 1], \alpha)$

if $F\langle a := c\rangle[b := 0, a := 0] \subseteq F$

then $\gamma_1 := [c := 1, a := 1, b := 0]$

$\gamma_2 := [c := 0, a := 0, b := 0]$

$\gamma_3 := [c := 0, a := 1, b := 1]$

if there is 2-clause $(\bar{b} \lor d)$ with $d \notin \{a, \bar{a}, c, \bar{c}\}$

then $\gamma_3 := \gamma_3 \cup [d := 1]$

if γ_i autark for F

then return $\text{aut}(F, \gamma_i, \alpha)$

for $i := 1$ to 3

$\beta := \text{Zh}(F\gamma_i, \alpha \cup \gamma_i)$

if $\beta \neq \text{UNSAT}$ then return β

return UNSAT

$\beta := \text{Zh}(F[b := 1, a := 1], \alpha \cup [b := 1, a := 1])$

if $\beta \neq \text{UNSAT}$

then return β

else return $\text{Zh}(F\langle a := c\rangle[b := 0, a := 0], \alpha \cup [b := 0, a := 0])$
The distance function

For a formula F we define the measure μ

- $\mu = n - \epsilon(u + d + t)$

For nodes v and v' with formulas of measure μ and μ'

- $d(v, v') = \mu - \mu'$
Analysis of \texttt{unit}()

Invoked only when $u = 1$, $d = 0$.

First branch: $d(v, v') = 1$
- one variable assigned: $n \rightsquigarrow n - 1$
- unit clause satisfied: $u \rightsquigarrow 0$
- all 2-clauses become units: $u \rightsquigarrow t$, $t \rightsquigarrow 0$
- one 2-clause added: $d \rightsquigarrow 1$

Second branch $d(v, v') = 4 - 2\epsilon$
- four variables assigned: $n \rightsquigarrow n - 4$
- unit clause satisfied: $u \rightsquigarrow 0$
- all 2-clauses satisfied: $t \rightsquigarrow 0$
- no autarky, thus one 2-clause added: $d \rightsquigarrow 1$
Analysis of the main branches

Case 1.1: \(\tau(v) = (2 - 3\epsilon, 2 - 3\epsilon) \)

In both branches: \(d(v, v') = 2 - 3\epsilon \)
- two variables assigned: \(n \leadsto n - 2 \)
- two 2-clauses in \(D \) satisfied: \(d \leadsto d - 2 \)
- all 2-clauses in \(T \) satisfied: \(t \leadsto 0 \)
- no autarky, thus one 2-clause added: \(d \leadsto d + 1 \)
Analysis of the main branches

Case 1.2: $\tau(v) = (1 - \epsilon, 3 - 3\epsilon)$

First branch: $d(v, v') = 1 - \epsilon$
 ▶ one variable assigned: $n \sim n - 1$
 ▶ one 2-clause from D satisfied: $d \sim d - 1$
 ▶ all 2-clauses from T satisfied: $t \sim t - 2$
 ▶ not quasi-autark, thus 2 new 2-clauses

Second branch $d(v, v') = 3 - 3\epsilon$
 ▶ three variables assigned: $n \sim n - 3$
 ▶ two 2-clause from D satisfied: $d \sim d - 1$
 ▶ all 2-clauses from T satisfied: $t \sim t - 2$
 ▶ no autarky, thus one new 2-clause
Analysis of the main branches

Case 2: $\tau(v) = (1 + \epsilon, 2)$

First branch: $d(v, v') = 1 + \epsilon$
 - one variable assigned: $n \rightsquigarrow n - 1$
 - one 2-clause from D satisfied: $d \rightsquigarrow d - 1$
 - not quasi-autark, thus 2 new 2-clauses

Second branch: $d(v, v') = 2$
 - two variables assigned: $n \rightsquigarrow n - 2$
 - one 2-clause from D satisfied: $d \rightsquigarrow d - 1$
 - no autarky, thus one new 2-clause
Analysis of \texttt{qu-aut()}

Case (A): \(\tau(v) = (3 - 3\epsilon, 3 - 3\epsilon, 3 - 3\epsilon) \)

- in every branch: \(n \leadsto n - 3, \quad d \leadsto d - 2, \quad t \leadsto t - 2 \)
- no autarky, thus always one new 2-clause.

Case (B): \(\tau(v) = (3 - 4\epsilon, 3 - 4\epsilon, 4 - 4\epsilon) \)

- in every branch: \(n \leadsto n - 3, \quad d \leadsto d - 3, \quad t \leadsto t - 2 \)
- no autarky, thus always one new 2-clause.
- in the final branch, one additional variable assigned.

Case (C):
- analogous to Case 1.1
The final analysis

The following branching tuples occur:

\[\tau(1, 4 - 2\epsilon) \] Procedure unit()
\[\tau(2 - 3\epsilon, 2 - 3\epsilon) \] Case 1.1, procedure qu-aut(), case (C)
\[\tau(1 - \epsilon, 3 - 3\epsilon) \] Case 1.2
\[\tau(1 + \epsilon, 2) \] Case 2
\[\tau(3 - 3\epsilon, 3 - 3\epsilon, 3 - 3\epsilon) \] Procedure qu-aut(), case (A)
\[\tau(3 - 4\epsilon, 3 - 4\epsilon, 4 - 4\epsilon) \] Procedure qu-aut(), case (B)

The maximum is smallest for \(\epsilon = 0.1528477 \), where
\[\tau(T) = \tau(1 + \epsilon, 2) < 1.570214. \]
Upper bounds for 3-SAT

Theorem

Zhang’s algorithm solves 3-SAT in time $O(1.57022^n)$

Better bounds for 3-SAT were obtained with similar, more complex algorithms and analyses:

- Kullmann (1993): $O(1.5045^n)$
- Schiermeyer (1996): $O(1.4963^n)$