Aufgabe 9-1.

Abkürzungen:
\(e = (\text{fun} \ f \ x \Rightarrow \text{if } x = 0 \text{ then } 1 \text{ else } x \ast (f (x - 1))) \),
\(e_1 = \text{fun} \ x \Rightarrow \text{if } x = 0 \text{ then } 1 \text{ else } x \ast (e (x - 1)) \).

\[
\begin{align*}
(\text{Fun}) \quad e & \rightarrow e_1 \\
(\text{Op}) \quad 3 & \rightarrow 3 \\
(\text{If2}) \quad 3 = 0 \rightarrow \text{false} \\
(\Pi_2) \quad e (3 - 1) & \rightarrow 2 \\
& 3 + 2 = 6
\end{align*}
\]

Dabei steht \(\Pi_2 \) für folgende Herleitung:

\[
\begin{align*}
(\text{Fun}) \quad e & \rightarrow e_1 \\
(\text{Op}) \quad 3 & \rightarrow 3 \\
(\text{If2}) \quad 3 = 0 \rightarrow \text{false} \\
& \text{if } 3 = 0 \text{ then } 1 \text{ else } 3 \ast (e (3 - 1)) \rightarrow 6
\end{align*}
\]

\[
\begin{align*}
(\Pi_1) \quad e (3 - 1) & \rightarrow 2
\end{align*}
\]

Dabei steht \(\Pi_1 \) für die analoge Herleitung:

\[
\begin{align*}
(\text{Fun}) \quad e & \rightarrow e_1 \\
(\text{Op}) \quad 1 & \rightarrow 1 \\
(\text{If2}) \quad 1 = 0 \rightarrow \text{false} \\
& \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \ast (e (1 - 1)) \rightarrow 1
\end{align*}
\]

Schließlich ist \(\Pi_0 \) folgende Herleitung:

\[
\begin{align*}
(\text{Fun}) \quad e & \rightarrow e_1 \\
(\text{Op}) \quad 1 & \rightarrow 1 \\
(\text{If1}) \quad 1 = 0 \rightarrow \text{true} \\
& \text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \ast (e (0 - 1)) \rightarrow 1
\end{align*}
\]

\[
\begin{align*}
(\Pi_0) \quad e (1 - 1) & \rightarrow 1
\end{align*}
\]