Overview

Introduction

Tractable cases

- Horn-SAT
- 2-SAT
- SAT(2)

DPLL algorithms

CDCL solvers

Lookahead-based solvers

Probabilistic algorithms

Certification

Applications
Positive and negative clauses

A clause C is
- positive, if all literals in C are positive,
- negative, if all literals in C are negative,

Property

Every unsatisfiable formula F contains a positive and a negative clause.

Proof: Otherwise the assignments $\alpha \equiv 0$ or $\alpha \equiv 1$ satisfy F.
Horn formulas

A clause C is

- **definite**, if exactly one literal in C is positive,
- a **Horn** clause, if at most one literal in C is positive.

Thus, a Horn clause is either negative or definite.

A **Horn-formula** is a conjunction of Horn clauses.

Corollary

Every unsatisfiable Horn formula contains a positive unit clause.
Algorithm for Horn formulas

Theorem

Horn-SAT can be decided in time $O(nm)$.

Algorithm:

$\alpha := []$

while positive unit clause x in $F\alpha$

$\alpha := \alpha \cup [x := 1]$

$\alpha' := \alpha \cup [y := 0; y \notin \text{dom } \alpha]$

if $\alpha' \models F$

then return α'
else return UNSAT
2-SAT as a graph

For a 2-CNF formula F, define the directed graph $G(F)$:

- vertices are the literals of F
- (a, b) is an edge if $\bar{a} \lor b$ is a clause in F.
- (\bar{a}, a) is an edge if a is a unit clause in F.

Lemma

*If $\alpha \models F$, and b is reachable from a in $G(F)$, then $\alpha(a) = 1$ implies $\alpha(b) = 1$.***

Let $[a]$ denote the strongly connected component of a in $G(F)$.

Corollary

*If $\alpha \models F$, and $[a] = [b]$, then $\alpha(a) = \alpha(b)$.***
Algorithm for 2-SAT

Theorem

F is unsatisfiable iff $[x] = [\bar{x}]$ for some $x \in V(F)$.

Algorithm to compute $\alpha \models F$ if $[x] \neq [\bar{x}]$ holds for all $x \in V(F)$:

Let $[a_1], \ldots, [a_r]$ be the SCCs in reverse topological order:

\[
\text{for } j := 1 \text{ to } r \text{ do}
\]

\[
\text{if the literals in } [a_j] \text{ are unassigned}
\]

\[
\alpha(b) := 1 \text{ for all } b \in [a_j]
\]

\[
\alpha(b) := 0 \text{ for all } b \in [\bar{a}_j]
\]

Corollary

2-SAT can be decided in linear time, and in nondeterministic logarithmic space.
CNF(2) as a graph

For F in CNF(2), define undirected, marked (multi-)graph $G(F)$:

- vertex v_C for every clause C in F
- there is an edge e_x between v_C and v_D if $x \in C$ and $\bar{x} \in D$.
- v_C is marked if C contains a pure literal.

Assignment \triangleq orientation of the edges

Clause C is satisfied $\triangleq v_C$ is marked or of outdegree > 0
SAT(2) is tractable

Lemma

F is satisfiable iff \(G(F) \) can be oriented s.t. every unmarked vertex has non-zero out-degree.

A connected component is marked if it contains a marked vertex.

Theorem

\(F \) is satisfiable iff every unmarked connected component in \(G(F) \) has a cycle.

Corollary

SAT(2) can be decided in linear time, and in deterministic logarithmic space.
A renaming is a permutation \(r \) on literals with \(r(a) \in \{a, \overline{a}\} \).

Formula \(F \) is Horn-renamable if there is a renaming \(r \) such that \(r(F) \) is a Horn formula.

Theorem

There is a linear time algorithm to test whether \(F \) is Horn-renamable and if yes, computes a renaming \(r \) s.t. \(r(F) \) is a Horn formula.

Theorem

SAT for Horn-renamable formulas can be solved in linear time.
Cluster formulas

Two clauses C, D in a formula F clash, if $a \in C$ and $\overline{a} \in D$ for some literal a.

F is a hitting formula if any two clauses in F clash.

Theorem

A hitting formula F is satisfiable iff \(\sum_{C \in F} 2^{-w(C)} < 1 \).

A cluster formula is a union $\bigcup_{i=1}^{t} F_i$, where each F_i is a hitting formula and $V(F_i) \cap V(F_j) = \emptyset$ for $i \neq j$.

Corollary

Satisfiability of cluster formulas can be tested in polynomial time.